1. A label-free electrochemical biosensor based on a bimetallic organic framework for the detection of carbohydrate antigen 19-9.
- Author
-
Zhao T and Jin B
- Subjects
- Humans, CA-19-9 Antigen analysis, CA-19-9 Antigen blood, Limit of Detection, Iron chemistry, Cerium chemistry, Graphite chemistry, Biosensing Techniques methods, Electrochemical Techniques methods, Metal-Organic Frameworks chemistry
- Abstract
Carbohydrate antigen 19-9 (CA19-9) is an important marker for pancreatic cancer, ovarian cancer and other tumors, and its rapid and stable detection is the basis for early diagnosis and treatment. In this paper, a label-free electrochemical immunosensor for the sensitive detection of CA19-9 has been developed. First, the synthesis of two novel core-shell bimetallic nanomaterials, namely Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF, was accomplished using the MOF-on-MOF approach. The poor electrical conductivity of MOF materials was addressed by incorporating polyethylenimide (PEI) functionalized rGO with Ce-MOF-on-Fe-MOF and Fe-MOF-on-Ce-MOF nanomaterials. Simultaneously, toluidine blue (Tb) was employed as a redox probe and physically adsorbed onto the synthesized materials, resulting in the formation of two nanomaterials: rGO@Ce-MOF-on-Fe-MOF@Tb and rGO@Fe-MOF-on-Ce-MOF@Tb. The fundamental characterization reveals that the sensing performance of the rGO@Ce-MOF-on-Fe-MOF@TB-based immune sensor surpasses that of the rGO@Fe-MOF-on-Ce-MOF@TB-based immune sensor, which is attributed to the fact that, unlike the interlayer-constrained structure of Fe-MOF-on-Ce-MOF, in Ce-MOF-on-Fe-MOF, Ce-MOF penetrates into Fe-MOF to form a heterogeneous structure due to the relatively large pore size of Fe-MOF, which better combines the excellent biocompatibility and strong anchoring effect of Fe MOFs on antibodies, as well as the high electrochemical activity and conductivity of Ce-MOF, to enhance sensing performance. The proposed label-free immunosensor based on rGO@Ce-MOF-on-Fe-MOF@Tb has a wide linear range (1-100 000 mU mL
-1 ), a low detection limit (0.34 mU mL-1 ), good stability, reproducibility, and repeatability, and satisfactory applicability, which provides a potential platform for clinical applications.- Published
- 2024
- Full Text
- View/download PDF