24 results on '"C. Muñoz-Porcar"'
Search Results
2. Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
- Author
-
C. Gil-Díaz, M. Sicard, A. Comerón, D. C. F. dos Santos Oliveira, C. Muñoz-Porcar, A. Rodríguez-Gómez, J. R. Lewis, E. J. Welton, and S. Lolli
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
In this paper a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. First, a review of the literature on the two-way transmittance method is presented. This method is a well-known lidar inversion method used to retrieve the optical properties of an aerosol–cloud layer between two molecular (i.e. aerosol and cloud-free) regions below and above, without the need to make any a priori assumptions about their optical and/or microphysical properties. Second, a simple mathematical expression of the two-way transmittance method is proposed for both ground-based and spaceborne lidar systems. This approach of the method allows the retrieval of the cloud optical depth, the cloud column lidar ratio and the vertical profile of the cloud backscatter coefficient. The method is illustrated for a cirrus cloud using measurements from the ground-based MPL and from the spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Third, the database is then filtered with a cirrus identification criterion based on (and compared to) the literature using only lidar and radiosonde data. During the period from November 2018 to September 2022, 367 high-altitude cirrus clouds were identified at 00:00 and 12:00 UTC, of which 203 were successfully inverted with the two-way transmittance method. The statistical results of these 203 high-altitude cirrus clouds show that the cloud thickness is 1.8 ± 1.1 km, the mid-cloud temperature is −51 ± 8 ∘C and the linear cloud depolarization ratio is 0.32 ± 0.13. The application of the transmittance method yields an average cloud optical depth (COD) of 0.36 ± 0.45 and a mean effective column lidar ratio of 30 ± 19 sr. Statistical results of the errors associated with the two-way transmittance method retrievals are also provided. The highest occurrence of cirrus is observed in spring and the majority of cirrus clouds (48 %) are visible (0.03 < COD < 0.3), followed by opaque (COD > 0.3) with a percentage of 38 %. Together with results from other sites, possible latitudinal dependencies have been analysed together with correlations between cirrus cloud properties. For example, we noted that in Barcelona the COD correlates positively with the cloud base temperature, effective column lidar ratio and linear cloud depolarization ratio and negatively with the cloud base height.
- Published
- 2024
- Full Text
- View/download PDF
3. Combined sun-photometer–lidar inversion: lessons learned during the EARLINET/ACTRIS COVID-19 campaign
- Author
-
A. Tsekeri, A. Gialitaki, M. Di Paolantonio, D. Dionisi, G. L. Liberti, A. Fernandes, A. Szkop, A. Pietruczuk, D. Pérez-Ramírez, M. J. Granados Muñoz, J. L. Guerrero-Rascado, L. Alados-Arboledas, D. Bermejo Pantaleón, J. A. Bravo-Aranda, A. Kampouri, E. Marinou, V. Amiridis, M. Sicard, A. Comerón, C. Muñoz-Porcar, A. Rodríguez-Gómez, S. Romano, M. R. Perrone, X. Shang, M. Komppula, R.-E. Mamouri, A. Nisantzi, D. Hadjimitsis, F. Navas-Guzmán, A. Haefele, D. Szczepanik, A. Tomczak, I. S. Stachlewska, L. Belegante, D. Nicolae, K. A. Voudouri, D. Balis, A. A. Floutsi, H. Baars, L. Miladi, N. Pascal, O. Dubovik, and A. Lopatin
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
The European Aerosol Research Lidar Network (EARLINET), part of the Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS), organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. Besides the standard operational processing of the lidar data in EARLINET, for seven EARLINET sites having collocated sun-photometric observations in the Aerosol Robotic Network (AERONET), a network exercise was held in order to derive profiles of the concentration and effective column size distributions of the aerosols in the atmosphere, by applying the GRASP/GARRLiC (from Generalized Aerosol Retrieval from Radiometer and Lidar Combined data – GARRLiC – part of the Generalized Retrieval of Atmosphere and Surface Properties – GRASP) inversion algorithm. The objective of this network exercise was to explore the possibility of identifying the anthropogenic component and of monitoring its spatial and temporal characteristics in the COVID-19 lockdown and relaxation period. While the number of cases is far from being statistically significant so as to provide a conclusive description of the atmospheric aerosols over Europe during this period, this network exercise was fundamental to deriving a common methodology for applying GRASP/GARRLiC to a network of instruments with different characteristics. The limits of the approach are discussed, in particular the missing information close to the ground in the lidar measurements due to the instrument geometry and the sensitivity of the GRASP/GARRLiC retrieval to the settings used, especially for cases with low aerosol optical depth (AOD) like the ones we show here. We found that this sensitivity is well-characterized in the GRASP/GARRLiC products, since it is included in their retrieval uncertainties.
- Published
- 2023
- Full Text
- View/download PDF
4. An explicit formulation for the retrieval of the overlap function in an elastic and Raman aerosol lidar
- Author
-
A. Comerón, C. Muñoz-Porcar, A. Rodríguez-Gómez, M. Sicard, F. Dios, C. Gil-Díaz, D. C. F. dos Santos Oliveira, and F. Rocadenbosch
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals, plus an assumed lidar ratio. We assess the influence of the lidar ratio error in the overlap function retrieval and present retrieval examples.
- Published
- 2023
- Full Text
- View/download PDF
5. Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
- Author
-
M. Á. López-Cayuela, C. Córdoba-Jabonero, D. Bermejo-Pantaleón, M. Sicard, V. Salgueiro, F. Molero, C. V. Carvajal-Pérez, M. J. Granados-Muñoz, A. Comerón, F. T. Couto, R. Barragán, M.-P. Zorzano, J. A. Bravo-Aranda, C. Muñoz-Porcar, M. J. Costa, B. Artíñano, A. Rodríguez-Gómez, D. Bortoli, M. Pujadas, J. Abril-Gago, L. Alados-Arboledas, and J. L. Guerrero-Rascado
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
An intense and long-lasting Saharan dust outbreak crossed the Iberian Peninsula (IP) from the southwest (SW) to the northeast (NE) from 25 March until 7 April 2021. This work aims to assess the optical and mass contribution of both fine and coarse dust particles along their transport. Five Iberian lidar stations were monitoring the transport and evolution of the Saharan dust particles, i.e. El Arenosillo/Huelva, Granada, Torrejón/Madrid and Barcelona in Spain, and Évora in Portugal. The particular meteorological conditions determined the aerosol scenario along the overall dust event, differing in the first part of the event (25–31 March), in which the strongest dust incidence occurred on 29–31 March at the south and central stations and 1 April at Barcelona, from the second one (1–7 April). The use of the two-step POLIPHON algorithm showed the relevance of using polarized lidar measurements for separating the aerosol properties of dust fine and coarse particles as an added value. Both the fine dust (Df) and coarse dust (Dc) components of the total particle backscatter coefficient (total dust, DD = Dc + Df) were separately derived. The dust plume was well-mixed with height and no significant differences were found in the vertical structure of both the Dc and Df particle backscatter coefficients. From the beginning of the dust outbreak until 1 April, the vertical Df / DD mass ratio was nearly constant in time at each station and also in altitude with values of ∼ 10 %. Moreover, the mean dust optical depth at 532 nm was decreasing along that dust pathway, reporting values from SW to NE stations of 0.34 at El Arenosillo/Huelva, 0.28 at Granada, 0.20 at Évora, 0.28 at Torrejón/Madrid, and 0.14 at Barcelona, although its Df / DD ratio remained almost constant (28 %–30 %). A similar pattern was found for the total dust mass loading and its Df / DD ratio, i.e. mostly decreasing mean mass values were reported, being constant in its Df / DD ratio (∼ 10 %) along the SW–NE dust pathway. In addition, the episode-mean centre-of-mass height increased with latitude overall, showing a high variability, being greater than 0.5 km at the southern sites (El Arenosillo/Huelva, Granada, Évora) and ∼ 1.0 km at Torrejón/Madrid and Barcelona. However, despite the relatively high intensity of the dust intrusion, the expected ageing of the dust particles was hardly observed, by taking into account the minor changes found in the contribution and properties of the coarse and fine dust particles. This is on the basis that the IP is relatively close to the Saharan dust sources and then, under certain dust transport conditions, any potential ageing processes in the dust particles remained unappreciated. The following must be highlighted: the different relative contribution of the fine dust particles to the total dust found for their optical properties (∼ 30 %) associated with the radiative effect of dust, with respect to that for the mass features (∼ 10 %) linked to air quality issues, along the overall dust event by crossing the IP.
- Published
- 2023
- Full Text
- View/download PDF
6. Measurement report: Spectral and statistical analysis of aerosol hygroscopic growth from multi-wavelength lidar measurements in Barcelona, Spain
- Author
-
M. Sicard, D. C. Fortunato dos Santos Oliveira, C. Muñoz-Porcar, C. Gil-Díaz, A. Comerón, A. Rodríguez-Gómez, and F. Dios Otín
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This paper presents the estimation of the hygroscopic growth parameter of atmospheric aerosols retrieved with a multi-wavelength lidar, a micro-pulse lidar (MPL) and daily radiosoundings in the coastal region of Barcelona, Spain. The hygroscopic growth parameter, γ, parameterizes the magnitude of the scattering enhancement in terms of the backscatter coefficient following Hänel parameterization. After searching for time-colocated lidar and radiosounding measurements (performed twice a day, all year round at 00:00 and 12:00 UTC), a strict criterion-based procedure (limiting the variations of magnitudes such as water vapor mixing ratio (WMVR), potential temperature, wind speed and direction) is applied to select only cases of aerosol hygroscopic growth. A spectral analysis (at the wavelengths of 355, 532 and 1064 nm) is performed with the multi-wavelength lidar, and a climatological one, at the wavelength of 532 nm, with the database of both lidars. The spectral analysis shows that below 2 km the regime of local pollution and sea salt γ decreases with increasing wavelengths. Since the 355 nm wavelength is sensitive to smaller aerosols, this behavior could indicate slightly more hygroscopic aerosols present at smaller size ranges. Above 2 km (the regime of regional pollution and residual sea salt) the values of γ at 532 nm are nearly the same as those below 2 km, and its spectral behavior is flat. This analysis and others from the literature are put together in a table presenting, for the first time, a spectral analysis of the hygroscopic growth parameter of a large variety of atmospheric aerosol hygroscopicities ranging from low (pure mineral dust, γ γ > 1.0) hygroscopicity. The climatological analysis shows that, at 532 nm, γ is rather constant all year round and has a large monthly standard deviation, suggesting the presence of aerosols with different hygroscopic properties all year round. The annual γ is 0.55 ± 0.23. The height of the layer where hygroscopic growth was calculated shows an annual cycle with a maximum in summer and a minimum in winter. Former works describing the presence of recirculation layers of pollutants injected at various heights above the planetary boundary layer (PBL) may explain why γ, unlike the height of the layer where hygroscopic growth was calculated, is not season-dependent. The subcategorization of the whole database into No cloud and Below-cloud cases reveals a large difference of γ in autumn between both categories (0.71 and 0.33, respectively), possibly attributed to a depletion of inorganics at the point of activation into cloud condensation nuclei (CCN) in the Below-cloud cases. Our work calls for more in situ measurements to synergetically complete such studies based on remote sensing.
- Published
- 2022
- Full Text
- View/download PDF
7. Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 2: Long-wave and net dust direct radiative effect
- Author
-
M. Sicard, C. Córdoba-Jabonero, M.-Á. López-Cayuela, A. Ansmann, A. Comerón, M.-P. Zorzano, A. Rodríguez-Gómez, and C. Muñoz-Porcar
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This paper is the companion paper of Córdoba-Jabonero et al. (2021). It deals with the estimation of the long-wave (LW) and net dust direct radiative effect (DRE) during the dust episode that occurred between 23 and 30 June 2019 and was paired with a mega-heatwave. The analysis is performed at two European sites where polarized micro-pulse lidars ran continuously to retrieve the vertical distribution of the dust optical properties: Barcelona, Spain, 23–30 June, and Leipzig, Germany, 29–30 June. The radiative effect is computed with the GAME (global atmospheric model) radiative transfer model separately for the fine- and coarse-mode dust. The instantaneous and daily radiative effect and radiative efficiency (DREff) are provided for the fine-mode, coarse-mode and total dust at the surface, top of the atmosphere (TOA) and in the atmosphere. The fine-mode daily LW DRE is low (< 6 % of the short-wave (SW) component), which makes the coarse-mode LW DRE the main modulator of the total net dust DRE. The coarse-mode LW DRE starts exceeding (in absolute values) the SW component in the middle of the episode, which produces positive coarse-mode net DRE at both the surface and TOA. Such an unusual tendency is attributed to increasing coarse-mode size and surface temperature throughout the episode. This has the effect of reducing the SW cooling in Barcelona up to the point of reaching total net positive dust DRE (+0.9 W m−2) on one occasion at the surface and quasi-neutral (−0.6 W m−2) at TOA. When adding the LW component, the total dust SW radiative efficiency is reduced by a factor of 1.6 at both surface (on average over the episode the total dust net DREff is −54.1 W m−2 τ−1) and TOA (−37.3 W m−2 τ−1). A sensitivity study performed on the surface temperature and the air temperature in the dust layer, both linked to the heatwave and upon which the LW DRE strongly depends, shows that the heatwave contributed to reducing the dust net cooling effect at the surface and that it had nearly no effect at TOA. Its subsequent effect was thus to reduce the heating of the atmosphere produced by the dust particles.
- Published
- 2022
- Full Text
- View/download PDF
8. Statistical validation of Aeolus L2A particle backscatter coefficient retrievals over ACTRIS/EARLINET stations on the Iberian Peninsula
- Author
-
J. Abril-Gago, J. L. Guerrero-Rascado, M. J. Costa, J. A. Bravo-Aranda, M. Sicard, D. Bermejo-Pantaleón, D. Bortoli, M. J. Granados-Muñoz, A. Rodríguez-Gómez, C. Muñoz-Porcar, A. Comerón, P. Ortiz-Amezcua, V. Salgueiro, M. M. Jiménez-Martín, and L. Alados-Arboledas
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The Global Observing System (GOS) has encountered some limitations due to a lack of worldwide real-time wind measurements. In this context, the European Space Agency (ESA) has developed the Aeolus satellite mission, based on the ALADIN (Atmospheric Laser Doppler Instrument) Doppler wind lidar; this mission aims to obtain near-real-time wind retrievals at the global scale. As spin-off products, the instrument retrieves aerosol optical properties such as particle backscatter and extinction coefficients. In this work, a validation of Aeolus reprocessed (baseline 10) co-polar backscatter coefficients (βAeoluspart) is presented through an intercomparison with analogous ground-based measurements taken at the ACTRIS (Aerosols, Clouds and Trace gases Research InfraStructure Network)/EARLINET (European Aerosol Research Lidar Network) stations of Granada (Spain), Évora (Portugal) and Barcelona (Spain) over the period from July 2019 until October 2020. Case studies are first presented, followed by a statistical analysis. The stations are located in a hot spot between Africa and the rest of Europe, which guarantees a variety of aerosol types, from mineral dust layers to continental/anthropogenic aerosol, and allows us to test Aeolus performance under different scenarios. The so called Aeolus-like profiles (βAeoluslike,355part) are obtained from total particle backscatter coefficient and linear particle depolarization ratio (δlinearpart) profiles at 355 and 532 nm measured from the surface, through a thorough bibliographic review of dual-polarization measurements for relevant aerosol types. Finally, the study proposes a relation for the spectral conversion of δlinearpart, which is implemented in the Aeolus-like profile calculation. The statistical results show the ability of the satellite to detect and characterize significant aerosol layers under cloud-free conditions, along with the surface effect on the lowermost measurements, which causes the satellite to largely overestimate co-polar backscatter coefficients. Finally, the Aeolus standard correct algorithm middle bin (SCAmb) shows a better agreement with ground-based measurements than the standard correct algorithm (SCA), which tends to retrieve negative and meaningless coefficients in the clear troposphere. The implementation of Aeolus quality flags entails a vast reduction in the number of measurements available for comparison, which affects the statistical significance of the results.
- Published
- 2022
- Full Text
- View/download PDF
9. Aerosol radiative impact during the summer 2019 heatwave produced partly by an inter-continental Saharan dust outbreak – Part 1: Short-wave dust direct radiative effect
- Author
-
C. Córdoba-Jabonero, M. Sicard, M.-Á. López-Cayuela, A. Ansmann, A. Comerón, M.-P. Zorzano, A. Rodríguez-Gómez, and C. Muñoz-Porcar
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The short-wave (SW) direct radiative effect (DRE) during the summer 2019 heatwave produced partly by a moderate, long-lasting Saharan dust outbreak over Europe is analysed in this study. Two European sites (periods) are considered: Barcelona, Spain (23–30 June), and Leipzig, Germany (29 and 30 June), 1350 km apart from each other. Major data are obtained from AERONET and polarised Micro-Pulse Lidar (P-MPL) observations. Modelling is used to describe the different dust pathways, as observed at both sites. The coarse dust (Dc) and fine dust (Df) components (with total dust, DD = Dc + Df) are identified in the profiles of the total particle backscatter coefficient using the POLIPHON (POlarisation LIdar PHOtometer Networking) method in synergy with P-MPL measurements. This information is used to calculate the relative mass loading and the centre-of-mass height, as well as the contribution of each dust mode to the total dust DRE. Several aspects of the ageing of dust are put forward. The mean dust optical depth and its Df/DD ratios are, respectively, 0.153 and 24 % in Barcelona and 0.039 and 38 % in Leipzig; this Df increase in Leipzig is attributed to a longer dust transport path in comparison to Barcelona. The dust produced a cooling effect on the surface with a mean daily DRE of −9.1 and −2.5 W m−2, respectively, in Barcelona and Leipzig, but the Df/DD DRE ratio is larger for Leipzig (52 %) than for Barcelona (37 %). Cooling is also observed at the top of the atmosphere (TOA), although less intense than on the surface. However, the Df/DD DRE ratio at the TOA is even higher (45 % and 60 %, respectively, in Barcelona and Leipzig) than on the surface. Despite the predominance of Dc particles under dusty conditions, the SW radiative impact of Df particles can be comparable to, even higher than, that induced by the Dc ones. In particular, the Df/DD DRE ratio in Barcelona increases by +2.4 % d−1 (surface) and +2.9 % d−1 (TOA) during the dusty period. This study is completed by a second paper about the long-wave and net radiative effects. These results are especially relevant for the next ESA EarthCARE mission (planned in 2022) as it is devoted to aerosol–cloud–radiation interaction research.
- Published
- 2021
- Full Text
- View/download PDF
10. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign
- Author
-
M. J. Granados-Muñoz, F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, I. Binietoglou, S. N. Pereira, S. Basart, J. M. Baldasano, L. Belegante, A. Chaikovsky, A. Comerón, G. D'Amico, O. Dubovik, L. Ilic, P. Kokkalis, C. Muñoz-Porcar, S. Nickovic, D. Nicolae, F. J. Olmo, A. Papayannis, G. Pappalardo, A. Rodríguez, K. Schepanski, M. Sicard, A. Vukovic, U. Wandinger, F. Dulac, and L. Alados-Arboledas
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest, Évora, and Granada was crucial for the characterization of the aerosol types and their distribution in the vertical column, whereas in stations lacking depolarization lidar channels, ancillary information was needed. Results obtained were also used for the validation of different mineral dust models. In general, the models better forecast the vertical distribution of the mineral dust than the column-integrated mass concentration, which was underestimated in most of the cases.
- Published
- 2016
- Full Text
- View/download PDF
11. EARLINET instrument intercomparison campaigns: overview on strategy and results
- Author
-
U. Wandinger, V. Freudenthaler, H. Baars, A. Amodeo, R. Engelmann, I. Mattis, S. Groß, G. Pappalardo, A. Giunta, G. D'Amico, A. Chaikovsky, F. Osipenko, A. Slesar, D. Nicolae, L. Belegante, C. Talianu, I. Serikov, H. Linné, F. Jansen, A. Apituley, K. M. Wilson, M. de Graaf, T. Trickl, H. Giehl, M. Adam, A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, M. Sicard, S. Tomás, D. Lange, D. Kumar, M. Pujadas, F. Molero, A. J. Fernández, L. Alados-Arboledas, J. A. Bravo-Aranda, F. Navas-Guzmán, J. L. Guerrero-Rascado, M. J. Granados-Muñoz, J. Preißler, F. Wagner, M. Gausa, I. Grigorov, D. Stoyanov, M. Iarlori, V. Rizi, N. Spinelli, A. Boselli, X. Wang, T. Lo Feudo, M. R. Perrone, F. De Tomasi, and P. Burlizzi
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2 × 10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
- Published
- 2016
- Full Text
- View/download PDF
12. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
- Author
-
I. Binietoglou, S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. M. Baldasano, D. Balis, L. Belegante, J. A. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comerón, G. D'Amico, M. Filioglou, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi, L. Mona, F. Monti, C. Muñoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S. N. Pereira, M. R. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodríguez-Gómez, M. Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeri, A. Vukovic, U. Wandinger, and J. Wagner
- Subjects
Environmental engineering ,TA170-171 ,Earthwork. Foundations ,TA715-787 - Abstract
Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.
- Published
- 2015
- Full Text
- View/download PDF
13. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during July 2012 ChArMEx/EMEP campaign
- Author
-
M. J. Granados-Muñoz, F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, I. Binietoglou, S. N. Pereira, S. Basart, J. M. Baldasano, L. Belegante, A. Chaikovsky, A. Comerón, G. D'Amico, O. Dubovik, L. Ilic, P. Kokkalis, C. Muñoz-Porcar, S. Nickovic, D. Nicolae, F. J. Olmo, A. Papayannis, G. Pappalardo, A. Rodríguez, K. Schepanski, M. Sicard, A. Vukovic, U. Wandinger, F. Dulac, L. Alados-Arboledas, Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,QC801-809 ,[SDU]Sciences of the Universe [physics] ,Geophysics. Cosmic physics ,010501 environmental sciences ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
The analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012). During and in support to this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora and Granada) performed 72 h of continuous lidar and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the Western Mediterranean region (mainly Granada station) whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles temporal evolution was also possible. An in depth analysis was performed mainly at Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties both in the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest, Évora and Granada was crucial for the characterization of the aerosol types and their distribution in the vertical column, whereas in stations lacking of depolarization lidar channels ancillary information was needed. Results obtained were also used for the validation of different mineral dust models. In general, the models better forecast the vertical distribution of the mineral dust than the column integrated mass concentration, which was underestimated in most of the cases.
- Published
- 2022
14. Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
- Author
-
S. Lolli, M. Sicard, F. Amato, A. Comeron, C. Gíl-Diaz, T. C. Landi, C. Munoz-Porcar, D. Oliveira, F. Dios Otin, F. Rocadenbosch, A. Rodriguez-Gomez, A. Alastuey, X. Querol, and C. Reche
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Aerosols are one of the most important pollutants in the atmosphere and have been monitored for the past few decades by remote sensing and in situ observation platforms to assess the effectiveness of government-managed reduction emission policies and assess their impact on the radiative budget of the Earth's atmosphere. In fact, aerosols can directly modulate incoming short-wave solar radiation and outgoing long-wave radiation and indirectly influence cloud formation, lifetime, and precipitation. In this study, we quantitatively evaluated long-term temporal trends and seasonal variability from a climatological point of view of the optical and microphysical properties of atmospheric particulate matter at the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, over the past 17 years, through a synergy of lidar, sun photometer, and in situ concentration measurements. Interannual temporal changes in aerosol optical and microphysical properties are evaluated through the seasonal Mann–Kendall test. Long-term trends in the optical depth of the recovered aerosol; the Ångström exponent (AE); and the concentrations of PM10, PM2.5, and PM1 reveal that emission reduction policies implemented in the past decades were effective in improving air quality, with consistent drops in PM concentrations and optical depth of aerosols. The seasonal analysis of the 17-year average vertically resolved aerosol profiles obtained from lidar observations shows that during summer the aerosol layer can be found up to an altitude of 5 km, after a sharp decay in the first kilometer. In contrast, during the other seasons, the backscatter profiles fit a pronounced exponential decay well with a well-defined scale height. Long-range transport, especially dust outbreaks from the Sahara, is likely to occur throughout the year. During winter, the dust aerosol layers are floating above the boundary layer, while during the other seasons they can penetrate the layer. The analysis also revealed that intense, short-duration pollution events during winter, associated with dust outbreaks, have become more frequent and intense since 2016. This study sheds some light on the meteorological processes and conditions that can lead to the formation of haze and helps decision makers adopt mitigation strategies to preserve large metropolitan areas in the Mediterranean basin.
- Published
- 2023
- Full Text
- View/download PDF
15. Contribution of EARLINET/ACTRIS to the summer 2013 Special Observing Period of the ChArMEx project: monitoring of a Saharan dust event over the western and central Mediterranean
- Author
-
M. Sicard a, b, R. Barragan a, C. Muñoz-Porcar a, A. Comerón a, M. Mallet c, F. Dulac d, J. Pelon e, L. Alados Arboledas f, g, A. Amodeo h, A. Boselli h, i, J. A. Bravo-Aranda f, G. D'amico h, M. J. Granados Muñoz f, G. Leto j, J. L. Guerrero Rascado f, F. Madonna h, L. Mona h, G. Pappalardo h, M. R. Perrone k, P. Burlizzi k, F. Rocadenbosch a, A. Rodríguez-Gómez a, S. Scollo l, N. Spinelli i, m, G. Titos f, X. Wang i, n, R. Zanmar Sanchez j, Remote Sensing Laboratory [Barcelona] (RSLab), Universitat Politècnica de Catalunya [Barcelona] (UPC), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Departamento de Fisica Aplicada [Granada], Universidad de Granada = University of Granada (UGR), Instituto Interuniversitario de Investigacion del Sistema Tierra en Andalucia (IISTA-CEAMA), Istituto di Metodologie per l'Analisi Ambientale (IMAA), Consiglio Nazionale delle Ricerche [Potenza] (CNR), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), INAF - Osservatorio Astrofisico di Catania (OACT), Istituto Nazionale di Astrofisica (INAF), Dipartimento di Matematica e Fisica 'Ennio de Georgi', Università del Salento [Lecce], Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), Université du Littoral Côte d'Opale (ULCO)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Fisiche [Naples], University of Naples Federico II = Università degli studi di Napoli Federico II, Istituto Superconduttori, Materiali Innovativi e Dispositivi (SPIN), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Universidad de Granada (UGR), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Università degli studi di Napoli Federico II, Consiglio Nazionale delle Ricerche [Roma] (CNR), Sicard, M., Barragan, R., Muñoz Porcar, C., Comerón, A., Mallet, M., Dulac, F., Pelon, J., Alados Arboledas, L., Amodeo, A., Boselli, A., Bravo Aranda, J. A., D’Amico, G., Granados Muñoz, M. J., Leto, G., Guerrero Rascado, J. L., Madonna, F., Mona, L., Pappalardo, G., Perrone, Maria Rita, Burlizzi, Pasquale, Rocadenbosch, F., Rodríguez Gómez, A., Scollo, S., Spinelli, Nicola, Titos, G., Wang, Xiaoxia, Zanmar Sanchez, R., Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció, Universitat Politècnica de Catalunya. CTE-CRAE - Grup de Recerca en Ciències i Tecnologies de l'Espai, Muñoz-Porcar, C., Bravo-Aranda, J. A., Perrone, M. R., Burlizzi, P., Rodríguez-Gómez, A., Spinelli, N., and Wang, X.
- Subjects
Mediterranean climate ,Teledetecció ,010504 meteorology & atmospheric sciences ,Meteorology ,Mineral dust ,Mediterranean ,7. Clean energy ,01 natural sciences ,Mediterranean Basin ,010309 optics ,0103 physical sciences ,monitoring of a Saharan ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,Optical depth ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Radiative forcing ,Remote sensing ,Trace gas ,Aerosol ,Lidar ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC] ,13. Climate action ,ChArMEx ,Contribution of EARLINET/ACTRIS ,summer 2013 ,General Earth and Planetary Sciences ,Environmental science ,Special Observing ,Earth and Planetary Sciences (all) - Abstract
International audience; In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multi-intrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms of dust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.
- Published
- 2016
16. EARLINET: potential operationality of a research network
- Author
-
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
- Subjects
010309 optics ,010504 meteorology & atmospheric sciences ,0103 physical sciences ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
In the framework of ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. Eleven lidar stations participated to the exercise which started on 9 July 2012 at 06:00 UT and ended 72 h later on 12 July at 06:00 UT. For the first time the Single-Calculus Chain (SCC), the common calculus chain developed within EARLINET for the automatic evaluation of lidar data from raw signals up to the final products, was used. All stations sent in real time measurements of 1 h of duration to the SCC server in a predefined netcdf file format. The pre-processing of the data was performed in real time by the SCC while the optical processing was performed in near-real time after the exercise ended. 98 and 84 % of the files sent to SCC were successfully pre-processed and processed, respectively. Those percentages are quite large taking into account that no cloud screening was performed on lidar data. The paper shows time series of continuous and homogeneously obtained products retrieved at different levels of the SCC: range-square corrected signals (pre-processing) and daytime backscatter and nighttime extinction coefficient profiles (optical processing), as well as combined plots of all direct and derived optical products. The derived products include backscatter- and extinction-related Ångström exponents, lidar ratios and color ratios. The combined plots reveal extremely valuable for aerosol classification. The efforts made to define the measurements protocol and to configure properly the SCC pave the way for applying this protocol for specific applications such as the monitoring of special events, atmospheric modelling, climate research and calibration/validation activities of spaceborne observations.
- Published
- 2015
17. Multi-wavelength aerosol LIDAR signal pre-processing: practical considerations.
- Author
-
A Rodríguez-Gómez, F Rocadenbosch, M Sicard, D Lange, R Barragán, O Batet, A Comerón, M A López Márquez, C Muñoz-Porcar, J Tiana, and S Tomás
- Published
- 2015
- Full Text
- View/download PDF
18. EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
- Author
-
E. Proestakis, V. Amiridis, E. Marinou, I. Binietoglou, A. Ansmann, U. Wandinger, J. Hofer, J. Yorks, E. Nowottnick, A. Makhmudov, A. Papayannis, A. Pietruczuk, A. Gialitaki, A. Apituley, A. Szkop, C. Muñoz Porcar, D. Bortoli, D. Dionisi, D. Althausen, D. Mamali, D. Balis, D. Nicolae, E. Tetoni, G. L. Liberti, H. Baars, I. Mattis, I. S. Stachlewska, K. A. Voudouri, L. Mona, M. Mylonaki, M. R. Perrone, M. J. Costa, M. Sicard, N. Papagiannopoulos, N. Siomos, P. Burlizzi, R. Pauly, R. Engelmann, S. Abdullaev, and G. Pappalardo
- Subjects
Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90 min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1 %, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3 %.
- Published
- 2019
- Full Text
- View/download PDF
19. Intense dust and extremely fresh biomass burning outbreak in Barcelona, Spain: characterization of their optical properties and estimation of their direct radiative forcing
- Author
-
M Sicard, M Mallet, D García-Vizcaíno, A Comerón, F Rocadenbosch, P Dubuisson, and C Muñoz-Porcar
- Subjects
42.68.Ay ,42.68.Jg ,42.68.Wt ,fresh biomass burning ,dust ,lidar ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
An extremely fresh smoke plume (
- Published
- 2012
- Full Text
- View/download PDF
20. A Comparative Analysis of Aerosol Optical Coefficients and Their Associated Errors Retrieved from Pure-Rotational and Vibro-Rotational Raman Lidar Signals.
- Author
-
Zenteno-Hernández JA, Comerón A, Rodríguez-Gómez A, Muñoz-Porcar C, D'Amico G, and Sicard M
- Abstract
This paper aims to quantify the improvement obtained with a purely rotational Raman (PRR) channel over a vibro-rotational Raman (VRR) channel, used in an aerosol lidar with elastic and Raman channels, in terms of signal-to-noise ratio (SNR), effective vertical resolution, and absolute and relative uncertainties associated to the retrieved aerosol optical (extinction and backscatter) coefficients. Measurements were made with the European Aerosol Research Lidar Network/Universitat Politècnica de Catalunya (EARLINET/UPC) multi-wavelength lidar system enabling a PRR channel at 353.9 nm, together with an already existing VRR (386.7 nm) and an elastic (354.7 nm) channels. Inversions were performed with the EARLINET Single Calculus Chain (SCC). When using PRR instead of VRR, the measurements show a gain in SNR of a factor 2.8 and about 7.6 for 3-h nighttime and daytime measurements, respectively. For 3-h nighttime (daytime) measurements the effective vertical resolution is reduced by 17% (20%), the absolute uncertainty (associated to the extinction) is divided by 2 (10) and the relative uncertainty is divided by 3 (7). During daytime, VRR extinction coefficient is retrieved in a limited height range (<2.2 km) preventing the SCC from finding a suitable calibration range in the search height range. So the advantage of using PRR instead of VRR is particularly evidenced in daytime conditions. For nighttime measurements, decreasing the time resolution from 3 to 1 h has nearly no effect on the relative performances of PRR vs. VRR.
- Published
- 2021
- Full Text
- View/download PDF
21. Calculation of the Overlap Function and Associated Error of an Elastic Lidar or a Ceilometer: Cross-Comparison with a Cooperative Overlap-Corrected System.
- Author
-
Sicard M, Rodríguez-Gómez A, Comerón A, and Muñoz-Porcar C
- Abstract
This paper establishes the relationship between the signal of a lidar system corrected for the incomplete overlap effect and the signal of another lidar system or a ceilometer for which the overlap function is unknown. Simple mathematical relationships permit the estimation of the overlap function of the second system as well as the associated error. Several overlap functions have been retrieved with this method over a period of 1.5 years with two lidar systems of the Universitat Politècnica de Catalunya, Barcelona, Spain. The error when the overlap function reaches 1 is usually less than 7%. The temporal variability estimated over a period of 1.5 years is less than 11% in the first 1.5 km from the surface and peaks at 18% at heights between 1.7 and 2.4 km. The use of a non-appropriate overlap function in the retrieval of the backscatter coefficient yield errors up to 60% in the first 0.5 km and up to 20% above.
- Published
- 2020
- Full Text
- View/download PDF
22. Considerations about the Determination of the Depolarization Calibration Profile of a Two-Telescope Lidar and Its Implications for Volume Depolarization Ratio Retrieval.
- Author
-
Comerón A, Rodríguez-Gómez A, Sicard M, Barragán R, Muñoz-Porcar C, Rocadenbosch F, and Granados-Muñoz MJ
- Abstract
We propose a new method for calculating the volume depolarization ratio of light backscattered by the atmosphere and a lidar system that employs an auxiliary telescope to detect the depolarized component. It takes into account the possible error in the positioning of the polarizer used in the auxiliary telescope. The theory of operation is presented and then applied to a few cases for which the actual position of the polarizer is estimated, and the improvement of the volume depolarization ratio in the molecular region is quantified. In comparison to the method used before, i.e., without correction, the agreement between the volume depolarization ratio with correction and the theoretical value in the molecular region is improved by a factor of 2⁻2.5.
- Published
- 2018
- Full Text
- View/download PDF
23. An Architecture Providing Depolarization Ratio Capability for a Multi-Wavelength Raman Lidar: Implementation and First Measurements.
- Author
-
Rodríguez-Gómez A, Sicard M, Granados-Muñoz MJ, Ben Chahed E, Muñoz-Porcar C, Barragán R, Comerón A, Rocadenbosch F, and Vidal E
- Abstract
A new architecture for the measurement of depolarization produced by atmospheric aerosols with a Raman lidar is presented. The system uses two different telescopes: one for depolarization measurements and another for total-power measurements. The system architecture and principle of operation are described. The first experimental results are also presented, corresponding to a collection of atmospheric conditions over the city of Barcelona., Competing Interests: The authors declare no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
24. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols.
- Author
-
Comerón A, Muñoz-Porcar C, Rocadenbosch F, Rodríguez-Gómez A, and Sicard M
- Abstract
Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.