1. The Large Binocular Telescope Panoramic View of the Recent Star Formation Activity in IC 2574
- Author
-
A. Pasquali, A. Leroy, H.‐W. Rix, F. Walter, T. Herbst, E. Giallongo, R. Ragazzoni, A. Baruffolo, R. Speziali, J. Hill, G. Beccari, N. Bouché, P. Buschkamp, C. Kochanek, E. Skillman, and J. Bechtold
- Subjects
Physics ,Stellar mass ,Star formation ,Astrophysics::High Energy Astrophysical Phenomena ,Velocity dispersion ,Flux ,Astronomy and Astrophysics ,Large Binocular Telescope ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galaxy ,Supernova ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy - Abstract
We present deep imaging of the star-forming dwarf galaxy IC 2574 in the M81 group taken with the Large Binocular Telescope in order to study in detail the recent star-formation history of this galaxy and to constrain the stellar feedback on its HI gas. We identify the star-forming areas in the galaxy by removing a smooth disk component from the optical images. We construct pixel-by-pixel maps of stellar age and stellar mass surface density in these regions by comparing their observed colors with simple stellar populations synthesized with STARBURST99. We find that an older burst occurred about 100 Myr ago within the inner 4 kpc and that a younger burst happened in the last 10 Myr mostly at galactocentric radii between 4 and 8 kpc. We compare stellar ages and stellar mass surface densities with the HI column densities on subkiloparsec scales. No correlation is evident between star formation and the atomic H gas on local scales, suggesting that star formation in IC 2574 does not locally expel or ionize a significant fraction of HI. Finally, we analyze the stellar populations residing in the known HI holes of IC 2574. Our results indicate that, even at the remarkable photometric depth of the LBT data, there is no clear one-to-one association between the observed HI holes and the most recent bursts of star formation in IC 2574. This extends earlier findings obtained, on this topic, for other dwarf galaxies to significantly fainter optical flux levels. The stellar populations formed during the younger burst are usually located at the periphery of the HI holes and are seen to be younger than the holes dynamical age. The kinetic energy of the holes expansion is found to be on average 10% of the total stellar energy released by the stellar winds and supernova explosions of the young stellar populations within the holes. With the help of control apertures distributed across the galaxy we estimate that the kinetic energy stored in the HI gas in the form of its local velocity dispersion is about 35% of the total stellar energy (and 20% for the HI non-circular motions), yet no HI hole is detected at the position of these apertures. In order to prevent the HI hole formation by ionization
- Published
- 2008
- Full Text
- View/download PDF