8 results on '"C. J. Willott"'
Search Results
2. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope III. Integral-field spectroscopy
- Author
-
T. Böker, S. Arribas, N. Lützgendorf, C. Alves de Oliveira, T. L. Beck, S. Birkmann, A. J. Bunker, S. Charlot, G. de Marchi, P. Ferruit, G. Giardino, P. Jakobsen, N. Kumari, M. López-Caniego, R. Maiolino, E. Manjavacas, A. Marston, S. H. Moseley, J. Muzerolle, P. Ogle, N. Pirzkal, B. Rauscher, T. Rawle, H.-W. Rix, E. Sabbi, B. Sargent, M. Sirianni, M. te Plate, J. Valenti, C. J. Willott, P. Zeidler, Böker, T [0000-0002-5666-7782], Arribas, S [0000-0001-7997-1640], Lützgendorf, N [0000-0001-6126-5238], Alves De Oliveira, C [0000-0003-2896-4138], Birkmann, S [0000-0001-7058-1726], Charlot, S [0000-0003-3458-2275], De Marchi, G [0000-0001-7906-3829], Giardino, G [0000-0002-9262-7155], and Apollo - University of Cambridge Repository
- Subjects
Space and Planetary Science ,techniques: imaging spectroscopy ,FOS: Physical sciences ,Astronomy and Astrophysics ,space vehicles: instruments ,methods: observational ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,instrumentation: spectrographs - Abstract
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST) offers the first opportunity to use integral-field spectroscopy from space at near-infrared wavelengths. More specifically, NIRSpec's integral-field unit can obtain spectra covering the wavelength range $0.6 - 5.3~\mu$m for a contiguous 3.1 arcsec $\times$ 3.2 arcsec sky area at spectral resolutions of $R \approx 100$, 1000, and 2700. In this paper we describe the optical and mechanical design of the NIRSpec integral-field spectroscopy mode, together with its expected performance. We also discuss a few recommended observing strategies, some of which are driven by the fact that NIRSpec is a multipurpose instrument with a number of different observing modes, which are discussed in companion papers. We briefly discuss the data processing steps required to produce wavelength- and flux-calibrated data cubes that contain the spatial and spectral information. Lastly, we mention a few scientific topics that are bound to benefit from this highly innovative capability offered by JWST/NIRSpec., Comment: Accepted for publication in A&A. 13 pages, 14 figures
- Published
- 2022
- Full Text
- View/download PDF
3. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope - I. Overview of the instrument and its capabilities
- Author
-
P. Jakobsen, P. Ferruit, C. Alves de Oliveira, S. Arribas, G. Bagnasco, R. Barho, T. L. Beck, S. Birkmann, T. Böker, A. J. Bunker, S. Charlot, P. de Jong, G. de Marchi, R. Ehrenwinkler, M. Falcolini, R. Fels, M. Franx, D. Franz, M. Funke, G. Giardino, X. Gnata, W. Holota, K. Honnen, P. L. Jensen, M. Jentsch, T. Johnson, D. Jollet, H. Karl, G. Kling, J. Köhler, M.-G. Kolm, N. Kumari, M. E. Lander, R. Lemke, M. López-Caniego, N. Lützgendorf, R. Maiolino, E. Manjavacas, A. Marston, M. Maschmann, R. Maurer, B. Messerschmidt, S. H. Moseley, P. Mosner, D. B. Mott, J. Muzerolle, N. Pirzkal, J.-F. Pittet, A. Plitzke, W. Posselt, B. Rapp, B. J. Rauscher, T. Rawle, H.-W. Rix, A. Rödel, P. Rumler, E. Sabbi, J.-C. Salvignol, T. Schmid, M. Sirianni, C. Smith, P. Strada, M. te Plate, J. Valenti, T. Wettemann, T. Wiehe, M. Wiesmayer, C. J. Willott, R. Wright, P. Zeidler, C. Zincke, Jakobsen, P [0000-0002-6780-2441], Ferruit, P [0000-0001-8895-0606], Alves De Oliveira, C [0000-0003-2896-4138], Arribas, S [0000-0001-7997-1640], Birkmann, S [0000-0001-7058-1726], Böker, T [0000-0002-5666-7782], Charlot, S [0000-0003-3458-2275], De Marchi, G [0000-0001-7906-3829], Franx, M [0000-0002-8871-3026], Giardino, G [0000-0002-9262-7155], Kumari, N [0000-0002-5320-2568], Lützgendorf, N [0000-0001-6126-5238], Manjavacas, E [0000-0003-0192-6887], Marston, A [0000-0001-5788-5258], Muzerolle, J [0000-0002-5943-1222], Pirzkal, N [0000-0003-3382-5941], Rawle, T [0000-0002-7028-5588], Rix, HW [0000-0003-4996-9069], and Apollo - University of Cambridge Repository
- Subjects
Astrophysics - instrumentation and methods for astrophysics ,Space and Planetary Science ,Spectrographs ,Space vehicles - instruments ,FOS: Physical sciences ,Astronomy and Astrophysics ,space vehicles: instruments ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,instrumentation: spectrographs - Abstract
We provide an overview of the design and capabilities of the near-infrared spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is designed to be capable of carrying out low-resolution ($R\!=30\!-330$) prism spectroscopy over the wavelength range $0.6-5.3\!~\mu$m and higher resolution ($R\!=500\!-1340$ or $R\!=1320\!-3600$) grating spectroscopy over $0.7-5.2\!~\mu$m, both in single-object mode employing any one of five fixed slits, or a 3.1$\times$3.2 arcsec$^2$ integral field unit, or in multiobject mode employing a novel programmable micro-shutter device covering a 3.6$\times$3.4~arcmin$^2$ field of view. The all-reflective optical chain of NIRSpec and the performance of its different components are described, and some of the trade-offs made in designing the instrument are touched upon. The faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its dependency on the energetic particle environment that its two detector arrays are likely to be subjected to in orbit are also discussed., Comment: Accepted for publication in A&A. 22 pages, 19 figures
- Published
- 2022
- Full Text
- View/download PDF
4. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II
- Author
-
P. Ferruit, P. Jakobsen, G. Giardino, T. Rawle, C. Alves de Oliveira, S. Arribas, T. L. Beck, S. Birkmann, T. Böker, A. J. Bunker, S. Charlot, G. de Marchi, M. Franx, A. Henry, D. Karakla, S. A. Kassin, N. Kumari, M. López-Caniego, N. Lützgendorf, R. Maiolino, E. Manjavacas, A. Marston, S. H. Moseley, J. Muzerolle, N. Pirzkal, B. Rauscher, H.-W. Rix, E. Sabbi, M. Sirianni, M. te Plate, J. Valenti, C. J. Willott, P. Zeidler, Maiolino, Roberto [0000-0002-4985-3819], and Apollo - University of Cambridge Repository
- Subjects
space vehicles instruments ,infrared general ,Space and Planetary Science ,instrumentation spectrographs ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,astro-ph.IM - Abstract
We provide an overview of the capabilities and performance of the Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST) when used in its multi-object spectroscopy (MOS) mode employing a novel Micro Shutter Array (MSA) slit device. The MSA consists of four separate 98 arcsec $\times$ 91 arcsec quadrants each containing $365\times171$ individually addressable shutters whose open areas on the sky measure 0.20 arcsec $\times$ 0.46 arcsec on a 0.27 arcsec $\times$ 0.53 arcsec pitch. This is the first time that a configurable multi-object spectrograph has been available on a space mission. The levels of multiplexing achievable with NIRSpec MOS mode are quantified and we show that NIRSpec will be able to observe typically fifty to two hundred objects simultaneously with the pattern of close to a quarter of a million shutters provided by the MSA. This pattern is fixed and regular, and we identify the specific constraints that it yields for NIRSpec observation planning. We also present the data processing and calibration steps planned for the NIRSpec MOS data. The significant variation in size of the mostly diffraction-limited instrument point spread function over the large wavelength range of 0.6-5.3 $\mu$m covered by the instrument, combined with the fact that most targets observed with the MSA cannot be expected to be perfectly centred within their respective slits, makes the spectrophotometric and wavelength calibration of the obtained spectra particularly complex. These challenges notwithstanding, the sensitivity and multiplexing capabilities anticipated of NIRSpec in MOS mode are unprecedented, and should enable significant progress to be made in addressing a wide range of outstanding astrophysical problems., Comment: Accepted for publication in A&A. 16 pages, 14 figure
- Published
- 2022
- Full Text
- View/download PDF
5. Finding ultracool brown dwarfs with MegaCam on CFHT: method and first results
- Author
-
P. Delorme, C. J. Willott, T. Forveille, X. Delfosse, C. Reylé, E. Bertin, L. Albert, E. Artigau, A. C. Robin, F. Allard, R. Doyon, G. J. Hill, Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Ottawa], University of Ottawa [Ottawa], Canada-France-Hawaii Telescope Corporation (CFHT), National Research Council of Canada (NRC)-Centre National de la Recherche Scientifique (CNRS)-University of Hawai'i [Honolulu] (UH), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrophysique de l'observatoire de Besançon (UMR 6091) (LAOB), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Gemini Observatory [Southern Operations Center], Association of Universities for Research in Astronomy (AURA), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Departement de physique and Observatoire du Mont Megantic, Université de Montréal (UdeM), McDonald Observatory, University of Texas at Austin [Austin], Université d'Ottawa, Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'astrophysique de l'observatoire de Besançon (LAOB), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Montréal [Montréal], and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrophysics (astro-ph) ,Brown dwarf ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Wide field ,Extractor ,law.invention ,Telescope ,Photometry (optics) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Space and Planetary Science ,law ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
We present the first results of a wide field survey for cool brown dwarfs with the MegaCam camera on the CFHT telescope, the Canada-France Brown Dwarf Survey, hereafter CFBDS. Our objectives are to find ultracool brown dwarfs and to constrain the field-brown dwarf mass function thanks to a larger sample of L and T dwarfs. We identify candidates in CFHT/MegaCam i' and z' images using optimised psf-fitting within Source Extractor, and follow them up with pointed near-infrared imaging on several telescopes. We have so far analysed over 350 square degrees and found 770 brown dwarf candidates brighter than z'{AB}=22.5. We currently have J-band photometry for 220 of these candidates, which confirms 37% as potential L or T dwarfs. Some are among the reddest and farthest brown dwarfs currently known, including an independent identification of the recently published ULAS J003402.77-005206.7 and the discovery of a second brown dwarf later than T8, CFBDS J005910.83-011401.3. Infrared spectra of three T dwarf candidates confirm their nature, and validate the selection process. The completed survey will discover ~100 T dwarfs and ~500 L dwarfs or M dwarfs later than M8, approximately doubling the number of currently known brown dwarfs. The resulting sample will have a very well-defined selection function, and will therefore produce a very clean luminosity function., A&A in press
- Published
- 2008
- Full Text
- View/download PDF
6. The European Large-Area ISO Survey (ELAIS): the final band-merged catalogue
- Author
-
M. Rowan-Robinson, C. Lari, I. Perez-Fournon, E. A. Gonzalez-Solares, F. La Franca, M. Vaccari, S. Oliver, C. Gruppioni, P. Ciliegi, P. Héraudeau, S. Serjeant, A. Efstathiou, T. Babbedge, I. Matute, F. Pozzi, A. Franceschini, P. Vaisanen, A. Afonso-Luis, D. M. Alexander, O. Almaini, A. C. Baker, S. Basilakos, M. Barden, C. del Burgo, I. Bellas-Velidis, F. Cabrera-Guerra, R. Carballo, C. J. Cesarsky, D. L. Clements, H. Crockett, L. Danese, A. Dapergolas, B. Drolias, N. Eaton, E. Egami, D. Elbaz, D. Fadda, M. Fox, R. Genzel, P. Goldschmidt, J. I. Gonzalez-Serrano, M. Graham, G. L. Granato, E. Hatziminaoglou, U. Herbstmeier, M. Joshi, E. Kontizas, M. Kontizas, J. K. Kotilainen, D. Kunze, A. Lawrence, D. Lemke, M. J. D. Linden-Vørnle, R. G. Mann, I. Márquez, J. Masegosa, R. G. McMahon, G. Miley, V. Missoulis, B. Mobasher, T. Morel, H. Nørgaard-Nielsen, A. Omont, P. Papadopoulos, J.-L. Puget, D. Rigopoulou, B. Rocca-Volmerange, N. Sedgwick, L. Silva, T. Sumner, C. Surace, B. Vila-Vilaro, P. van der Werf, A. Verma, L. Vigroux, M. Villar-Martin, C. J. Willott, A. Carramiñana, R. Mujica, Universidad de Cantabria, Steward Observatory, University of Arizona, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, AUTRES, Space Telescope Science Institute (STSci), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Oxford], University of Oxford [Oxford], Centro de Fisica de Plasmas (GoLP), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Imperial College London, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Oxford Astrophysics, Instituto de Astrofisica de Canarias (IAC), Dipartimento di Astronomia [Padova], Universita degli Studi di Padova, INAF - Osservatorio Astronomico di Bologna (OABO), Istituto Nazionale di Astrofisica (INAF), Department of Physics and Astronomy [Milton Keynes], The Open University [Milton Keynes] (OU), Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés (PPMD), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de thermodynamique et physico-chimie métallurgiques (LTPCM), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), University of Oxford, Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Department of Physics, Dipartimento di Astronomia, Université Pierre et Marie Curie - Paris 6 (UPMC)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS), Kapteyn Astronomical Institute, Rowan-Robinson M., Lari C., Perez-Fournon I., Gonzalez-Solares E. A., La Franca F., Vaccari M., Oliver S., Gruppioni C., Ciliegi P., Héraudeau P., Serjeant S., Efstathiou A., Babbedge T., Matute I., Pozzi F., Franceschini A., Vaisanen P., Afonso-Luis A., Alexander D. M., Almaini O., Baker A. C., Basilakos S., Barden M., del Burgo C., Bellas-Velidis I., Cabrera-Guerra F., Carballo R., Cesarsky C. J., Clements D. L., Crockett H., Danese L., Dapergolas A., Drolias B., Eaton N., Egami E., Elbaz D., Fadda D., Fox M., Genzel R., Goldschmidt P., Gonzalez-Serrano J. I., Graham M., Granato G. L., Hatziminaoglou E., Herbstmeier U., Joshi M., Kontizas E., Kontizas M., Kotilainen J. K., Kunze D., Lawrence A., Lemke D., Linden-Vørnle M. J. D., Mann R. G., Márquez I., Masegosa J., McMahon R. G., Miley G., Missoulis V., Mobasher B., Morel T., Nørgaard-Nielsen H., Omont A., Papadopoulos P., Puget J.-L., Rigopoulou D., Rocca-Volmerange B., Sedgwick N., Silva L., Sumner T., Surace C., Vila-Vilaro B., van der Werf P., Verma A., Vigroux L., Villar-Martin M., Willott C. J., Carramiñana A., and Mujica R.
- Subjects
010504 meteorology & atmospheric sciences ,galaxies : evolution ,Infrared ,galaxies: starburst ,Astrophysics ,HUBBLE-DEEP-FIELD ,01 natural sciences ,X-RAY SURVEY ,SOUTHERN FIELD ,galaxies [Infrared] ,EXTRAGALACTIC SOURCE COUNTS ,Astrophysics::Solar and Stellar Astrophysics ,observations [Cosmology] ,010303 astronomy & astrophysics ,formation [Stars] ,Physics ,infrared : galaxies ,stars : formation ,Astrophysics (astro-ph) ,STAR-FORMATION HISTORY ,FORMATION RATES ,cosmology : observations ,Cirrus ,galaxies : starburst ,Astrophysics::Earth and Planetary Astrophysics ,galaxies: evolution ,ACTIVE GALACTIC NUCLEI ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,infrared: galaxies ,0103 physical sciences ,170 MU-M ,DATA REDUCTION ,[INFO]Computer Science [cs] ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Luminous infrared galaxy ,stars: formation ,Spectral density ,Astronomy and Astrophysics ,Torus ,Quasar ,evolution [Galaxies] ,Redshift ,Galaxy ,starburst [Galaxies] ,Space and Planetary Science ,cosmology: observations ,HIGH-REDSHIFT ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present the final band-merged ELAIS catalogue at 6.7, 15, 90, and 175 $��$m, and the associated data at u,g,r,i,z,J,H,K, and 20cm. The origin of the survey, infrared and radio observations, data-reduction and optical identifications are briefly reviewed, and a summary of the area covered, and completeness limit for each infrared band is given. A detailed discussion of the band-merging and optical association strategy is given. The total catalogues consists of 2860 sources. For extragalactic sources observed in 3 or more infrared bands, colour-colour diagrams are presented and discussed in terms of the contributing infrared populations. Spectral energy distributions are shown for selected sources and compared with cirrus, M82 and Arp220 starburst, and AGN dust torus models. Spectroscopic redshifts are tabulated, where available. For the N1 and N2 areas, the INT ugriz Wide Field Survey, permits photometric redshifts to be estimated for galaxies and quasars. These agree well with the spectroscopic redshifts, within the uncertainty of the photometric method. The redshift distribution is given for selected ELAIS bands and colour-redshift diagrams are discussed. There is a high proportion of ultraluminous infrared galaxies in the ELAIS Catalogue ($> 10 %$ of 15 $��$m sources), many with Arp220-like colours. 10 hyperluminous infrared galaxies and 10 EROs are found in the survey. The large numbers of ultraluminous galaxies imply very strong evolution in the star-formation rate between z = 0 and 1., 21 pages, 31 figures. Accepted for publication in MNRAS
- Published
- 2004
- Full Text
- View/download PDF
7. Most supermassive black hole growth is obscured by dust.
- Author
-
S. Rawlings, M. Lacy, D. Fadda, F. R. Marleau, C. Simpson, C. J. Willott, and M. J. Jarvis
- Published
- 2006
8. Galaxy Formation through Filamentary Accretion at z = 6.1.
- Author
-
G. C. Jones, C. J. Willott, C. L. Carilli, A. Ferrara, R. Wang, and J. Wagg
- Subjects
- *
GALAXY formation , *ACCRETION (Astrophysics) , *INTERPLANETARY dust , *PHYSICAL cosmology - Abstract
We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C ii] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (∼3 kpc) main galaxy in dust and [C ii] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C ii] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ∼100 and 250 km s−1, with narrow intrinsic widths of about 80 km s−1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east–west by about 3 kpc in individual channel images. The [C ii] tail joins smoothly into the main galaxy velocity field. The [C ii] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.