5 results on '"C. Armiens"'
Search Results
2. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.
- Author
-
Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH, Leshin LA, Atreya SK, Stern JC, Christensen LE, Owen T, Franz H, Pepin RO, Steele A, Achilles C, Agard C, Alves Verdasca JA, Anderson R, Anderson R, Archer D, Armiens-Aparicio C, Arvidson R, Atlaskin E, Aubrey A, Baker B, Baker M, Balic-Zunic T, Baratoux D, Baroukh J, Barraclough B, Bean K, Beegle L, Behar A, Bell J, Bender S, Benna M, Bentz J, Berger G, Berger J, Berman D, Bish D, Blake DF, Blanco Avalos JJ, Blaney D, Blank J, Blau H, Bleacher L, Boehm E, Botta O, Böttcher S, Boucher T, Bower H, Boyd N, Boynton B, Breves E, Bridges J, Bridges N, Brinckerhoff W, Brinza D, Bristow T, Brunet C, Brunner A, Brunner W, Buch A, Bullock M, Burmeister S, Cabane M, Calef F, Cameron J, Campbell J, Cantor B, Caplinger M, Caride Rodríguez J, Carmosino M, Carrasco Blázquez I, Charpentier A, Chipera S, Choi D, Clark B, Clegg S, Cleghorn T, Cloutis E, Cody G, Coll P, Conrad P, Coscia D, Cousin A, Cremers D, Crisp J, Cros A, Cucinotta F, d'Uston C, Davis S, Day M, de la Torre Juarez M, DeFlores L, DeLapp D, DeMarines J, DesMarais D, Dietrich W, Dingler R, Donny C, Downs B, Drake D, Dromart G, Dupont A, Duston B, Dworkin J, Dyar MD, Edgar L, Edgett K, Edwards C, Edwards L, Ehlmann B, Ehresmann B, Eigenbrode J, Elliott B, Elliott H, Ewing R, Fabre C, Fairén A, Farley K, Farmer J, Fassett C, Favot L, Fay D, Fedosov F, Feldman J, Feldman S, Fisk M, Fitzgibbon M, Floyd M, Flückiger L, Forni O, Fraeman A, Francis R, François P, Freissinet C, French KL, Frydenvang J, Gaboriaud A, Gailhanou M, Garvin J, Gasnault O, Geffroy C, Gellert R, Genzer M, Glavin D, Godber A, Goesmann F, Goetz W, Golovin D, Gómez Gómez F, Gómez-Elvira J, Gondet B, Gordon S, Gorevan S, Grant J, Griffes J, Grinspoon D, Grotzinger J, Guillemot P, Guo J, Gupta S, Guzewich S, Haberle R, Halleaux D, Hallet B, Hamilton V, Hardgrove C, Harker D, Harpold D, Harri AM, Harshman K, Hassler D, Haukka H, Hayes A, Herkenhoff K, Herrera P, Hettrich S, Heydari E, Hipkin V, Hoehler T, Hollingsworth J, Hudgins J, Huntress W, Hurowitz J, Hviid S, Iagnemma K, Indyk S, Israël G, Jackson R, Jacob S, Jakosky B, Jensen E, Jensen JK, Johnson J, Johnson M, Johnstone S, Jones A, Joseph J, Jun I, Kah L, Kahanpää H, Kahre M, Karpushkina N, Kasprzak W, Kauhanen J, Keely L, Kemppinen O, Keymeulen D, Kim MH, Kinch K, King P, Kirkland L, Kocurek G, Koefoed A, Köhler J, Kortmann O, Kozyrev A, Krezoski J, Krysak D, Kuzmin R, Lacour JL, Lafaille V, Langevin Y, Lanza N, Lasue J, Le Mouélic S, Lee EM, Lee QM, Lees D, Lefavor M, Lemmon M, Lepinette Malvitte A, Léveillé R, Lewin-Carpintier É, Lewis K, Li S, Lipkaman L, Little C, Litvak M, Lorigny E, Lugmair G, Lundberg A, Lyness E, Madsen M, Maki J, Malakhov A, Malespin C, Malin M, Mangold N, Manhes G, Manning H, Marchand G, Marín Jiménez M, Martín García C, Martin D, Martin M, Martínez-Frías J, Martín-Soler J, Martín-Torres FJ, Mauchien P, Maurice S, McAdam A, McCartney E, McConnochie T, McCullough E, McEwan I, McKay C, McLennan S, McNair S, Melikechi N, Meslin PY, Meyer M, Mezzacappa A, Miller H, Miller K, Milliken R, Ming D, Minitti M, Mischna M, Mitrofanov I, Moersch J, Mokrousov M, Molina Jurado A, Moores J, Mora-Sotomayor L, Morookian JM, Morris R, Morrison S, Mueller-Mellin R, Muller JP, Muñoz Caro G, Nachon M, Navarro López S, Navarro-González R, Nealson K, Nefian A, Nelson T, Newcombe M, Newman C, Newsom H, Nikiforov S, Nixon B, Noe Dobrea E, Nolan T, Oehler D, Ollila A, Olson T, de Pablo Hernández MÁ, Paillet A, Pallier E, Palucis M, Parker T, Parot Y, Patel K, Paton M, Paulsen G, Pavlov A, Pavri B, Peinado-González V, Peret L, Perez R, Perrett G, Peterson J, Pilorget C, Pinet P, Pla-García J, Plante I, Poitrasson F, Polkko J, Popa R, Posiolova L, Posner A, Pradler I, Prats B, Prokhorov V, Purdy SW, Raaen E, Radziemski L, Rafkin S, Ramos M, Rampe E, Raulin F, Ravine M, Reitz G, Rennó N, Rice M, Richardson M, Robert F, Robertson K, Rodriguez Manfredi JA, Romeral-Planelló JJ, Rowland S, Rubin D, Saccoccio M, Salamon A, Sandoval J, Sanin A, Sans Fuentes SA, Saper L, Sarrazin P, Sautter V, Savijärvi H, Schieber J, Schmidt M, Schmidt W, Scholes D, Schoppers M, Schröder S, Schwenzer S, Sebastian Martinez E, Sengstacken A, Shterts R, Siebach K, Siili T, Simmonds J, Sirven JB, Slavney S, Sletten R, Smith M, Sobrón Sánchez P, Spanovich N, Spray J, Squyres S, Stack K, Stalport F, Stein T, Stewart N, Stipp SL, Stoiber K, Stolper E, Sucharski B, Sullivan R, Summons R, Sumner D, Sun V, Supulver K, Sutter B, Szopa C, Tan F, Tate C, Teinturier S, ten Kate I, Thomas P, Thompson L, Tokar R, Toplis M, Torres Redondo J, Trainer M, Treiman A, Tretyakov V, Urqui-O'Callaghan R, Van Beek J, Van Beek T, VanBommel S, Vaniman D, Varenikov A, Vasavada A, Vasconcelos P, Vicenzi E, Vostrukhin A, Voytek M, Wadhwa M, Ward J, Weigle E, Wellington D, Westall F, Wiens RC, Wilhelm MB, Williams A, Williams J, Williams R, Williams RB, Wilson M, Wimmer-Schweingruber R, Wolff M, Wong M, Wray J, Wu M, Yana C, Yen A, Yingst A, Zeitlin C, Zimdar R, and Zorzano Mier MP
- Abstract
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.
- Published
- 2013
- Full Text
- View/download PDF
3. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.
- Author
-
Sebastián E, Armiens C, Gómez-Elvira J, Zorzano MP, Martinez-Frias J, Esteban B, and Ramos M
- Subjects
- Space Flight, Temperature, United States, United States National Aeronautics and Space Administration, Environmental Monitoring instrumentation, Environmental Monitoring methods, Extraterrestrial Environment, Mars
- Abstract
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
- Published
- 2010
- Full Text
- View/download PDF
4. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).
- Author
-
Martín-Redondo MP, Martínez ES, Sampedro MT, Armiens C, Gómez-Elvira J, and Martinez-Frias J
- Subjects
- Air Movements, Chlorides, Exobiology methods, Humidity, Minerals chemistry, Minerals classification, Oxides, Pressure, Silicates, Sulfates, Ultraviolet Rays, United States, United States National Aeronautics and Space Administration, Extraterrestrial Environment chemistry, Geological Phenomena, Mars, Minerals analysis, Spectroscopy, Fourier Transform Infrared instrumentation, Temperature
- Abstract
The Rover Environmental Monitoring Station (REMS) is one of NASA/MSL's instruments, which has been designed for measuring ambient pressure, humidity, wind speed and direction, UV radiation, and air and ground temperature (GT). The GT-sensor is dedicated to measure the real temperature of the Martian surface, integrating the IR energy coming from the ground. The existing IR spectral data of Martian dust, rocks and sediments allow for comparing the Martian spectra with the spectra of different terrestrial minerals and lithologies, and those of their alteration and weathering products. The FTIR reflectance of a set of selected astrobiologically significant minerals (including oxides, oxi/hydroxides, sulfates, chlorides, opal and clays) and basalt (as the main and most widespread volcanic Martian rock) was measured, considering different mixing amounts, and covering the specific working wavelength range of the REMS' GT-sensor. The results obtained show important percentage increases or decreases of reflectance in the entire wavelength range (e.g. basalt-hematite vs. basalt-magnetite) and specific variations limited to some spectral bands (e.g. basalt-smectite vs. basalt-jasper). The basalt reflectance percentage increases or decreases, even up to 100%, depending on the mixing of the different minerals. This unequivocally confirms the need for considering the chemical-mineralogical assemblages (and their textures) for any investigation and interpretation of Mars surface environment. Some complementary applications of this research on our planet, either in relation to the specific performances and characteristics of the GT-sensor autonomous recalibration system, or those oriented to carrying out similar studies on different types of terrestrial environmental settings, are also described.
- Published
- 2009
- Full Text
- View/download PDF
5. On the use of PRD and CR parameters for ECG compression.
- Author
-
Blanco-Velasco M, Cruz-Roldán F, Godino-Llorente JI, Blanco-Velasco J, Armiens-Aparicio C, and López-Ferreras F
- Subjects
- Data Interpretation, Statistical, Humans, Models, Cardiovascular, Models, Statistical, Algorithms, Data Compression methods, Diagnosis, Computer-Assisted methods, Electrocardiography methods, Signal Processing, Computer-Assisted
- Abstract
The quality measurement of the reconstructed signal in an electrocardiogram (ECG) compression scheme must be obtained by objective means being the percentage root-mean-square difference (PRD) the most widely used. However, this parameter is dependent on the dc level so that confusion can be stated in the evaluation of ECG compressors. In this communication, it will be shown that if the performance of an ECG coder is evaluated only in terms of quality, considering exclusively the PRD parameter, incorrect conclusions can be inferred. The objective of this work is to propose the joint use of several parameters, as simulations will show, effectiveness and performance of the ECG coder are evaluated with more precision, and the way of inferring conclusions from the obtained results is more reliable.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.