80 results on '"Cécile Agosta"'
Search Results
2. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula
- Author
-
Jonathan D. Wille, Vincent Favier, Nicolas C. Jourdain, Christoph Kittel, Jenny V. Turton, Cécile Agosta, Irina V. Gorodetskaya, Ghislain Picard, Francis Codron, Christophe Leroy-Dos Santos, Charles Amory, Xavier Fettweis, Juliette Blanchet, Vincent Jomelli, and Antoine Berchet
- Subjects
Geology ,QE1-996.5 ,Environmental sciences ,GE1-350 - Abstract
The most intense atmospheric rivers to hit the Antarctic Peninsula induce extremes in temperature, surface melt, sea ice disintegration or swell that destabilize the ice shelves with 40% probability, suggest analyses of observations and regional climate model simulations.
- Published
- 2022
- Full Text
- View/download PDF
3. Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry
- Author
-
Theresa Diener, Ingo Sasgen, Cécile Agosta, Johannes J. Fürst, Matthias H. Braun, Hannes Konrad, and Xavier Fettweis
- Subjects
Antarctica ,GRACE/GRACE-FO ,ice-dynamic discharge ,surface mass balance ,sea-level rise (SLR) ,mass balance ,Science - Abstract
The dynamic stability of the Antarctic Ice Sheet is one of the largest uncertainties in projections of future global sea-level rise. Essential for improving projections of the ice sheet evolution is the understanding of the ongoing trends and accelerations of mass loss in the context of ice dynamics. Here, we examine accelerations of mass change of the Antarctic Ice Sheet from 2002 to 2020 using data from the GRACE (Gravity Recovery and Climate Experiment; 2002–2017) and its follow-on GRACE-FO (2018-present) satellite missions. By subtracting estimates of net snow accumulation provided by re-analysis data and regional climate models from GRACE/GRACE-FO mass changes, we isolate variations in ice-dynamic discharge and compare them to direct measurements based on the remote sensing of the surface-ice velocity (2002–2017). We show that variations in the GRACE/GRACE-FO time series are modulated by variations in regional snow accumulation caused by large-scale atmospheric circulation. We show for the first time that, after removal of these surface effects, accelerations of ice-dynamic discharge from GRACE/GRACE-FO agree well with those independently derived from surface-ice velocities. For 2002–2020, we recover a discharge acceleration of -5.3 ± 2.2 Gt yr−2 for the entire ice sheet; these increasing losses originate mainly in the Amundsen and Bellingshausen Sea Embayment regions (68%), with additional significant contributions from Dronning Maud Land (18%) and the Filchner-Ronne Ice Shelf region (13%). Under the assumption that the recovered rates and accelerations of mass loss persisted independent of any external forcing, Antarctica would contribute 7.6 ± 2.9 cm to global mean sea-level rise by the year 2100, more than two times the amount of 2.9 ± 0.6 cm obtained by linear extrapolation of current GRACE/GRACE-FO mass loss trends.
- Published
- 2021
- Full Text
- View/download PDF
4. Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets
- Author
-
Antony J. Payne, Sophie Nowicki, Ayako Abe‐Ouchi, Cécile Agosta, Patrick Alexander, Torsten Albrecht, Xylar Asay‐Davis, Andy Aschwanden, Alice Barthel, Thomas J. Bracegirdle, Reinhard Calov, Christopher Chambers, Youngmin Choi, Richard Cullather, Joshua Cuzzone, Christophe Dumas, Tamsin L. Edwards, Denis Felikson, Xavier Fettweis, Benjamin K. Galton‐Fenzi, Heiko Goelzer, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Peter Kuipers Munneke, Eric Larour, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, William H. Lipscomb, Christopher M. Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Martin Rückamp, Nicole‐Jeanne Schlegel, Hélène Seroussi, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Lev Tarasov, Luke D. Trusel, Jonas Van Breedam, Roderik van deWal, Michiel van denBroeke, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
- Subjects
Antarctica ,Greenland ,ice sheet ,sea level ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Abstract Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
- Published
- 2021
- Full Text
- View/download PDF
5. Detecting a forced signal in satellite-era sea-level change
- Author
-
Kristin Richter, Benoit Meyssignac, Aimée B A Slangen, Angélique Melet, John A Church, Xavier Fettweis, Ben Marzeion, Cécile Agosta, Stefan R M Ligtenberg, Giorgio Spada, Matthew D Palmer, Christopher D Roberts, and Nicolas Champollion
- Subjects
forced trends ,internal variability ,detection ,sea-level rise ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
In this study, we compare the spatial patterns of simulated geocentric sea-level change to observations from satellite altimetry over the period 1993–2015 to assess whether a forced signal is detectable. This is challenging, as on these time scales internal variability plays an important role and may dominate the observed spatial patterns of regional sea-level change. Model simulations of regional sea-level change associated with sterodynamic sea level, atmospheric loading, glacier mass change, and ice-sheet surface mass balance changes are combined with observations of groundwater depletion, reservoir storage, and dynamic ice-sheet mass changes. The resulting total geocentric regional sea-level change is then compared to independent measurements from satellite altimeter observations. The detectability of the climate-forced signal is assessed by comparing the model ensemble mean of the ‘historical’ simulations with the characteristics of sea-level variability in pre-industrial control simulations. To further minimize the impact of internal variability, zonal averages were produced. We find that, in all ocean basins, zonally averaged simulated sea-level changes are consistent with observations within sampling uncertainties associated with simulated internal variability of the sterodynamic component. Furthermore, the simulated zonally averaged sea-level change cannot be explained by internal variability alone—thus we conclude that the observations include a forced contribution that is detectable at basin scales.
- Published
- 2020
- Full Text
- View/download PDF
6. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
- Author
-
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
- Published
- 2020
- Full Text
- View/download PDF
7. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
- Author
-
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, Bert Wouters, Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
remote sensing ,[SDU]Sciences of the Universe [physics] ,Greenland ,Antarctica ,General Earth and Planetary Sciences ,sea level ,ice sheet - Abstract
International audience; Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021).
- Published
- 2023
- Full Text
- View/download PDF
8. Projected land ice contributions to twenty-first-century sea level rise
- Author
-
Tamsin L. Edwards, Sophie Nowicki, Ben Marzeion, Regine Hock, Heiko Goelzer, Hélène Seroussi, Nicolas C. Jourdain, Donald A. Slater, Fiona E. Turner, Christopher J. Smith, Christine M. McKenna, Erika Simon, Ayako Abe-Ouchi, Jonathan M Gregory, Eric Larour, William H. Lipscomb, Antony J. Payne, Andrew Shepherd, Cécile Agosta, Patrick Alexander, Torsten Albrecht, Brian Anderson, Xylar Asay-Davis, Andreas Aschwanden, Alice Barthel, Andrew Bliss, Reinhard Calov, Christopher Chambers, Nicolas Champollion, Youngmin Choi, Richard Cullather, Joshua Cuzzone, Christophe Dumas, Denis Felikson, Xavier Fettweis, Koji Fujita, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicolas R. Gollege, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Matthias Huss, Philippe Huybrechts, Walter Immerzeel, Thomas Kleiner, Philip Kraaijenbrink, Sebastien Le clec'h, Victoria Lee, Gunter R. Leguy, Christopher M. Little, Daniel P. Lowry, Jan-Hendrik Malles, Daniel F. Martin, Fabien Maussion, Mathieu Morlighem, James F. O’Neill, Isabel Nias, Frank Pattyn, Tyler Pelle, Stephen F Price, Aurélien Quiquet, Valentina Radić, Ronja Reese, David R. Rounce, Martin Rückamp, Akiko Sakai, Courtney Shafer, Nicole-Jeanne Schlegel, Sarah Shannon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Lev Tarasov, Luke D. Trusel, Jonas Van Breedam, Roderik van de Wal, Michiel van den Broeke, Ricarda Winkelmann, Harry Zekollari, Chen Zhao, Tong Zhang, and Thomas Zwinger
- Subjects
Earth Resources And Remote Sensing ,Numerical Analysis - Abstract
The land ice contribution to global mean sea level rise has not yet been predicted1 using ice sheet and glacier models for the latest set of socio-economic scenarios, nor using coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects generated a large suite of projections using multiple models2,3,4,5,6,7,8, but primarily used previous-generation scenarios9 and climate models10, and could not fully explore known uncertainties. Here we estimate probability distributions for these projections under the new scenarios11,12 using statistical emulation of the ice sheet and glacier models. We find that limiting global warming to 1.5 degrees Celsius would halve the land ice contribution to twenty-first-century sea level rise, relative to current emissions pledges. The median decreases from 25 to 13 centimetres sea level equivalent (SLE) by 2100, with glaciers responsible for half the sea level contribution. The projected Antarctic contribution does not show a clear response to the emissions scenario, owing to uncertainties in the competing processes of increasing ice loss and snowfall accumulation in a warming climate. However, under risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 centimetres SLE under current policies and pledges, with the 95th percentile projection exceeding half a metre even under 1.5 degrees Celsius warming. This would severely limit the possibility of mitigating future coastal flooding. Given this large range (between 13 centimetres SLE using the main projections under 1.5 degrees Celsius warming and 42 centimetres SLE using risk-averse projections under current pledges), adaptation planning for twenty-first-century sea level rise must account for a factor-of-three uncertainty in the land ice contribution until climate policies and the Antarctic response are further constrained.
- Published
- 2021
- Full Text
- View/download PDF
9. Warm Temperature Anomalies Associated with Snowfall in Antarctica
- Author
-
Aymeric Servettaz, Cécile Agosta, Christoph Kittel, and Anaïs Orsi
- Abstract
Antarctica, the coldest and driest continent, is home to the largest ice sheet. A common feature of polar regions is the warming associated with snowfall, as moist oceanic air and cloud cover contribute to increase the surface temperature. Consequently, the ice accumulated onto the ice sheet is deposited under unusually warm conditions. Here we use the polar-oriented atmospheric model MAR to study the statistical difference between average and snowfall-weighted temperatures. Most of Antarctica experiences a warming scaling with snowfall, although with strongest warming at sites with usually low accumulation. Heavier snowfalls in winter contribute to cool the snowfall-weighted temperature, but this effect is overwritten by the warming associated with atmospheric perturbations responsible for snowfall, which particularly contrast with the extremely cold conditions in winter. Disturbance in apparent annual temperature cycle and interannual variability may have major implications for water isotopes, which are deposited with snowfall and commonly used for paleo-temperature reconstructions.
- Published
- 2023
- Full Text
- View/download PDF
10. From atmospheric water isotopes measurement to firn core interpretation in Adelie Land: A case study for isotope-enabled atmospheric models in Antarctica
- Author
-
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frederic Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
- Abstract
In a context of global warming and sea level rise acceleration, it is key to estimate the evolution of the atmospheric hydrological cycle and temperature in the polar regions, which directly influence the surface mass balance of the Arctic and Antarctic ice sheets. Direct observations are available from satellite data for the last 40 years and a few weather data since the 50’s in Antarctica. One of the best ways to access longer records is to use climate proxies in firn or ice cores. The water isotopic composition in these cores is widely used to reconstruct past temperature variations. In order to progress in our understanding of the influence of the atmospheric hydrological cycle on the water isotopic composition, we first present a 2-year long time series of vapor and precipitation isotopic composition measurement at Dumont d’Urville station, in Adélie Land. We characterize diurnal variations of meteorological parameters (temperature, humidity and δ18O) for the different seasons and to determine the evolution of key relationships (δ18O versus temperature or humidity) along the year: we found mean annual slopes of 0.5 and 0.4 ‰ °C−1 for the relationship of δ18O vs. temperature in the water vapor and in the precipitation respectively. Then, this data set is used to evaluate the Atmospheric General Circulation Model ECHAM6-wiso (model version with embedded water stable isotopes) in a region where local conditions are controlled by strong katabatic winds which directly impact the isotopic signal. We show that a combination of continental (79 %) and oceanic (21 %) grid cells leads model outputs (temperature, humidity and δ18O) to nicely fit the observations, even winter extreme synoptic events are represented in the model. Therefore we demonstrate the added value of long-term water vapor isotopic composition records. Then, as a clear link is found between water vapor and precipitation isotopic composition, we evaluate how isotopic enabled models can help interpreting short firn cores.
- Published
- 2023
- Full Text
- View/download PDF
11. Supplementary material to 'From atmospheric water isotopes measurement to firn core interpretation in Adelie Land: A case study for isotope-enabled atmospheric models in Antarctica'
- Author
-
Christophe Leroy-Dos Santos, Elise Fourré, Cécile Agosta, Mathieu Casado, Alexandre Cauquoin, Martin Werner, Benedicte Minster, Frederic Prié, Olivier Jossoud, Leila Petit, and Amaëlle Landais
- Published
- 2023
- Full Text
- View/download PDF
12. Assessing the simulation of snowfall at Dumont d'Urville, Antarctica, during the <scp>YOPP‐SH</scp> special observing campaign
- Author
-
Marie‐Laure Roussel, Valentin Wiener, Christophe Genthon, Etienne Vignon, Eric Bazile, Cécile Agosta, Alexis Berne, Claudio Durán‐Alarcón, Jean‐Louis Dufresne, Chantal Claud, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Environmental Remote Sensing Laboratory [Lausanne], Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre for Environmental and Marine Studies [Aveiro] (CESAM), and Universidade de Aveiro
- Subjects
Atmospheric Science ,surface mass-balance ,boundary-layer ,antarctica ,vertical structure ,snowfall ,precipitation ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,stations ,coastal adelie land ,mar ,precipitation radar ,observations ,yopp ,east antarctica ,drifting-snow ,meteorology ,climate - Abstract
International audience; The performance of a set of atmospheric models and meteorological reanalyses in the representation of precipitation days in Antarctica is assessed using ground-based observations such as a precipitation gauge and a Micro Rain Radar during the Year Of Polar Prediction Special Observing Period at Dumont d'Urville (November 2018 - February 2019), East Antarctic coast. The occurrence of precipitation is overall well predicted but the number of days and intensity with snowfall are overestimated by the models. This is reflected by high values of bias, probability of detection and false alarm ratios, in particular for reanalyses, due to too frequent simulated precipitating days. The Heidke skill score shows the overall great contribution of the models in the forecasting of precipitating days, and the best performances are achieved by numerical weather prediction models. The chronology is better represented when the models benefit from the data assimilation of in-situ observations, such as in reanalysis or weather forecasting models. Precipitation amounts at the surface are overestimated by most of the models. In addition, data from a ground-based radar make it possible to evaluate the representation of the vertical profiles of snowfall rate. We can show that an excessive sublimation in the atmospheric boundary layer can compensate for overly strong precipitation flux in the mid and low troposphere. Therefore the need to expand the measurement of precipitation across the atmospheric column using radars is highlighted, in particular in Antarctica where the cold cloud microphysics is poorly known and observations are particularly rare.
- Published
- 2023
- Full Text
- View/download PDF
13. Mass Balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020
- Author
-
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel van den Broeke, Martin Horwath, Ian Joughin, Michalea King, Gerhard Krinner, Sophie Nowicki, Tony Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin Smith, Louise Sandberg Sørensen, Isabella Velicogna, Pippa Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Hannes Konrad, Peter Langen, Benoit Lecavalier, Chia-Chun Liang, Bryant Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Ingo Sasgen, Himanshu Save, Ki-Weon Seo, Bernd Scheuchl, Ernst Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
- Abstract
Ice losses from the Greenland and Antarctic Ice Sheets have accelerated since the 1990s, accounting for a significant increase in global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume and in Earth’s gravity field. Between 1992 and 2020, the ice sheets contributed 21.0 ± 1.9 mm to global mean sea-level, with the rate of mass loss rising from 105 Gt yr-1 between 1992 and 1996 to 372 Gt yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169 ± 9 Gt yr-1 between 1992 and 2020 but there are large inter-annual variations in mass balance with mass loss ranging from 86 Gt yr-1 in 2017 to 444 Gt yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (-82 ± 9 Gt yr-1) and to a lesser extent from the Antarctic Peninsula (-13 ± 5 Gt yr-1). East Antarctica remains close to a state of balance (3 ± 15 Gt yr-1), but is the most uncertain component of Antarctica’s mass balance.
- Published
- 2022
- Full Text
- View/download PDF
14. Clouds drive differences in future surface melt over the Antarctic ice shelves
- Author
-
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, Xavier Fettweis, Université de Liège, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), University of Oslo (UiO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Centre d'Etudes de la Neige (CEN), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and This research has been supported by the Fonds De La Recherche Scientifique (FNRS) and the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO) (under the EOS project no. O0100718F and grant no. T.0002.16). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S. – FNRS) under grant no. 2.5020.11, and the Tier-1 supercomputer (Zenobe) of the Fédération Wallonie Bruxelles infrastructure, funded by the Walloon Region under grant agreement no. 1117545. Christoph Kittel and Nicolas C. Jourdain have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101003826 via the CRiceS (Climate Relevant interactions and feedbacks: the key role of sea ice and Snow in the polar and global climate system) project.
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Earth-Surface Processes ,Water Science and Technology - Abstract
Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st-century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models or whether local feedback mechanisms of the surface energy budget could also play a notable role. Here we use the polar-oriented regional climate model MAR (Modèle Atmosphérique Régional) to study the physical mechanisms that would control future surface melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP5-8.5. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of supercooled liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snowmelt–albedo feedback. As liquid-containing clouds are projected to increase the melt spread associated with a given warming rate, they could be a major source of uncertainties in projections of the future Antarctic contribution to sea level rise.
- Published
- 2022
- Full Text
- View/download PDF
15. Les rivières atmosphériques de l'Antarctique
- Author
-
Vincent Favier, Jonathan Wille, Cécile Agosta, Charles Amory, Léonard Barthélémy, Francis Codron, Élise Fourré, Irina Gorodetskaya, Gerhard Krinner, Benjamin Pohl, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratory of Climatology, Université de Liège, Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre for Environmental and Marine Studies [Aveiro] (CESAM), Universidade de Aveiro, Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), and ANR-20-CE01-0013,ARCA,Climatologie des rivières atmosphériques en Antarctique(2020)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere - Abstract
Sur une grande partie de l'Antarctique, le bilan de masse (c'est-à-dire de neige) de surface est dominé par quelques événements de précipitations extrêmes. Ces événements dépendent d'intrusions de masses d'air très humide associées à des phénomènes dénommés rivières atmosphériques en provenance de l'océan Austral. Ces rivières atmosphériques influencent fortement le climat ; pourtant, les caractéristiques, les mécanismes et les impacts associés restent mal connus en Antarctique. Nous résumons ici l'état des connaissances sur la mise en place de ces événements extrêmes et leurs impacts à la fois sur l'accumulation de neige, le réchauffement et la fonte en surface de la calotte. Over much of Antarctica, the surface mass balance (i.e. the resultant of snow fluxes at the surface of the ice sheet) is dominated by a few extreme precipitation events. It has recently been shown that these events are linked to intrusions of highly humid air masses related with atmospheric rivers traversing the Southern Ocean. These atmospheric rivers strongly influence the climate, yet their meteorological characterization and associated impacts remain poorly understood in Antarctica. We summarize here the latest research regarding the development of these extreme events and their impacts on snow accumulation, warming, and surface melt on the Antarctic ice sheet.
- Published
- 2022
- Full Text
- View/download PDF
16. Evaluation of CMIP5 and CMIP6 global climate models in the Arctic and Antarctic regions, atmosphere and surface ocean
- Author
-
Cécile Agosta, Christoph Kittel, Charles Amory, Tamsin Edwards, and Cécile Davrinche
- Abstract
Large efforts are engaged to model climate-ice sheet interactions in order to estimate Antarctic and Greenland ice sheets’ contribution to sea level in the next decades to centuries. Here we present a first-order evaluation of CMIP5 and CMIP6 climate models over both polar regions. We focus on large-scale atmospheric fields and surface ocean variables only. Our goal is to provide a first overview of climate model biases in polar regions, in order to use their outputs on an informed basis. We particularly target the use of climate model outputs for forcing ice sheet models and regional atmospheric models.We consider 9 (non-independent) variables : 850 hPa and 700 hPa annual and summer temperature, annual integrated water vapor, annual sea level pressure, annual 500hPa geopotential height, summer sea surface temperature, and winter sea ice concentration; over the Arctic (> 50°N) and the Antarctic (
- Published
- 2022
- Full Text
- View/download PDF
17. Water vapor isotopic signature along the EAIIST traverse
- Author
-
Mathieu Casado, Christophe Leroy-Dos Santos, Elise Fourré, Vincent Favier, Cécile Agosta, Laurent Arnaud, Frédéric Prié, Pete D. Akers, Leoni Janssen, Christoph Kittel, Joel Savarino, and Amaelle Landais
- Abstract
Stable water isotopes are a tracer of hydrological processes and a paleoclimate proxy from ice core records. The interpretation of the latter relies on fractionation processes throughout the hydrological cycle, from the evaporation over the ocean, during each precipitation event, and during post-deposition processes, in particular due to the exchanges between the snow and the moisture in the atmosphere. Thanks to new developments in infrared spectroscopy, it is now possible to monitor not only the snow isotopic composition but also the vapour continuously, and thus document exchanges between the snow and the vapour. On the East Antarctic Plateau, records of water vapour isotopic composition in Kohnen and Dome C during summer have revealed significant diurnal variability which can be used to address the exchange between surface snow and atmospheric water vapour as well as the stability of the atmospheric boundary layer. In this study, we present the first vapour monitoring on a transect across East Antarctica for a period of 3 months from November 2019 to February 2020 during the EAIIST traverse, covering more than 3600 km. In parallel, we also monitored the vapour isotopic composition at two stations: Dumont D’Urville (DDU), the starting point, and Dome C, half way through. Efforts on the calibration on each monitoring station, as well as cross-calibration of the different instruments offer a unique opportunity to compare both the spatial and temporal (diurnal variability or at the scale of several days) gradients of humidity, temperature and water vapour isotopic composition in East Antarctica during the summer season. With the use of the Modele Atmospherique Régional (MAR), we compare the variability measured in water vapour isotopic composition, temperature and humidity with the different systems (fixed or mobile location). Although further comparisons with the surface snow isotopic composition are required to quantify the impact of the snow-atmosphere exchanges on the local surface mass balance, these three simultaneous measurements of the vapour isotopic composition show the potential of using water stables isotopes to evaluate hydrological processes in East Antarctica.
- Published
- 2022
- Full Text
- View/download PDF
18. Drivers of surface winds variability in Antarctica
- Author
-
Cécile Davrinche, Cécile Agosta, Charles Amory, Christoph Kittel, and Anaïs Orsi
- Abstract
Surface winds in Antarctica are amongst the strongest and most persistent winds on Earth. They play a key role in defining the surface climate.While new proxys are being developed in order to understand their past evolution, it is a crucial to understand the processes controlling their temporal variability. Here, we investigate the drivers of surface winds variability in East Antarctica at present-day. To do so, we separate the wind-speed temporal variations from daily outputs of the regional atmospheric model MAR at 35 km resolution into different terms of the dynamic equations. Our study focuses on a transect running through Adelie Land, where numerous meteorological measurements are being conducted. We identify the combination of terms that correlates best in winter to the wind speed in this region.On the Antarctic plateau, wind speed is controlled by the balance between large-scale pressure gradient acceleration and turbulence.At mid-slope, the katabatic term is the greatest but does not correlate with wind-speed. One of the reason that explains this result is that increasing positive katabatic forcing is counteracted by increasing turbulence (negative term, deceleration effect). Consequently, the combination of the turbulence and katabatic terms correlates slightly better to wind-speed intensity.At the coast, wind-speed intensity mainly results from the katabatic and thermal wind terms. As a conclusion, the study of a smaller number of contribution terms in the budget equation will help evaluating the drivers of past and future evolution of wind speed in this region.
- Published
- 2022
- Full Text
- View/download PDF
19. Clouds increase uncertainty in surface melt projections over the Antarctic ice shelves
- Author
-
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Etienne Vignon, Hubert Gallée, and Xavier Fettweis
- Abstract
Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing, and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models, or whether local surface energy budget feedbacks could also play a notable role. Here we use the polar-oriented regional climate model MAR to study the physical mechanisms that will control future surface melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP585. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snow-melt-albedo feedback. Since liquid-containing clouds are projected to increase the melt spread associated with a given warming rate, they could be a major source of uncertainties related to the future Antarctic contribution to sea level rise.
- Published
- 2022
- Full Text
- View/download PDF
20. Comment on tc-2021-298
- Author
-
Cécile Agosta
- Published
- 2021
- Full Text
- View/download PDF
21. Supplementary material to 'Clouds drive differences in future surface melt over the Antarctic ice shelves'
- Author
-
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Hubert Gallée, and Xavier Fettweis
- Published
- 2021
- Full Text
- View/download PDF
22. Clouds drive differences in future surface melt over the Antarctic ice shelves
- Author
-
Stefan Hofer, Nicolas C. Jourdain, Cécile Agosta, Ella Gilbert, Christoph Kittel, Hubert Gallée, Xavier Fettweis, Louis Le Toumelin, and Charles Amory
- Subjects
geography ,geography.geographical_feature_category ,Greenhouse gas ,Phase (matter) ,Climatology ,Global warming ,Lead (sea ice) ,Emissivity ,Environmental science ,Climate model ,Meltwater ,Ice shelf - Abstract
Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing, and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models, or whether local surface energy budget feedbacks could also play a notable role. Here we use the polar-oriented regional climate model MAR to study the physical mechanisms that will control future melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP585. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snow-melt-albedo feedback. By increasing melt differences over the ice shelves in the next decades, liquid-containing clouds could be a major source of uncertainties related to the future Antarctic contribution to sea level rise.
- Published
- 2021
23. Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
- Author
-
Xavier Fettweis, Amine Drira, Jonathan Wille, Marion Donat-Magnin, Vincent Favier, Christoph Kittel, Hubert Gallée, Nicolas C. Jourdain, Charles Amory, Cécile Agosta, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,lcsh:QE1-996.5 ,Glacier ,010502 geochemistry & geophysics ,01 natural sciences ,Ice shelf ,lcsh:Geology ,Glacier mass balance ,13. Climate action ,Circumpolar deep water ,Climatology ,Sea ice ,Climate model ,Glacial period ,Ice sheet ,lcsh:Environmental sciences ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variability. Here we simulate summer SMB and surface melting from 1979 to 2017 using the Regional Atmosphere Model (MAR) at 10 km resolution over the drainage basins of the Amundsen Sea glaciers in West Antarctica. Our simulations reproduce the mean present-day climate in terms of near-surface temperature (mean overestimation of 0.10 ∘C), near-surface wind speed (mean underestimation of 0.42 m s−1), and SMB (relative bias % over Thwaites glacier). The simulated interannual variability of SMB and melting is also close to observation-based estimates. For all the Amundsen glacial drainage basins, the interannual variability of summer SMB and surface melting is driven by two distinct mechanisms: high summer SMB tends to occur when the Amundsen Sea Low (ASL) is shifted southward and westward, while high summer melt rates tend to occur when ASL is shallower (i.e. anticyclonic anomaly). Both mechanisms create a northerly flow anomaly that increases moisture convergence and cloud cover over the Amundsen Sea and therefore favors snowfall and downward longwave radiation over the ice sheet. The part of interannual summer SMB variance explained by the ASL longitudinal migrations increases westward and reaches 40 % for Getz. Interannual variation in the ASL relative central pressure is the largest driver of melt rate variability, with 11 % to 21 % of explained variance (increasing westward). While high summer SMB and melt rates are both favored by positive phases of El Niño–Southern Oscillation (ENSO), the Southern Oscillation Index (SOI) only explains 5 % to 16 % of SMB or melt rate interannual variance in our simulations, with moderate statistical significance. However, the part explained by SOI in the previous austral winter is greater, suggesting that at least a part of the ENSO–SMB and ENSO–melt relationships in summer is inherited from the previous austral winter. Possible mechanisms involve sea ice advection from the Ross Sea and intrusions of circumpolar deep water combined with melt-induced ocean overturning circulation in ice shelf cavities. Finally, we do not find any correlation with the Southern Annular Mode (SAM) in summer.
- Published
- 2020
- Full Text
- View/download PDF
24. Coastal water vapor isotopic composition driven by katabatic wind variability in summer at Dumont d'Urville, coastal East Antarctica
- Author
-
Vincent Favier, Frédéric Prié, Mathieu Casado, Amaelle Landais, Christophe Leroy-Dos Santos, Camille Bréant, Sentia Goursaud, Anais Orsi, Benjamin Golly, Olivier Cattani, Elise Fourré, Valérie Masson-Delmotte, Cécile Agosta, and Patricia Martinerie
- Subjects
Katabatic wind ,010504 meteorology & atmospheric sciences ,Global wind patterns ,Antarctic ice sheet ,Humidity ,010502 geochemistry & geophysics ,Snow ,01 natural sciences ,Geophysics ,Oceanography ,Ice core ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Diel vertical migration ,Water vapor ,Geology ,0105 earth and related environmental sciences - Abstract
Dumont d'Urville station, located on the East coast of Antarctica in Adelie Land, is in one of the windiest coastal region on Earth, due to katabatic winds downslope from the East Antarctic ice sheet. In summer, the season of interest in this study, coastal weather is characterized by well-marked diel cycles in temperature and wind patterns. Our study aims at exploring the added value of water vapor stable isotopes in coastal Adelie Land to provide new information on the local atmospheric water cycle and climate. An important application is the interpretation of water isotopic profiles in snow and ice cores recently drilled in Adelie Land. We present the first continuous measurements of δ 18 O and d-excess in water vapor over Adelie Land. During our measurements period (26/12/2016 to 03/02/2017), we observed clear diel cycles in terms of temperature, humidity and isotopic composition. The cycles in isotopic composition are particularly large given the muted variations in temperature when compared to other Antarctic sites where similar monitoring have been performed. Based on data analyses and simulations obtained with the regional MAR model on the coastal Adelie Land, we suggest that the driver for δ 18 O and d-excess diel variability in summer at Dumont d'Urville is the variation of the strength of the wind coming from the continent: the periods with strong wind are associated with the arrival of relatively dry air with water vapor associated with low δ 18 O and high d-excess from the Antarctic plateau. Finally, in addition to the interpretation of snow and ice core isotopic profiles in the coastal regions, our study has implications for the evaluation of atmospheric models equipped with water isotopes.
- Published
- 2019
- Full Text
- View/download PDF
25. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets
- Author
-
Antony J Payne, Sophie Nowicki, Ayako Abe-Ouchi, Cécile Agosta, Patrick M. Alexander, Torsten Albrecht, Xylar S Asay-Davis, Andy Aschwanden, Alice Barthel, Thomas J. Bracegirdle, Reinhard Calov, Christopher Chambers, Youngmin Choi, Richard I. Cullather, Joshua K Cuzzone, Christophe dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Benjamin Keith Galton-Fenzi, Heiko Goelzer, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C Jourdain, Thomas Kleiner, Peter Kuipers Munneke, Eric Yves Larour, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, William H. Lipscomb, Christopher M Little, Daniel P Lowry, Mathieu Morlighem, Isabel Nias, Frank Pattyn, Tyler Pelle, Stephen Price, Aurelien Quiquet, Ronja Reese, Martin Rückamp, Nicole -J. Schlegel, Helene Seroussi, Andrew Shepherd, Erika Simon, Donald A Slater, Robin Smith, Fiamma Straneo, Sainan Sun, Lev Tarasov, Luke Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Michiel R. van den Broeke, Ricarda Winkelmann, Chen Zhao, Tong Zhang, Thomas Zwinger, University of Bristol [Bristol], University at Buffalo [SUNY] (SUNY Buffalo), State University of New York (SUNY), The University of Tokyo (UTokyo), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Columbia University [New York], Potsdam Institute for Climate Impact Research (PIK), Los Alamos National Laboratory (LANL), University of Alaska [Fairbanks] (UAF), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Hokkaido University Hospital [Sapporo], University of California [Irvine] (UCI), University of California, NASA Goddard Space Flight Center (GSFC), California Institute of Technology (CALTECH), Modélisation du climat (CLIM), King‘s College London, Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université libre de Bruxelles (ULB), This project received funding from the European Union's Horizon 2020 research and innovation program under Grant agree-ment No 869304, PROTECT contribu-tion number 4., Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of California [Irvine] (UC Irvine), University of California (UC), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,13. Climate action ,Glaciologie ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,Sciences exactes et naturelles - Abstract
Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
- Published
- 2021
- Full Text
- View/download PDF
26. Antarctic Atmospheric River Climatology and Precipitation Impacts
- Author
-
Jai Chowdhry Beeman, Christoph Kittel, Jan T. M. Lenaerts, Cécile Agosta, Nicolas C. Jourdain, Irina Gorodetskaya, Jonathan Wille, Vincent Favier, Francis Codron, Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centro de Estudos do Ambiante e do Mar (CESAM), Universidade de Aveiro, Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Département de Géographie, Université de Liège, Department of Atmospheric and Oceanic Sciences [Boulder] (ATOC), University of Colorado [Boulder], Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), ANR-20-CE01-0013,ARCA,Climatologie des rivières atmosphériques en Antarctique(2020), ANR-14-CE01-0001,ASUMA,Amélioration de la précision de l'estimation de bilan de masse de surface en Antarctique(2014), ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016), ANR-15-CE01-0005,TROIS-AS,Vers un système de modélisation régionale océan / calotte / atmosphère(2015), ANR-15-CE01-0015,AC-AHC2,Circulation atmosphérique et changement de cycle hydrologique pour l'Arctique(2015), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0207 environmental engineering ,Antarctic ice sheet ,02 engineering and technology ,15. Life on land ,Atmospheric river ,Snow ,01 natural sciences ,Geophysics ,13. Climate action ,Space and Planetary Science ,Climatology ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Precipitation ,020701 environmental engineering ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Polar desert ,0105 earth and related environmental sciences - Abstract
International audience; The Antarctic ice sheet (AIS) is classified as a polar desert where, similar to other deserts around the world, the annual precipitation is dependent on a few episodic precipitation events. Recent research has highlighted that certain regions of the AIS receive 40%-60% of their total annual precipitation from the largest 10% of daily precipitation events (Turner et al., 2019). There is a high coast-inland snowfall gradient, as most
- Published
- 2021
- Full Text
- View/download PDF
27. Comment on essd-2021-22
- Author
-
Cécile Agosta
- Published
- 2021
- Full Text
- View/download PDF
28. The Role of Sublimation on the Surface Mass Balance of the Interior Greenland Ice Sheet
- Author
-
Hans Christian Steen-Larsen, Xavier Fettweis, Anne-Katrine Faber, Laura Dietrich, Cécile Agosta, and Sonja Wahl
- Subjects
Glacier mass balance ,Greenland ice sheet ,Sublimation (phase transition) ,Atmospheric sciences ,Geology - Abstract
Precipitation along with sublimation and deposition are the main contributors to the surface mass balance (SMB) in the accumulation area of the Greenland Ice Sheet (GrIS). However, precipitation events are rare and intermittent. In between precipitation events the surface snow continuously undergoes sublimation and deposition. Recent studies imply that these surface exchange processes influence the isotopic composition of the surface snow which is later archived as a climate record in ice cores. In order to understand the possible implications on the recorded climate signal, sublimation needs to be quantified on a local scale.Here we present simulated SMB components for eight ice core drilling sites on the GrIS using the regional climate model MAR (Modèle Atmosphérique Régional). We validated MAR against in-situ flux observations at the East Greenland Ice Core Project site and found a high sensitivity of sublimation to the downward long wave flux and to the parameterization of the surface roughness length. We propose a surface roughness length optimized for the interior of the GrIS which is supported by our observations.Our results show that in the GrIS accumulation area the mass turnover via sublimation and deposition can reach the same order of magnitude as precipitation. This highlights the importance of a better understanding of how the climate signal is imprinted in the surface snow isotopic composition.
- Published
- 2021
- Full Text
- View/download PDF
29. Water vapor isotopic signature along the EAIIST traverse (East Antarctica Plateau)
- Author
-
Frédéric Prié, Elise Fourré, Joel Savarino, Vincent Favier, Leoni Janssen, Pete D. Akers, Mathieu Casado, Christophe Leroy-Dos Santos, Amaelle Landais, Cécile Agosta, Laurent Arnaud, and Christoph Kittel
- Subjects
geography ,Isotopic signature ,Traverse ,Plateau ,geography.geographical_feature_category ,Geochemistry ,East antarctica ,Water vapor ,Geology - Abstract
Stable water isotopes are effective hydrological tracers due to fractionation processes throughout the water cycle, and thus, the stable isotopes from ice cores can serve as valuable proxies for past changes in the climate and local environment of polar regions. Proper interpretation of these isotopes requires to understand the influence of each potential fractionating process, such as initial evaporation over the ocean and precipitation events, but also the effects of post-depositional exchange between snow and moisture in the atmosphere. Thanks to new developments in infrared spectroscopy, it is now possible to continuously monitor the isotopic composition of atmospheric water vapor in coordination with discrete snow sampling. This allows us to readily document the isotopic and mass exchanges between snow and vapor as well as the stability of the atmospheric boundary layer, as has recently been shown on the East Antarctic Plateau at Kohnen (Ritter et al., TC, 2016) and Dome C (Casado et al., ACP, 2016) stations where substantial diurnal isotopic variations have been recorded.In this study, we present the first vapor monitoring of an East Antarctic transect that covered more than 3600 km over a period of 3 months from November 2019 to February 2020 as part of the EAIIST mission. The isotopic record therefore describes the evolution from typical coastal values to highly depleted values deep inside the continent on the high-altitude plateau. In parallel, we also monitored the vapor isotopic composition at two stations: the coastal starting point of Dumont D’Urville (DDU) and the plateau halfway point of Dome C. Two automatic weather stations (at Paleo and Megadunes sites) were also installed in a previously unexplored region of the East Antarctic plateau that was covered by this transect. This suite of cross-calibrated vapor isotope observations and weather stations, coupled with Modele Atmospherique Régional (MAR) climate modeling, offers a unique opportunity to compare the spatial and temporal gradients of humidity, temperature, and water vapor isotopic composition in East Antarctica during the summer season, and to estimate how the water vapour isotope measurements at Dome C and DDU are representative of the conditions in East Antarctica. The quantitative agreement between the EAIIST record and those recorded at DDU and Dome C stations at the times the raid was nearby, gives confidence in the quality of the results acquired on this traverse. Although further comparisons with the surface snow isotopic composition are required to quantify the impact of the snow-atmosphere exchanges on the local surface mass balance, these initial results of vapor isotopic composition show the potential of using water stables isotopes to evaluate hydrological processes in East Antarctica and better reconstruct past climate changes through ice cores.
- Published
- 2021
- Full Text
- View/download PDF
30. Isotopic anomalies in water vapor during an atmospheric river event at Dome C, East Antarctic plateau, controlled by large-scale advection and boundary layer processes
- Author
-
Charles Amory, Dana E. Veron, Xavier Fettweis, Cécile Agosta, Jonathan Wille, Cécile Davrinche, Christophe Genthon, Amaelle Landais, Christoph Kittel, Anais Orsi, Elise Fourré, Vincent Favier, Christophe Leroy-Dos Santos, Antoine Berchet, and Frédéric Prié
- Subjects
Dome (geology) ,Boundary layer ,Scale (ratio) ,Advection ,Atmospheric river ,Atmospheric sciences ,Event (particle physics) ,Geology ,Water vapor ,Antarctic plateau - Abstract
On December 19-21, 2018, an atmospheric river hit the French-Italian Concordia station, located at Dome C, East Antarctic Plateau, 3 269 m above sea level. It induced an extreme surface warming (+ 15°C in 3 days), combined with high specific humidity (multiplied by 3 in 3 days) and a strong isotopic anomaly in water vapor (+ 15 ‰ for δ18O). The isotopic composition of water vapor monitored during the event may be explained by (1) the isotopic signature of long-range water transport, and by (2) local moisture uptake during the event. In this study we quantify the influence of each of these processes.To estimate the isotopic composition of water vapor advected by long-range transport, we perform back-trajectories with the FLEXible PARTicle dispersion model FLEXPART. We retrieve meteorological conditions along different trajectories between the moisture uptake area and Concordia, and use them to compute isotopic fractionation during transport with the mixed cloud isotope model MCIM. While intermediate conditions along the trajectory do not seem to have a major impact on the final isotopic composition (less than 0.1 ‰), the latter appears sensitive to surface conditions (temperature, pressure and relative humidity) in the moisture uptake area (±5.1 ‰). As the event is characterized by the presence of liquid water clouds above Concordia, we show additional sensitivity tests exploring the impact of mixed phase clouds on the water vapor isotopic composition.Finally, we perform a water vapor mass budget in the boundary layer using observations and simulations from the regional atmospheric model MAR, ran with and without drifting snow. The presence of mixed-phase clouds during the event induced a significant increase in downward longwave radiative fluxes, which led to high turbulent mixing in the boundary layer and to heavy drifting snow (white-out conditions). Using MAR simulations, we show that a significant part of the atmospheric water vapor originates from sublimation of drifting snow particles removed from the snowpack. Consequently, the isotopic signal monitored in water vapor during this atmospheric river event reflects both long-range moisture advection and interactions between the boundary layer and the snowpack. Only specific meteorological conditions driven by the atmospheric river, and their associated intense poleward moisture transport, can explain these strong interactions.
- Published
- 2021
- Full Text
- View/download PDF
31. Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets
- Author
-
Richard I. Cullather, Sainan Sun, Robin S. Smith, Martin Rückamp, Philippe Huybrechts, Thomas J. Bracegirdle, Christopher M. Little, Daniel P. Lowry, Fiammetta Straneo, Jonas Van Breedam, Xavier Fettweis, Nicolas C. Jourdain, Ricarda Winkelmann, Gunter R. Leguy, Isabel Nias, Erika Simon, Eric Larour, Sophie Nowicki, J. K. Cuzzone, Patrick Alexander, Cheng Zhao, Tore Hattermann, Heiko Goelzer, Christophe Dumas, Alice Barthel, Torsten Albrecht, Peter Kuipers Munneke, Helene Seroussi, Christopher Chambers, Andrew Shepherd, Frank Pattyn, Rupert Gladstone, Nicole Schlegel, Xylar Asay-Davis, Denis Felikson, Michiel R. van den Broeke, Mathieu Morlighem, Victoria Lee, Ayako Abe-Ouchi, Andy Aschwanden, Ralf Greve, Tamsin L. Edwards, Reinhard Calov, Thomas Kleiner, Donald Slater, Tong Zhang, Antony J. Payne, Benjamin K. Galton-Fenzi, Cécile Agosta, Luke D. Trusel, Lev Tarasov, Aurélien Quiquet, Nicholas R. Golledge, Youngmin Choi, William H. Lipscomb, Stephen Price, Angelika Humbert, Sébastien Le clec'h, Roderik S. W. van de Wal, Matthew J. Hoffman, Tyler Pelle, Jonathan M. Gregory, Thomas Zwinger, Ronja Reese, Earth System Sciences, Geography, Physical Geography, Marine and Atmospheric Research, Sub Dynamics Meteorology, Proceskunde, and Sub Algemeen Marine & Atmospheric Res
- Subjects
010504 meteorology & atmospheric sciences ,Effects of global warming on oceans ,Greenland ,Antarctic ice sheet ,F700 ,Earth and Planetary Sciences(all) ,F800 ,sea level ,010502 geochemistry & geophysics ,7. Clean energy ,01 natural sciences ,Sea level ,0105 earth and related environmental sciences ,Coupled model intercomparison project ,geography ,geography.geographical_feature_category ,Future sea level ,ice sheet ,Ice-sheet model ,Geophysics ,13. Climate action ,Climatology ,General Earth and Planetary Sciences ,Environmental science ,Antarctica ,Climate model ,Ice sheet - Abstract
Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.
- Published
- 2021
- Full Text
- View/download PDF
32. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet
- Author
-
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, Xavier Fettweis, Université de Liège, Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Oslo (UiO), Université Catholique de Louvain = Catholic University of Louvain (UCL), Christoph Kittel was supported by the Fonds de la Recherche Scientifique – FNRS under grant no. T.0002.16. Nicolas C. Jourdain and Charles Amory were partly funded by the TROIS-AS project (ANR-15-CE01-0005-01). This publication was supported by PROTECT. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 869304, PROTECT contribution no. 15., ANR-15-CE01-0005,TROIS-AS,Vers un système de modélisation régionale océan / calotte / atmosphère(2015), UCL - SST/ELI/ELIC - Earth & Climate, Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,13. Climate action ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,010502 geochemistry & geophysics ,01 natural sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
The future surface mass balance (SMB) will influence the ice dynamics and the contribution of the Antarctic ice sheet (AIS) to the sea level rise. Most of recent Antarctic SMB projections were based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, new CMIP6 results have revealed a +1.3 ∘C higher mean Antarctic near-surface temperature than in CMIP5 at the end of the 21st century, enabling estimations of future SMB in warmer climates. Here, we investigate the AIS sensitivity to different warmings with an ensemble of four simulations performed with the polar regional climate model Modèle Atmosphérique Régional (MAR) forced by two CMIP5 and two CMIP6 models over 1981–2100. Statistical extrapolation enables us to expand our results to the whole CMIP5 and CMIP6 ensembles. Our results highlight a contrasting effect on the future grounded ice sheet and the ice shelves. The SMB over grounded ice is projected to increase as a response to stronger snowfall, only partly offset by enhanced meltwater run-off. This leads to a cumulated sea-level-rise mitigation (i.e. an increase in surface mass) of the grounded Antarctic surface by 5.1 ± 1.9 cm sea level equivalent (SLE) in CMIP5-RCP8.5 (Relative Concentration Pathway 8.5) and 6.3 ± 2.0 cm SLE in CMIP6-ssp585 (Shared Socioeconomic Pathways 585). Additionally, the CMIP6 low-emission ssp126 and intermediate-emission ssp245 scenarios project a stabilized surface mass gain, resulting in a lower mitigation to sea level rise than in ssp585. Over the ice shelves, the strong run-off increase associated with higher temperature is projected to decrease the SMB (more strongly in CMIP6-ssp585 compared to CMIP5-RCP8.5). Ice shelves are however predicted to have a close-to-present-equilibrium stable SMB under CMIP6 ssp126 and ssp245 scenarios. Future uncertainties are mainly due to the sensitivity to anthropogenic forcing and the timing of the projected warming. While ice shelves should remain at a close-to-equilibrium stable SMB under the Paris Agreement, MAR projects strong SMB decrease for an Antarctic near-surface warming above +2.5 ∘C compared to 1981–2010 mean temperature, limiting the warming range before potential irreversible damages on the ice shelves. Finally, our results reveal the existence of a potential threshold (+7.5 ∘C) that leads to a lower grounded-SMB increase. This however has to be confirmed in following studies using more extreme or longer future scenarios.
- Published
- 2021
- Full Text
- View/download PDF
33. Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica
- Author
-
Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, Xavier Fettweis
- Published
- 2021
- Full Text
- View/download PDF
34. Supplementary material to 'Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adelie Land, East Antarctica'
- Author
-
Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, and Xavier Fettweis
- Published
- 2020
- Full Text
- View/download PDF
35. Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections
- Author
-
Gerhard Krinner, Cécile Agosta, Michel Déqué, Julien Beaumet, Antoinette Alias, and Vincent Favier
- Subjects
geography ,geography.geographical_feature_category ,Atmospheric circulation ,Climatology ,Environmental science ,Antarctic ice sheet ,Westerlies ,Precipitation ,Atmospheric model ,Ice sheet ,Southern Hemisphere ,Latitude - Abstract
In this study, we use run-time bias-correction to correct for ARPEGE atmospheric model systematic errors on large-scale atmospheric circulation. The bias correction terms are built using the climatological mean of the adjustment terms on tendency errors in an ARPEGE simulation relaxed towards ERA-Interim reanalyses. The improvements with respect to the AMIP-style uncorrected control run for the general atmospheric circulation in the Southern Hemisphere are significant for mean state and daily variability. Comparisons for the Antarctic Ice Sheet with the polar-oriented regional atmospheric models MAR and RACMO2 and in-situ observations also suggest substantial bias reduction for near-surface temperature and precipitation in coastal areas. Applying the method to climate projections for the late 21st century (2071–2100) leads to large differences in the projected changes of the atmospheric circulation in the Southern high latitudes and of the Antarctic surface climate. The projected poleward shift and strengthening of the southern westerly winds are greatly reduced. These changes result in a significant 0.7 to 0.9 K additional warming and a 6 to 9 % additional increase in precipitation over the grounded ice sheet. The sensitivity of precipitation increase to temperature (+7.7 and +9 %.K−1) found is also higher than previous estimates. Highest additional warming rates are found over East Antarctica in summer. In winter, there is a dipole of weaker warming and weaker precipitation increase over West Antarctica, contrasted by a stronger warming and a concomitant stronger precipitation increase from Victoria to Adélie Land, associated with a weaker intensification of the Amundsen Sea Low.
- Published
- 2020
36. Snowfall and Water Stable Isotope Variability in East Antarctica Controlled by Warm Synoptic Events
- Author
-
Cécile Agosta, Martin Werner, Aymeric P. M. Servettaz, Andrew D. Moy, Joseph R. McConnell, Anais Orsi, Alexandra Touzeau, Mark A. J. Curran, Amaelle Landais, Mélanie Baroni, V. Holly L. Winton, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Australian Antarctic Division (AAD), Australian Government, Department of the Environment and Energy, Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Curtin University [Perth], Planning and Transport Research Centre (PATREC), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Desert Research Institute (DRI), Alfred Wegener Institute for Polar and Marine Research (AWI), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,δ18O ,Stable isotope ratio ,Winter storm ,Atmospheric model ,Structural basin ,Snow ,01 natural sciences ,Proxy (climate) ,Geophysics ,Ice core ,13. Climate action ,Space and Planetary Science ,Climatology ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Understanding climate proxy records that preserve physical characteristics of past climate is a prerequisite to reconstruct long-term climatic conditions. Water stable isotope ratios (δ18O) constitute a widely used proxy in ice cores to reconstruct temperature and climate. However, the original climate signal is altered between the formation of precipitation and the ice, especially in low-accumulation areas such as the East Antarctic Plateau. Atmospheric conditions under which the isotopic signal is acquired at Aurora Basin North (ABN), East Antarctica, are characterized with the regional atmospheric model Modèle Atmosphérique Régional (MAR). The model shows that 50% of the snow is accumulated in less than 24 days year−1. Snowfall occurs throughout the year and intensifies during winter, with 64% of total accumulation between April and September, leading to a cold bias of −0.86°C in temperatures above inversion compared to the annual mean of −29.7°C. Large snowfall events are associated with high-pressure systems forcing warm oceanic air masses toward the Antarctic interior, which causes a warm bias of +2.83°C. The temperature-δ18O relationship, assessed with the global atmospheric model ECHAM5-wiso, is primarily constrained by the winter variability, but the observed slope is valid year-round. Three snow δ18O records covering 2004–2014 indicate that the anomalies recorded in the ice core are attributable to the occurrence of warm winter storms bringing precipitation to ABN and support the interpretation of δ18O in this region as a marker of temperature changes related to large-scale atmospheric conditions, particularly blocking events and variations in the Southern Annular Mode. publishedVersion
- Published
- 2020
- Full Text
- View/download PDF
37. Future ice-sheet surface mass balance and melting in the Amundsen region, West Antarctica
- Author
-
Charles Amory, Hubert Gallée, Gerhard Krinner, Marion Donat-Magnin, Cécile Agosta, Christoph Kittel, Mondher Chekki, and Nicolas C. Jourdain
- Subjects
Coupled model intercomparison project ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Firn ,Albedo ,010502 geochemistry & geophysics ,Snow ,Atmospheric sciences ,01 natural sciences ,Ice shelf ,Glacier mass balance ,Environmental science ,Ice sheet ,Sea level ,0105 earth and related environmental sciences - Abstract
We present projections of West-Antarctic surface mass balance (SMB) and surface melting to 2080–2100, under the RCP8.5 scenario and based on a regional model at 10 km resolution. Our projections are built by adding a CMIP5 (5th Coupled Model Intercomparison Project) multi-model-mean seasonal climate-change anomaly to the present-day model boundary conditions. Using an anomaly has the advantage to reduce CMIP5 model biases, and a perfect-model test reveals that our approach captures most characteristics of future changes, despite a 16–17 % underestimation of projected SMB and melt rates. SMB over the grounded ice sheet in the sector between Getz and Abbot increases from 336 Gt yr−1 in 1989–2009 to 455 Gt yr−1 in 2080–2100, which would reduce the global sea level changing rate by 0.33 mm yr−1. Snowfall indeed increases by 7.4 to 8.9 % per °C of near-surface warming, due to increasing saturation water vapour pressure in warmer conditions, reduced sea-ice concentrations, and more marine air intrusion. Ice-shelf surface melt rates increase by an order of magnitude along the 21st century, mostly due to higher downward radiation from increased humidity, and to reduced albedo in the presence of melting. Eastern ice shelves (Abbot, Cosgrove and Pine Island) experience significant runoff in the future, while western ice shelves (Thwaites, Crosson, Dotson and Getz) remain without runoff. This is explained by the evolution of the melt-to-snowfall ratio: below a threshold of 0.60 to 0.85, firn air is not entirely depleted by melt water, while entire depletion and runoff occur for higher ratios. This suggests that western ice shelves might remain unaffected by hydrofracturing for more than a century under RCP8.5, while eastern ice shelves have a high potential for hydrofracturing before the end of this century.
- Published
- 2020
38. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes
- Author
-
Michiel R. van den Broeke, Vincent Favier, Anais Orsi, Cécile Agosta, Charles Amory, Hubert Gallée, Willem Jan van de Berg, Jan Melchior van Wessem, Christoph Kittel, Jan T. M. Lenaerts, Xavier Fettweis, Sub Dynamics Meteorology, Marine and Atmospheric Research, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), CLIPS, Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Institute for Marine and Atmospheric Research [Utrecht] (IMAU), Utrecht University [Utrecht], Département de Géographie, Université de Liège, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Katabatic wind ,010504 meteorology & atmospheric sciences ,Ice stream ,Antarctic ice sheet ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Glacier mass balance ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,lcsh:Environmental sciences ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,Advection ,lcsh:QE1-996.5 ,Snow ,lcsh:Geology ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,Climate model ,Ice sheet - Abstract
The Antarctic ice sheet mass balance is a major component of the sea level budget and results from the difference of two fluxes of a similar magnitude: ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Separately modelling ice dynamics and SMB is the only way to project future trends. In addition, mass balance studies frequently use regional climate models (RCMs) outputs as an alternative to observed fields because SMB observations are particularly scarce on the ice sheet. Here we evaluate new simulations of the polar RCM MAR forced by three reanalyses, ERA-Interim, JRA-55, and MERRA-2, for the period 1979–2015, and we compare MAR results to the last outputs of the RCM RACMO2 forced by ERA-Interim. We show that MAR and RACMO2 perform similarly well in simulating coast-to-plateau SMB gradients, and we find no significant differences in their simulated SMB when integrated over the ice sheet or its major basins. More importantly, we outline and quantify missing or underestimated processes in both RCMs. Along stake transects, we show that both models accumulate too much snow on crests, and not enough snow in valleys, as a result of drifting snow transport fluxes not included in MAR and probably underestimated in RACMO2 by a factor of 3. Our results tend to confirm that drifting snow transport and sublimation fluxes are much larger than previous model-based estimates and need to be better resolved and constrained in climate models. Sublimation of precipitating particles in low-level atmospheric layers is responsible for the significantly lower snowfall rates in MAR than in RACMO2 in katabatic channels at the ice sheet margins. Atmospheric sublimation in MAR represents 363 Gt yr−1 over the grounded ice sheet for the year 2015, which is 16 % of the simulated snowfall loaded at the ground. This estimate is consistent with a recent study based on precipitation radar observations and is more than twice as much as simulated in RACMO2 because of different time residence of precipitating particles in the atmosphere. The remaining spatial differences in snowfall between MAR and RACMO2 are attributed to differences in advection of precipitation with snowfall particles being likely advected too far inland in MAR.
- Published
- 2019
- Full Text
- View/download PDF
39. Antarctic Atmospheric River Climatology and Impacts
- Author
-
Jonathan Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Jai Chowdhry Beeman, Ambroise Dufour, Francis Codron, and John Turner
- Subjects
geography ,geography.geographical_feature_category ,Climatology ,Lead (sea ice) ,Sea ice ,Climate change ,Future sea level ,Atmospheric river ,Ice sheet ,Snow ,Geology ,Ice shelf - Abstract
Due to the increased ability of the air to hold moisture with temperature, precipitation in Antarctica is expected to increase significantly over the next century. This process will undoubtedly lead to an increase in snow accumulation on the continent, thereby partially mitigating future sea level rise. However, recent observed trends in temperature and snow accumulation in Antarctica are insignificant and paradoxical. The role played by moisture intrusions in temperature and precipitation variability could partly explain this phenomenon. These events are known to transport warm air masses from the oceans to the Antarctic continent, but only individual and unrelated intrusion events have been described so far. In an earlier study of the Dronning Maud Land region, the description of atmospheric rivers (ARs) provided an innovative view to describe high intensity moisture intrusions. In this thesis, we develop an atmospheric river detection algorithm adapted to the polar regions, in order to create a climatology of these events at the Antarctic scale. Using the outputs of the regional climate model, MAR (Regional Atmospheric Model), we evaluate the impacts of atmospheric rivers on the melting in West Antarctic, ice-shelf stability on the Antarctic Peninsula ice shelves, and on snowfall across the Antarctic ice sheet.Atmospheric rivers are infrequent events with coastal areas of Antarctica experiencing AR conditions around only three days per year on average and this value is even lower in Antarctic interior. However, ARs control surface melting processes on West Antarctica and precipitation variability on East Antarctica. In the west, ARs entering the interior of the continent cause positive anomalies in downward longwave radiation via highly liquid-laden clouds and wind, resulting in a marked foehn effect along leeward slopes. Between 1979 and 2017, rivers were thus associated with about 40% of the summer melt on the Ross Ice Shelf (nearly 100% at higher altitudes on Marie Byrd Land) and 40-80% of the winter melt along the ice shelves of the Antarctic Peninsula. In summer, these rivers also contribute to the melting of the Larsen ice shelves located east of the Peninsula. Their direct contribution to cumulative melting is more limited than in winter because the intense solar radiation in summer allows daily melting to occur. However, ARs caused 60-80% of the most intense melt/runoff events as well as high temperature extremes. This melting is linked to the Foehn effect and the positive longwave radiative fluxes anomalies over the eastern Peninsula during AR passages. The melt water accumulates in lakes and crevasses on the ice shelf surface, a preliminary step in ice shelf disintegration by hydraulic fracturing. ARs also push sea ice away from the coast, allowing swells to hit and apply strain to the ice-shelf margins. ARs can thus trigger the final disintegration of ice shelves. In particular, ARs were present during the disintegration of the Larsen A ice shelf in late January 1995 and the Larsen B ice shelf in late February/early March 2002. Overall, since 2000, 12 of the last 20 calving or collapse events along the Larsen Ice Shelves have been preceded (within 5 days) by the arrival of an AR. Finally, atmospheric rivers are responsible for the majority of the most intense precipitation in Antarctica. In eastern Antarctica, 20-30% of the snow accumulation occurred during of AR landfalls. Although this value remains modest, we observe that AR activity controls the trends and interannual variability of snowfall in this part of the continent. This control even extends to most of the ice sheet between 1980 and 2018.Ultimately, ARs play an important role in the Antarctic surface mass balance. Therefore, a change in atmospheric blocking conditions around Antarctica during the 21st century would lead to changes in the Antarctic surface mass balance. Such changes are currently ignored in climate change impact projections.
- Published
- 2020
- Full Text
- View/download PDF
40. Decreasing Antarctic surface mass balance due to runoff-dominated ablation by 2100
- Author
-
Stefan Hofer, Nicolas C. Jourdain, Christoph Kittel, Charles Amory, Xavier Fettweis, Alison Delhasse, and Cécile Agosta
- Subjects
Glacier mass balance ,medicine.medical_treatment ,medicine ,Environmental science ,Surface runoff ,Atmospheric sciences ,Ablation - Abstract
The surface mass balance (SMB) of the Antarctic ice sheet is often considered as a negative contributor to the sea level rise as present snowfall accumulation largely compensates for ablation through wind erosion, sublimation and runoff. The latter is even almost negligible since current Antarctic surface melting is limited to relatively scarce events over generally peripheral areas and refreezes almost entirely into the snowpack. However, melting can significantly affect the stability of ice shelves through hydrofracturing, potentially leading to their disintegration, acceleration of grounded ice and increased sea level rise. Although a large increase in snowfall is expected in a warmer climate, more numerous and stronger melting events could conversely lead to a larger risk of ice shelf collapse. In this study, we provide an estimation of the SMB of the Antarctic ice sheet for the end of the 21st century by forcing the state-of-the-art regional climate model MAR with three different global climate models. We chose the models (from both the Coupled Model Intercomparison Project Phase 5 and 6 - CMIP5 and CMIP6) providing the best metrics for representing the current Antarctic climate. While the increase in snowfall largely compensates snow ablation through runoff in CMIP5-forced projections, CMIP6-forced simulations reveal that runoff cannot be neglected in the future as it accounts for a maximum of 50% of snowfall and becomes the main ablation component over the ice sheet. Furthermore, we identify a tipping point (ie., a warming of 4°C) at which the Antarctic SMB starts to decrease as a result of enhanced runoff particularly over ice shelves. Our results highlight the importance of taking into account meltwater production and runoff and indicate that previous model studies neglecting these processes yield overestimated SMB estimates, ultimately leading to underestimated Antarctic contribution to sea level rise. Finally, melt rates over each ice shelf are higher than those that led to the collapse of the Larsen A and B ice shelves, suggesting a high probability of ice shelf collapses all over peripheral Antarctica by 2100.
- Published
- 2020
- Full Text
- View/download PDF
41. Surface mass balance and melting projections over the Amundsen coastal region, West Antarctica
- Author
-
Christoph Kittel, Nicolas C. Jourdain, Mondher Chekki, Marion Donat-Magnin, Gerhard Krinner, Charles Amory, Cécile Agosta, and Hubert Gallée
- Subjects
Glacier mass balance ,Oceanography ,Geology - Abstract
We present Surface Mass Balance (SMB) and surface melt rates projections in West Antarctica for the end of the 21st century using the MAR regional atmosphere and firn model (Gallée 1994; Agosta et al. 2019) forced by a CMIP5-rcp85 multi-model-mean seasonal anomaly added to the ERA-Interim 6-hourly reanalysis. First of all, we assess the validity of our projection method, following a perfect-model approach, with MAR constrained by the ACCESS-1.3 present-day and future climates. Changes in large-scale variables are well captured by our anomaly-based projection method, and errors on surface melting and SMB projections are typically 10%. Based on the CMIP5-rcp85 multi-model mean, SMB over the grounded ice sheet in the Amundsen sector is projected to increase by 35% over the 21st century. This corresponds to a SMB sensitivity to near-surface warming of 8.3%.°C-1. Increased humidity, resulting from both higher water vapour saturation in warmer conditions and decreased sea-ice concentrations, are shown to favour increased SMB in the future scenario. Ice-shelf surface melt rates at the end of the 21st century are projected to become 6 to 15 times larger than presently, depending on the ice shelf under consideration. This is due to enhanced downward longwave radiative fluxes related to increased humidity, and to an albedo feedback leading to more absorption of shortwave radiation. Interestingly, only three ice shelves produce runoff (Abbot, Cosgrove and Pine Island) in the future climate. For the other ice shelves (Thwaites, Crosson, Dotson, Getz), the future melt-to-snowfall ratio remains too low to produce firn air depletion and subsequent runoff.
- Published
- 2020
- Full Text
- View/download PDF
42. Mass balance of the Antarctic Ice Sheet from 1992 to 2017
- Author
-
Ted Scambos, Richard I. Cullather, Helmut Rott, David N. Wiese, Valentina R. Barletta, Isabella Velicogna, Brice Noël, Jeremie Mouginot, Edward Hanna, Melchior van Wessem, W. Richard Peltier, Thomas Nagler, Alejandro Blazquez, Eric Rignot, Jennifer Bonin, Nadege Pie, Veit Helm, Bernd Scheuchl, Louise Sandberg-Sørensen, Brian Gunter, Ines Otosaka, Ben Smith, Denis Felikson, Benoit S. Lecavalier, Bryant D. Loomis, Cécile Agosta, Peter L. Langen, Wouter van der Wal, Christopher Harig, René Forsberg, Philip Moore, Giorgio Spada, Ernst Schrama, Alex S. Gardner, T. C. Sutterley, Matthieu Talpe, Daniele Melini, Xavier Fettweis, Andreas Groh, Gerhard Krinner, Bert Wouters, Sebastian H. Mernild, Kate Briggs, Andreas P. Ahlstrøm, Erik R. Ivins, Shfaqat Abbas Khan, Johan Nilsson, Hannes Konrad, Nicole Schlegel, Sebastian B. Simonsen, Kristian K. Kjeldsen, Greg Babonis, Malcolm McMillan, Pippa L. Whitehouse, Ingo Sasgen, Lev Tarasov, Ki-Weon Seo, Lin Gilbert, Geruo A, Yara Mohajerani, Scott B. Luthcke, Gorka Moyano, Andrew Shepherd, Thomas Slater, Michiel R. van den Broeke, Bramha Dutt Vishwakarma, Roelof Rietbroek, Alexander Horvath, Hubert Gallée, Tony Payne, Willem Jan van de Berg, Martin Horwath, Alan Muir, Ian Joughin, Beata Csatho, Himanshu Save, Mark E. Pattle, Sophie Nowicki, Ludwig Schröder, Grace A. Nield, Institut des Géosciences de l’Environnement (IGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Andrew Shepherd, Erik Ivin, Eric Rignot, Ben Smith, Michiel VDBroeke, Isabella Velicogna, Pippa Whitehouse, Kate Brigg, Ian Joughin, Gerhard Krinner, Sophie Nowicki, Tony Payne, Ted Scambo, Nicole Schlegel, Geruo A, Cécile Agosta, Andreas Ahlstrøm, Greg Baboni, Valentina Barletta, Alejandro Blazquez, Jennifer Bonin, Beata Csatho, Richard Cullather, Denis Felikson, Xavier Fettwei, Rene Forsberg, Hubert Gallee, Alex Gardner, Lin Gilbert, Andreas Groh, Brian Gunter, Edward Hanna, Christopher Harig, Veit Helm, Alexander Horvath, Martin Horwath, Shfaqat Khan, Kristian Kjeldsen, Hannes Konrad, Peter Langen, Benoit Lecavalier, Bryant Loomi, Scott Luthcke, Malcolm McMillan, Daniele Melini, Sebastian Mernild, Yara Mohajerani, Philip Moore, Jeremie Mouginot, Gorka Moyano, Alan Muir, Thomas Nagler, Grace Nield, Johan Nilsson, Brice Noel, Ines Otosaka, Mark Pattle, William Peltier, Nadege Pie, Roelof Rietbroek, Helmut Rott, LouiseSandberg Sørensen, Ingo Sasgen, Himanshu Save, Bernd Scheuchl, Ernst Schrama, Ludwig Schröder, KiWeon Seo, Sebastian Simonsen, Tom Slater, Giorgio Spada, Tyler Sutterley, Matthieu Talpe, Lev Tarasov, Willem JVdeBerg, Wouter vanderWal, Melchior van Wessem, BramhaDutt Vishwakarma, David Wiese, Bert Wouters, Centre National de la Recherche Scientifique (CNRS), University of California [Irvine] (UCI), University of California, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Climate change ,Antarctic ice sheet ,NN ,010502 geochemistry & geophysics ,01 natural sciences ,Glacier mass balance ,Peninsula ,Taverne ,SDG 13 - Climate Action ,F890 Geographical and Environmental Sciences not elsewhere classified ,Sea level ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,geography ,Multidisciplinary ,geography.geographical_feature_category ,Post-glacial rebound ,Balance (accounting) ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,Physical geography ,Tonne - Abstract
The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.
- Published
- 2018
- Full Text
- View/download PDF
43. Antarctica-Regional Climate and Surface Mass Budget
- Author
-
Charles Amory, Vincent Favier, Julien Beaumet, Hubert Gallée, Gerhard Krinner, and Cécile Agosta
- Subjects
Atmospheric Science ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Climate oscillation ,Climate change ,Future sea level ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Ice-sheet model ,Effects of global warming ,Climatology ,Cryosphere ,Climate model ,Ice sheet ,0105 earth and related environmental sciences - Abstract
We review recent literature on atmospheric, surface ocean and sea-ice observations and modeling results in the Antarctic sector and relate the observed climatic trends with the potential changes in the surface mass balance (SMB) of the ice sheet since 1900. Estimates of regional scale SMB distribution and trends remain subject to large uncertainties. Approaches combining and comparing multiple satellite and model-based assessments of ice sheet mass balance aim at reducing these knowledge gaps. During the last decades, significant changes in atmospheric circulation occurred around Antarctica, due to the exceptional positive trend in the Southern Annular Mode and to the climate variability observed in the tropical Pacific at the end of the twentieth century. Even though climate over the East Antarctic Ice-Sheet remained quite stable, a warming and precipitation increase was observed over the West Antarctic Ice-Sheet and over the West Antarctic Peninsula (AP) during the twentieth century. However, the high regional climate variability overwhelms climate changes associated to human drivers of global temperature changes, as reflected by a slight recent decadal cooling trend over the AP. Climate models still fail to accurately reproduce the multi-decadal SMB trends at a regional scale, and progress has to be achieved in reproducing atmospheric circulation changes related to complex ocean/ice/atmosphere interactions. Complex processes are also still insufficiently considered, such as (1) specific polar atmospheric processes (clouds, drifting snow, and stable boundary layer physics), (2) surface firn physics involved in the surface drag variations, or in firn air depletion and albedo feedbacks. Finally, progress in reducing the uncertainties relative to projections of the future SMB of Antarctica will largely depend on climate model capability to correctly consider teleconnections with low and mid-latitudes, and on the ability to correct them for biases, taking into account the coupling between ocean, ice, and atmosphere in high southern latitudes.
- Published
- 2017
- Full Text
- View/download PDF
44. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model
- Author
-
Christoph Kittel, Dirk van As, Xavier Fettweis, Charles Amory, Jason E. Box, Hubert Gallée, Horst Machguth, Cécile Agosta, Charlotte Lang, University of Zurich, and Fettweis, Xavier
- Subjects
010504 meteorology & atmospheric sciences ,Cloud cover ,1904 Earth-Surface Processes ,Greenland ice sheet ,Forcing (mathematics) ,010502 geochemistry & geophysics ,01 natural sciences ,Glacier mass balance ,2312 Water Science and Technology ,Ice core ,Precipitation ,910 Geography & travel ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,lcsh:GE1-350 ,lcsh:QE1-996.5 ,Earth ,Albedo ,Snow ,lcsh:Geology ,10122 Institute of Geography ,Surface Processes ,Climatology ,Environmental science - Abstract
With the aim of studying the recent Greenland ice sheet (GrIS) surface mass balance (SMB) decrease relative to the last century, we have forced the regional climate MAR (Modèle Atmosphérique Régional; version 3.5.2) model with the ERA-Interim (ECMWF Interim Re-Analysis; 1979–2015), ERA-40 (1958–2001), NCEP–NCARv1 (National Centers for Environmental Prediction–National Center for Atmospheric Research Reanalysis version 1; 1948–2015), NCEP–NCARv2 (1979–2015), JRA-55 (Japanese 55-year Reanalysis; 1958–2014), 20CRv2(c) (Twentieth Century Reanalysis version 2; 1900–2014) and ERA-20C (1900–2010) reanalyses. While all these forcing products are reanalyses that are assumed to represent the same climate, they produce significant differences in the MAR-simulated SMB over their common period. A temperature adjustment of +1 °C (respectively −1 °C) was, for example, needed at the MAR boundaries with ERA-20C (20CRv2) reanalysis, given that ERA-20C (20CRv2) is ∼ 1 °C colder (warmer) than ERA-Interim over Greenland during the period 1980–2010. Comparisons with daily PROMICE (Programme for Monitoring of the Greenland Ice Sheet) near-surface observations support these adjustments. Comparisons with SMB measurements, ice cores and satellite-derived melt extent reveal the most accurate forcing datasets for the simulation of the GrIS SMB to be ERA-Interim and NCEP–NCARv1. However, some biases remain in MAR, suggesting that some improvements are still needed in its cloudiness and radiative schemes as well as in the representation of the bare ice albedo. Results from all MAR simulations indicate that (i) the period 1961–1990, commonly chosen as a stable reference period for Greenland SMB and ice dynamics, is actually a period of anomalously positive SMB (∼ +40 Gt yr−1) compared to 1900–2010; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120-year common period; (iii) before 1960, both ERA-20C and 20CRv2-forced MAR simulations suggest a significant precipitation increase over 1900–1950, but this increase could be the result of an artefact in the reanalyses that are not well-enough constrained by observations during this period and (iv) since the 1980s, snowfall is quite stable after having reached a maximum in the 1970s. These MAR-based SMB and accumulation reconstructions are, however, quite similar to those from Box (2013) after 1930 and confirm that SMB was quite stable from the 1940s to the 1990s. Finally, only the ERA-20C-forced simulation suggests that SMB during the 1920–1930 warm period over Greenland was comparable to the SMB of the 2000s, due to both higher melt and lower precipitation than normal.
- Published
- 2017
45. Experimental protocol for sealevel projections from ISMIP6 standalone ice sheet models
- Author
-
Thomas J. Bracegirdle, Fiammetta Straneo, Peter Kuipers Munneke, Cécile Agosta, Luke D. Trusel, Isabel Nias, Patrick Alexander, Eric Larour, Jonathan M. Gregory, Richard I. Cullather, Erika Simon, Christopher M. Little, Robin S. Smith, Xavier Fettweis, Michiel R. van den Broeke, Mathieu Morlinghem, A. J. Payne, Donald Slater, Sophie Nowicki, Roderik S. W. van de Wal, Xylar Asay-Davis, Heiko Goelzer, Andrew Shepherd, Denis Felikson, Nicolas C. Jourdain, Alice Barthel, Helene Seroussi, Tore Hatterman, Ayako Abe-Ouchi, and William H. Lipscomb
- Subjects
0303 health sciences ,Coupled model intercomparison project ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Antarctic ice sheet ,Context (language use) ,Forcing (mathematics) ,01 natural sciences ,Ice-sheet model ,03 medical and health sciences ,13. Climate action ,Phase (matter) ,Climatology ,Ice sheet ,Sea level ,Geology ,030304 developmental biology ,0105 earth and related environmental sciences - Abstract
Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.
- Published
- 2020
46. CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica
- Author
-
Christopher M. Little, Cécile Agosta, Heiko Goelzer, Sophie Nowicki, Helene Seroussi, Thomas J. Bracegirdle, Fiammetta Straneo, Nicolas C. Jourdain, Tore Hattermann, Alice Barthel, Los Alamos National Laboratory (LANL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Atmospheric and Environmental Research, Inc. (AER), Norwegian Polar Institute, Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institute for Marine and Atmospheric Research [Utrecht] (IMAU), Utrecht University [Utrecht], NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Scripps Institution of Oceanography (SIO), University of California [San Diego] (UC San Diego), University of California-University of California, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), ANR-15-CE01-0015,AC-AHC2,Circulation atmosphérique et changement de cycle hydrologique pour l'Arctique(2015), ANR-15-CE01-0005,TROIS-AS,Vers un système de modélisation régionale océan / calotte / atmosphère(2015), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Scripps Institution of Oceanography (SIO - UC San Diego), University of California (UC)-University of California (UC), Sub Dynamics Meteorology, and Marine and Atmospheric Research
- Subjects
010504 meteorology & atmospheric sciences ,0207 environmental engineering ,Forcing (mathematics) ,02 engineering and technology ,010502 geochemistry & geophysics ,01 natural sciences ,Atmosphere ,020701 environmental engineering ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,lcsh:Environmental sciences ,Water Science and Technology ,Earth-Surface Processes ,0105 earth and related environmental sciences ,VDP::Mathematics and natural science: 400 ,lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,geography ,geography.geographical_feature_category ,Géologie et minéralogie ,Continental shelf ,Model selection ,lcsh:QE1-996.5 ,VDP::Technology: 500 ,VDP::Matematikk og Naturvitenskap: 400 ,Ice-sheet model ,lcsh:Geology ,Sea surface temperature ,VDP::Teknologi: 500 ,13. Climate action ,Climatology ,Environmental science ,Climate model ,théorie et applications [Econométrie et méthodes statistiques] ,Ice sheet - Abstract
The ice sheet model intercomparison project for CMIP6 (ISMIP6) effort brings together the ice sheet and climate modeling communities to gain understanding of the ice sheet contribution to sea level rise. ISMIP6 conducts stand-alone ice sheet experiments that use space- and time-varying forcing derived from atmosphere-ocean coupled global climate models (AOGCMs) to reflect plausible trajectories for climate projections. The goal of this study is to recommend a subset of CMIP5 AOGCMs (three core and three targeted) to produce forcing for ISMIP6 stand-alone ice sheet simulations, based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century. The selection is performed separately for Greenland and Antarctica. Model evaluation over the historical period focuses on variables used to generate ice sheet forcing. For stage (i), we combine metrics of atmosphere and surface ocean state (annual- and seasonal-mean variables over large spatial domains) with metrics of time-mean subsurface ocean temperature biases averaged over sectors of the continental shelf. For stage (ii), we maximize the diversity of climate projections among the best-performing models. Model selection is also constrained by technical limitations, such as availability of required data from RCP2.6 and RCP8.5 projections. The selected top three CMIP5 climate models are CCSM4, MIROC-ESM-CHEM, and NorESM1-M for Antarctica and HadGEM2-ES, MIROC5, and NorESM1-M for Greenland. This model selection was designed specifically for ISMIP6 but can be adapted for other applications., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2020
- Full Text
- View/download PDF
47. Highlights on key polar processes driving the Antarctic surface mass balance
- Author
-
Cécile Agosta, Christoph Kittel, Charles Amory, and Xavier Fettweis
- Subjects
Surface mass balance ,Antarctic - Abstract
Ice sheet mass balance results of the small imbalance between ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Past change in ice sheet mass can be assessed using satellite altimetry, gravimetry, or the input-output method, which all request SMB estimates.The input-output method, which consists in separately modeling ice dynamics and SMB, is also the only way to project future trends. Here we use the polar-oriented regional climate model MAR to estimate the Antarctic SMB for the period 1979-2018 using forcing from 7 reanalyses: ERA-5, ERA-Interim, JRA-55, MERRA2, NCEP1, NCEP2, and 20CRv2. We show that spatial patterns of SMB modeled by the reanalyses diverge significantly between each-other, whereas the spread is insignificant after downscaling with MAR. SMB modeled with MAR is markedly closer to observations than the original reanalyses outputs. Divergences in SMB between reanalyses and MAR are driven by divergences in snowfall amounts, which are explained by processes related to clouds and precipitation in the atmosphere (notably cloud-precipitation conversion, precipitation advection and precipitation sublimation) rather than by model resolution. The temporal variability of downscaled SMB is however strongly related to the forcing reanalysis variability. This study emphasis the importance of polar-specific processes and of their implementation in climate models, particularly in view of atmosphere-ice sheet coupling.  
- Published
- 2019
- Full Text
- View/download PDF
48. West Antarctic surface melt triggered by atmospheric rivers
- Author
-
Cécile Agosta, Irina Gorodetskaya, Ambroise Dufour, Francis Codron, Jonathan Wille, Vincent Favier, John Turner, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centro de Estudos do Ambiante e do Mar (CESAM), Universidade de Aveiro, British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Océan et variabilité du climat (VARCLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-14-CE01-0001,ASUMA,Amélioration de la précision de l'estimation de bilan de masse de surface en Antarctique(2014), ANR-16-CE01-0011,EAIIST,Projet International d'exploration de la calotte polaire de l'Antarctique de l'Est(2016), ANR-15-CE01-0015,AC-AHC2,Circulation atmosphérique et changement de cycle hydrologique pour l'Arctique(2015), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Turbulent heat ,Elevation ,Antarctic ice sheet ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Atmospheric river ,010502 geochemistry & geophysics ,01 natural sciences ,Ice shelf ,Ice melt ,Oceanography ,13. Climate action ,General Earth and Planetary Sciences ,Atmospheric dynamics ,Meltwater ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Recent major melting events in West Antarctica have raised concerns about a potential hydrofracturing and ice shelf instability. These events often share common forcings of surface melt-like anomalous radiative fluxes, turbulent heat fluxes and fohn winds. Using an atmospheric river detection algorithm developed for Antarctica together with surface melt datasets, we produced a climatology of atmospheric river-related surface melting around Antarctica and show that atmospheric rivers are associated with a large percentage of these surface melt events. Despite their rarity (around 12 events per year in West Antarctica), atmospheric rivers are associated with around 40% of the total summer meltwater generated across the Ross Ice Shelf to nearly 100% in the higher elevation Marie Byrd Land and 40–80% of the total winter meltwater generated on the Wilkins, Bach, George IV and Larsen B and C ice shelves. These events were all related to high-pressure blocking ridges that directed anomalous poleward moisture transport towards the continent. Major melt events in the West Antarctic Ice Sheet only occur about a couple times per decade, but a 1–2 °C warming and continued increase in atmospheric river activity could increase the melt frequency with consequences for ice shelf stability. Atmospheric rivers associated with blocking events are related to a large fraction of the surface ice melt events in West Antarctica, suggest observation-based analyses of atmospheric dynamics and West Antarctic surface melt.
- Published
- 2019
- Full Text
- View/download PDF
49. Supplementary material to 'Interannual Variability of Summer Surface Mass Balance and Surface Melting in the Amundsen Sector, West Antarctica'
- Author
-
Marion Donat-Magnin, Nicolas C. Jourdain, Hubert Gallée, Charles Amory, Christoph Kittel, Xavier Fettweis, Jonathan D. Wille, Vincent Favier, Amine Drira, and Cécile Agosta
- Published
- 2019
- Full Text
- View/download PDF
50. Evaluating climate model simulations of 20th century sea level rise
- Author
-
Benoit Meyssignac, Aimée Slangen, Angélique Melet, John A. Church, Xavier Fettweis, Ben Marzeion, Cécile Agosta, Stefan R. M. Ligtenberg, Giorgio Spada, Kristin Richter, Matt D. Palmer, Chris D. Roberts, Nicolas Champollion, Benoit Meyssignac, Aimée Slangen, Angélique Melet, John A. Church, Xavier Fettwei, Ben Marzeion, Cécile Agosta, Stefan R. M. Ligtenberg, Giorgio Spada, Kristin Richter, Matt D. Palmer, Chris D. Robert, and Nicolas Champollion
- Subjects
N/A - Abstract
NN
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.