1. Arcus: The Soft X-ray Grating Explorer
- Author
-
Randall K Smith, Margaret Abraham, Grace Baird, Marshall Bautz, Jay Bookbinder, Joel Bregman, Laura Brenneman, Nancy Brickhouse, David Burrows, Vadim Burwitz, Joseph Bushman, Claude Canizares, Deepto Chakrabarty, Peter Cheimets, Elisa Costantini, Simon Dawson, Casey DeRoo, Abraham Falcone, Adam Foster, Luigi Gallo, Catherine E Grant, H Moritz Gunther, Ralf K Heilmann, Butler Hine, David Huenemoerder, Steve Jara, Jelle Kaastra, Ingo Kreykenbohm, Kristin Madsen, Michael McDonald, Michael McEachen, Randall McEntaffer, Herman Marshall, Eric Miller, Jon Miller, Elisabeth Morse, Richard Mushotzky, Kirpal Nandra, Michael Nowak, Frits Paerels, Robert Petre, Katja Poppenhaeger, Andrew Ptak, Paul Reid, Karolyn S Ronzano, Jeremy Sanders, Mark Schattenburg, Jonathan Schonfeld, Norbert Schulz, Alan Smale, Pasquale Temi, Lynne Valencic, Stephen Walker, Richard Willingale, Joern Wilms, and Scott Wolk
- Subjects
Optics - Abstract
Arcus provides high-resolution soft X-ray spectroscopy in the 12-50 Å bandpass with unprecedented sensitivity, including spectral resolution > 2500 and effective area > 250 cm2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback, and (3) to explore how stars form and evolve. Arcus uses the same 12 m focal length grazing-incidence Silicon Pore X-ray Optics (SPOs) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. Combined with the high-heritage NGIS LEOStar-2 spacecraft and launched into 4:1 lunar resonant orbit, Arcus provides high sensitivity and high efficiency observing of a wide range of astrophysical sources.
- Published
- 2019
- Full Text
- View/download PDF