1. Enerji Verimli Binaların Isıtma ve Soğutma Yüklerinin Düzenli Modeller ile Tahmin Edilmesi
- Author
-
Burak Dilber and A. Fırat Özdemir
- Subjects
energy efficiency ,tidy models ,machine learning ,extreme gradient boosting ,enerji verimliliği ,düzenli modeller ,makine öğrenmesi ,uç gradyan artırma ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Science ,Science (General) ,Q1-390 - Abstract
Fosil yakıtların azalması ile birlikte enerji verimliliği kavramı gün geçtikçe önem kazanmaktadır. Enerjinin büyük bir bölümü binaların yapım ve kullanımında tüketildiğinden binalardaki enerji tasarrufunu sağlamak için ısıtma ve soğutma yüklerinin hesaplanması gerekir. Bu yükler enerji simülasyon yazılımları kullanılarak hesaplanmaktadır ancak bu süreç çok zaman alabilir ve kullanıcı deneyimi gerektirir. Makine öğrenmesi algoritmaları ısıtma ve soğutma yüklerinin tahminlenmesinde hızlı ve güvenilir bir alternatif haline gelmiştir. Bu çalışmada, binaların ısıtma ve soğutma yükleri Doğrusal Regresyon, K – En Yakın Komşuluk, Destek Vektör Makineleri, Karar Ağaçları, Rastgele Orman, Uç Gradyan Artırma ve Yapay Sinir Ağları kullanılarak tahminlenmiştir. Analizler R İstatistiksel Programlama Dili’nin güncel çalışma alanlarından olan düzenli modeller (“tidymodels”) ile gerçekleştirilmiştir. Düzenli modeller “tidyverse” ilkeleri ile makine öğrenmesi uygulamaları yapmak için geliştirilmiş, hızlı ve pratik çözümler sunan paketler koleksiyonudur. Yapılan çalışma ile elde edilen sonuçlara göre tahmin doğruluğu açısından en başarılı algoritma Uç Gradyan Artırma Algoritması olmuştur. Binaların çeşitli özelliklerine ait değerler girilerek ısıtma ve soğutma yüklerini yüksek hassasiyet ile tahmin etmek ve hızlı sonuç almak için düzenli modelleme yaklaşımı ile Uç Gradyan Artırma Algoritması’nın kullanılması önerilmektedir.
- Published
- 2022
- Full Text
- View/download PDF