1. In Vitro Assessment of the Neuroprotective Effects of Pomegranate (Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress.
- Author
-
Alami, Mehdi, Boumezough, Kaoutar, Zerif, Echarki, Zoubdane, Nada, Khalil, Abdelouahed, Bunt, Ton, Laurent, Benoit, Witkowski, Jacek M., Ramassamy, Charles, Boulbaroud, Samira, Fulop, Tamas, and Berrougui, Hicham
- Abstract
Background: Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). Purpose: To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). Methods: We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ
1-42 )-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42 -induced Tau-181 phosphorylation (pTau-181). Results: Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42 -induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. Conclusion: Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42 -induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF