[SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. La necesidad de lograr una economía descarbonizada para evitar los efectos del cambio climático ha derivado en una serie de compromisos internacionales que obligan a España y Europa a reducir paulatinamente sus emisiones de gases de efecto invernadero hasta alcanzar la neutralidad climática en 2050. Este objetivo solo se puede alcanzar con un nuevo modelo energético basado en una integración masiva de energías renovables. Entre las tecnologías llamadas a convertirse en uno de los pilares de esta descarbonización de la economía se encuentra la energía solar fotovoltaica como consecuencia de su propia madurez tecnológica y la significativa reducción de costes que ha experimentado en los últimos años. Dentro de las instalaciones fotovoltaicas, una de las tipologías que ha recibido un mayor impulso son las instalaciones de autoconsumo ubicadas cerca de los puntos de demanda eléctrica gestionadas por los consumidores que pasan a ser también proveedores de energía y servicios a la red convirtiéndose en los denominados “prosumers“. Esta integración masiva de nuevas plantas de generación distribuida supone un desafío para la gestión de la red eléctrica que, tradicionalmente, ha respondido a un modelo de flujo de potencias unidireccional donde la potencia fluye desde grandes unidades de generación hacia los puntos de consumo, ajustando en todo momento la generación a la demanda y consiguiendo un balance de potencias que permitiese regular y controlar de manera efectiva los valores de tensión y frecuencia dentro de rangos admisibles. El nuevo modelo de generación distribuida basada en renovables requiere de nuevas herramientas y estrategias de gestión para hacer frente a la variabilidad que presentan estas energías renovables por su propia naturaleza y el gran número y dispersión geográfica de instalaciones que requieren una mayor flexibilidad ante nuevos retos en forma de flujo bidireccional de energía. Estas nuevas estrategias de gestión están apoyadas por los grandes avances realizados por las tecnologías de la información y la comunicación (TICs), que se han ido incorporando de forma paulatina de la mano de los operadores de red de cara a recoger diversas variables relacionadas con los estados de las unidades de generación y de los usuarios con objeto de optimizar la distribución y el consumo. En el caso de la fotovoltaica, hasta hace unos años, el coste y la complejidad de los sistemas de monitorización de las instalaciones fotovoltaicas limitaban su uso a las plantas fotovoltaicas de gran capacidad (a partir de 1 MW, tanto por motivos económicos como normativos), pero la aparición y la rápida evolución en el mercado del denominado Internet de las Cosas, IoT por sus siglas en inglés (Internet of Things), ha causado una explosión en la cantidad y variedad de soluciones de bajo costo que podrían permitir la implementación a gran escala de los sistemas de monitorización de manera rentable. Durante el desarrollo de esta tesis, de carácter eminentemente práctico, se ha trabajado en las tres capas que componen un sistema de IoT (percepción, comunicación y aplicación) para proponer un nuevo prototipo de gestión y comunicación de instalaciones fotovoltaicas de autoconsumo basado en estándares abiertos y soluciones de bajo coste. En la capa de percepción se han desarrollado y evaluado varios prototipos de sistemas de monitorización de acuerdo con los requisitos de la norma EC–61724, que describe las pautas generales para monitorizar y analizar el rendimiento de las plantas de energía fotovoltaica. Dentro de la capa de comunicaciones se ha trabajado en integración y evaluación de nuevos sistemas de comunicaciones de bajo coste, gran cobertura y baja demanda de energía (LPWAN) como medio para el intercambio datos en un entorno de Internet de las cosas (IoT). Por último, en la capa de aplicaciones se ha abordado el análisis de modelos de predicción de la generación de energía a corto plazo de estas instalaciones para proporcionar fiabilidad y estabilidad a la red, estudiándose tanto diferentes fuentes de datos de irradiancia para la aplicación de estos modelos como la influencia de los parámetros fundamentales de la red de comunicaciones en sus resultados. [ENG] This doctoral dissertation has been presented in the form of thesis by publication. The need to achieve a decarbonized economy to fight climate change has prompted several international commitments that oblige Spain and Europe to progressively reduce their greenhouse gas emissions until reaching climate neutrality in 2050. This goal can only be reached with a new energy model based on a massive integration of renewable energies. Among these technologies, photovoltaic solar energy is called to become one of the pillars to decarbonize the economy decarbonization thanks to its own technological maturity and the significant cost reduction, it has experienced in recent years. Within the different types of photovoltaic installations, one of the fastest growing is that of self-consumption, which are installations located near the points of electricity demand managed by the consumers themselves who also become providers of energy and services to the network, becoming the so-called prosumers.This massive integration of new distributed generation plants poses a challenge for the management of the electricity grid, which has traditionally responded to a unidirectional power flow model. In this unidirectional model, the power flows from the large generation units to the consumption points, adjusting the generation to achieve a power balance that allows effective regulation and control of the voltage and frequency values within the admissible ranges. The new decentralized distributed model requires new tools and management strategies to deal with the variability that renewable energies present due to their very nature and the large number and the geographical dispersion of installations that require greater flexibility to ensure a constant supply to cover demand and meet new challenges in the form of bidirectional flow of power These new management strategies are supported by the great advances made by information and communication technologies (ICTs) that have been gradually incorporated by the network operators in order to collect various variables related to generation units and consumer´s behavior in order to optimize distribution and consumption. In the case of photovoltaics, until a few years ago, the cost and complexity of monitoring systems for photovoltaic installations limited their use to large-capacity photovoltaic plants (from 1 MW, both for economic and regulatory reasons), but the appearance and rapid evolution in the market of the so-called Internet of Things, IoT, In this thesis, which has a practical approach, new contributions have been done to the three layers that make up an IoT system (perception, communication, and application) to propose a new management and communication prototype for selfconsumption photovoltaic installations based on open standards and low-cost IoT solutions. In the perception layer, several prototypes of monitoring systems have been developed and evaluated in accordance with the requirements of the EC–61724 standard, which describes the general guidelines for monitoring and analyzing the performance of photovoltaic power plants. Within the communications layer, work has been done on the integration and evaluation of new low-cost, high coverage, and low energy demand communications systems (LPWAN) to exchange data. Finally, in the applications layer, the analysis of short-term power generation prediction models for these facilities has been addressed to provide reliability and stability to the network, studying both different sources of irradiance data for the application of these models such as the influence of the fundamental parameters of the communications network in their results. Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por un total de cinco artículos. 1. PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment“. Paredes-Parra, J.M., Mateo-Aroca, A., Silvente- Niñirola, G., Bueso, M.C., Molina-García, A. 2018. Energies 11, no. 11: 3051. https://doi.org/10.3390/en11113051. 2. “An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management“. Paredes-Parra, J.M., García-Sánchez, A.J., Mateo-Aroca, A., Molina-García, A. 2019. Energies 12, no. 5: 881. https://doi.org/10.3390/en12050881. 3. “A Characterization of Metrics for Comparing Satellite-Based and Ground-Measured Global Horizontal Irradiance Data: A Principal Component Analysis Application‘. Bueso, M.C., Paredes-Parra, J.M., Mateo-Aroca, A., Molina-García, A. 2020. Sustainability 12: 2454. https://doi.org/10.3390/su12062454. 4. “Sensitive Parameter Analysis for Solar Irradiance Short-Term Forecasting: Application to LoRa-Based Monitoring Technology“. Bueso, M.C., Paredes-Parra, J.M., Mateo-Aroca, A., Molina-García, A. 2022. Sensors (Basel) 22(4): 1499. https://doi.org/10.3390/s22041499. PMID: 35214398; PMCID: PMC8874705. 5. “Democratization of PV micro–generation system monitoring via an open source IoT gateway based on NB–IoT“. Paredes-Parra, J.M., Jiménez-Segura, R., Campos-Peñalver, D., Mateo-Aroca A., Ramallo-González, A.P., Molina-García, A. 2022. Sensors 22(13): 4966. https://doi.org/10.3390/s22134966. Escuela Internacional de Doctorado de la Universidad Politécnica de Cartagena Universidad Politécnica de Cartagena Programa de Doctorado en Energías Renovables y Eficiencia Energética