1. "Deficiency in ELF4, X-Linked": a Monogenic Disease Entity Resembling Behçet's Syndrome and Inflammatory Bowel Disease.
- Author
-
Olyha SJ, O'Connor SK, Kribis M, Bucklin ML, Uthaya Kumar DB, Tyler PM, Alam F, Jones KM, Sheikha H, Konnikova L, Lakhani SA, Montgomery RR, Catanzaro J, Du H, DiGiacomo DV, Rothermel H, Moran CJ, Fiedler K, Warner N, Hoppenreijs EPAH, van der Made CI, Hoischen A, Olbrich P, Neth O, Rodríguez-Martínez A, Lucena Soto JM, van Rossum AMC, Dalm VASH, Muise AM, and Lucas CL
- Subjects
- Male, Humans, Arthralgia, DNA-Binding Proteins, Transcription Factors genetics, Behcet Syndrome diagnosis, Behcet Syndrome genetics, Inflammatory Bowel Diseases diagnosis, Inflammatory Bowel Diseases genetics, Arthritis, Biological Products
- Abstract
Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF