1. EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM
- Author
-
Zou, Henry Peng, Yu, Gavin Heqing, Fan, Ziwei, Bu, Dan, Liu, Han, Dai, Peng, Jia, Dongmei, and Caragea, Cornelia
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Information Retrieval ,Computer Science - Machine Learning - Abstract
In e-commerce, accurately extracting product attribute values from multimodal data is crucial for improving user experience and operational efficiency of retailers. However, previous approaches to multimodal attribute value extraction often struggle with implicit attribute values embedded in images or text, rely heavily on extensive labeled data, and can easily confuse similar attribute values. To address these issues, we introduce EIVEN, a data- and parameter-efficient generative framework that pioneers the use of multimodal LLM for implicit attribute value extraction. EIVEN leverages the rich inherent knowledge of a pre-trained LLM and vision encoder to reduce reliance on labeled data. We also introduce a novel Learning-by-Comparison technique to reduce model confusion by enforcing attribute value comparison and difference identification. Additionally, we construct initial open-source datasets for multimodal implicit attribute value extraction. Our extensive experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values while requiring less labeled data., Comment: Accepted by NAACL 2024 Industry Track
- Published
- 2024