17 results on '"Brychtova V"'
Search Results
2. Abstracts from the 4th ImmunoTherapy of Cancer Conference
- Author
-
Ženka, J., primary, Caisová, V., additional, Uher, O., additional, Nedbalová, P., additional, Kvardová, K., additional, Masáková, K., additional, Krejčová, G., additional, Paďouková, L., additional, Jochmanová, I., additional, Wolf, K. I., additional, Chmelař, J., additional, Kopecký, J., additional, Loumagne, L., additional, Mestadier, J., additional, D’agostino, S., additional, Rohaut, A., additional, Ruffin, Y., additional, Croize, V., additional, Lemaître, O., additional, Sidhu, S. S., additional, Althammer, S., additional, Steele, K., additional, Rebelatto, M., additional, Tan, T., additional, Wiestler, T., additional, Spitzmueller, A., additional, Korn, R., additional, Schmidt, G., additional, Higgs, B., additional, Li, X., additional, Shi, L., additional, Jin, X., additional, Ranade, K., additional, Koeck, S., additional, Amann, A., additional, Gamerith, G., additional, Zwierzina, M., additional, Lorenz, E., additional, Zwierzina, H., additional, Kern, J., additional, Riva, M., additional, Baert, T., additional, Coosemans, A., additional, Giovannoni, R., additional, Radaelli, E., additional, Gsell, W., additional, Himmelreich, U., additional, Van Ranst, M., additional, Xing, F., additional, Qian, W., additional, Dong, C., additional, Xu, X., additional, Guo, S., additional, Shi, Q., additional, Quandt, D., additional, Seliger, B., additional, Plett, C., additional, Amberger, D. C., additional, Rabe, A., additional, Deen, D., additional, Stankova, Z., additional, Hirn, A., additional, Vokac, Y., additional, Werner, J., additional, Krämer, D., additional, Rank, A., additional, Schmid, C., additional, Schmetzer, H., additional, Guerin, M., additional, Weiss, J. M., additional, Regnier, F., additional, Renault, G., additional, Vimeux, L., additional, Peranzoni, E., additional, Feuillet, V., additional, Thoreau, M., additional, Guilbert, T., additional, Trautmann, A., additional, Bercovici, N., additional, Doraneh-Gard, F., additional, Boeck, C. L., additional, Gunsilius, C., additional, Kugler, C., additional, Schmohl, J., additional, Kraemer, D., additional, Ismann, B., additional, Schmetzer, H. M., additional, Markota, A., additional, Ochs, C., additional, May, P., additional, Gottschlich, A., additional, Gosálvez, J. Suárez, additional, Karches, C., additional, Wenk, D., additional, Endres, S., additional, Kobold, S., additional, Hilmenyuk, T., additional, Klar, R., additional, Jaschinski, F., additional, Augustin, F., additional, Manzl, C., additional, Hoflehner, E., additional, Moser, P., additional, Zelger, B., additional, Köck, S., additional, Schäfer, G., additional, Öfner, D., additional, Maier, H., additional, Sopper, S., additional, Prado-Garcia, H., additional, Romero-Garcia, S., additional, Sandoval-Martínez, R., additional, Puerto-Aquino, A., additional, Lopez-Gonzalez, J., additional, Rumbo-Nava, U., additional, Van Hoylandt, A., additional, Busschaert, P., additional, Vergote, I., additional, Laengle, J., additional, Pilatova, K., additional, Budinska, E., additional, Bencsikova, B., additional, Sefr, R., additional, Nenutil, R., additional, Brychtova, V., additional, Fedorova, L., additional, Hanakova, B., additional, Zdrazilova-Dubska, L., additional, Allen, Chris, additional, Ku, Yuan-Chieh, additional, Tom, Warren, additional, Sun, Yongming, additional, Pankov, Alex, additional, Looney, Tim, additional, Hyland, Fiona, additional, Au-Young, Janice, additional, Mongan, Ann, additional, Becker, A., additional, Tan, J. B. L., additional, Chen, A., additional, Lawson, K., additional, Lindsey, E., additional, Powers, J. P., additional, Walters, M., additional, Schindler, U., additional, Young, S., additional, Jaen, J. C., additional, Yin, S., additional, Chen, Y., additional, Gullo, I., additional, Gonçalves, G., additional, Pinto, M. L., additional, Athelogou, M., additional, Almeida, G., additional, Huss, R., additional, Oliveira, C., additional, Carneiro, F., additional, Merz, C., additional, Sykora, J., additional, Hermann, K., additional, Hussong, R., additional, Richards, D. M., additional, Fricke, H., additional, Hill, O., additional, Gieffers, C., additional, Pinho, M. P., additional, Barbuto, J. A. M., additional, McArdle, S. E., additional, Foulds, G., additional, Vadakekolathu, J. N., additional, Abdel-Fatah, T. M. A., additional, Johnson, C., additional, Hood, S., additional, Moseley, P., additional, Rees, R. C., additional, Chan, S. Y. T., additional, Pockley, A. G., additional, Rutella, S., additional, Geppert, C., additional, Hartmann, A., additional, Kumar, K. Senthil, additional, Gokilavani, M., additional, Wang, S., additional, Redondo-Müller, M., additional, Heinonen, K., additional, Marschall, V., additional, Thiemann, M., additional, Zhang, L., additional, Mao, B., additional, Jin, Y., additional, Zhai, G., additional, Li, Z., additional, Wang, Z., additional, An, X., additional, Qiao, M., additional, Zhang, J., additional, Weber, J., additional, Kluger, H., additional, Halaban, R., additional, Sznol, M., additional, Roder, H., additional, Roder, J., additional, Grigorieva, J., additional, Asmellash, S., additional, Meyer, K., additional, Steingrimsson, A., additional, Blackmon, S., additional, Sullivan, R., additional, Sutanto, W., additional, Guenther, T., additional, Schuster, F., additional, Salih, H., additional, Babor, F., additional, Borkhardt, A., additional, Kim, Y., additional, Oh, I., additional, Park, C., additional, Ahn, S., additional, Na, K., additional, Song, S., additional, Choi, Y., additional, Poprach, A., additional, Lakomy, R., additional, Selingerova, I., additional, Demlova, R., additional, Kozakova, S., additional, Valik, D., additional, Petrakova, K., additional, Vyzula, R., additional, Aguilar-Cazares, D., additional, Galicia-Velasco, M., additional, Camacho-Mendoza, C., additional, Islas-Vazquez, L., additional, Chavez-Dominguez, R., additional, Gonzalez-Gonzalez, C., additional, Lopez-Gonzalez, J. S., additional, Yang, S., additional, Moynihan, K. D., additional, Noh, M., additional, Bekdemir, A., additional, Stellacci, F., additional, Irvine, D. J., additional, Volz, B., additional, Kapp, K., additional, Oswald, D., additional, Wittig, B., additional, Schmidt, M., additional, Kleef, R., additional, Bohdjalian, A., additional, McKee, D., additional, Moss, R. W., additional, Saeed, Mesha, additional, Zalba, Sara, additional, Debets, Reno, additional, ten Hagen, Timo L. M., additional, Javed, S., additional, Becher, J., additional, Koch-Nolte, F., additional, Haag, F., additional, Gordon, E. M., additional, Sankhala, K. K., additional, Stumpf, N., additional, Tseng, W., additional, Chawla, S. P., additional, Suárez, N. González, additional, Báez, G. Bergado, additional, Rodríguez, M. Cruz, additional, Pérez, A. Gutierrez, additional, García, L. Chao, additional, Fernández, D. Hernández, additional, Pous, J. Raymond, additional, Ramírez, B. Sánchez, additional, Jacoberger-Foissac, C., additional, Saliba, H., additional, Seguin, C., additional, Brion, A., additional, Frisch, B., additional, Fournel, S., additional, Heurtault, B., additional, Otterhaug, T., additional, Håkerud, M., additional, Nedberg, A., additional, Edwards, V., additional, Selbo, P., additional, Høgset, A., additional, Jaitly, T., additional, Dörrie, J., additional, Schaft, N., additional, Gross, S., additional, Schuler-Thurner, B., additional, Gupta, S., additional, Taher, L., additional, Schuler, G., additional, Vera, J., additional, Rataj, F., additional, Kraus, F., additional, Grassmann, S., additional, Chaloupka, M., additional, Lesch, S., additional, Heise, C., additional, Cadilha, B. M. Loureiro, additional, and Dorman, K., additional
- Published
- 2017
- Full Text
- View/download PDF
3. Abstracts from the 4th ImmunoTherapy of Cancer Conference
- Author
-
Ženka, J., Caisová, V., Uher, O., Nedbalová, P., Kvardová, K., Masáková, K., Krejčová, G., Paďouková, L., Jochmanová, I., Wolf, K. I., Chmelař, J., Kopecký, J., Loumagne, L., Mestadier, J., D’agostino, S., Rohaut, A., Ruffin, Y., Croize, V., Lemaître, O., Sidhu, S. S., Althammer, S., Steele, K., Rebelatto, M., Tan, T., Wiestler, T., Spitzmueller, A., Korn, R., Schmidt, G., Higgs, B., Li, X., Shi, L., Jin, X., Ranade, K., Koeck, S., Amann, A., Gamerith, G., Zwierzina, M., Lorenz, E., Zwierzina, H., Kern, J., Riva, M., Baert, T., Coosemans, A., Giovannoni, R., Radaelli, E., Gsell, W., Himmelreich, U., Van Ranst, M., Xing, F., Qian, W., Dong, C., Xu, X., Guo, S., Shi, Q., Quandt, D., Seliger, B., Plett, C., Amberger, D. C., Rabe, A., Deen, D., Stankova, Z., Hirn, A., Vokac, Y., Werner, J., Krämer, D., Rank, A., Schmid, C., Schmetzer, H., Guerin, M., Weiss, J. M., Regnier, F., Renault, G., Vimeux, L., Peranzoni, E., Feuillet, V., Thoreau, M., Guilbert, T., Trautmann, A., Bercovici, N., Doraneh-Gard, F., Boeck, C. L., Gunsilius, C., Kugler, C., Schmohl, J., Kraemer, D., Ismann, B., Schmetzer, H. M., Markota, A., Ochs, C., May, P., Gottschlich, A., Gosálvez, J. Suárez, Karches, C., Wenk, D., Endres, S., Kobold, S., Hilmenyuk, T., Klar, R., Jaschinski, F., Augustin, F., Manzl, C., Hoflehner, E., Moser, P., Zelger, B., Köck, S., Schäfer, G., Öfner, D., Maier, H., Sopper, S., Prado-Garcia, H., Romero-Garcia, S., Sandoval-Martínez, R., Puerto-Aquino, A., Lopez-Gonzalez, J., Rumbo-Nava, U., Van Hoylandt, A., Busschaert, P., Vergote, I., Laengle, J., Pilatova, K., Budinska, E., Bencsikova, B., Sefr, R., Nenutil, R., Brychtova, V., Fedorova, L., Hanakova, B., Zdrazilova-Dubska, L., Allen, Chris, Ku, Yuan-Chieh, Tom, Warren, Sun, Yongming, Pankov, Alex, Looney, Tim, Hyland, Fiona, Au-Young, Janice, Mongan, Ann, Becker, A., Tan, J. B. L., Chen, A., Lawson, K., Lindsey, E., Powers, J. P., Walters, M., Schindler, U., Young, S., Jaen, J. C., Yin, S., Chen, Y., Gullo, I., Gonçalves, G., Pinto, M. L., Athelogou, M., Almeida, G., Huss, R., Oliveira, C., Carneiro, F., Merz, C., Sykora, J., Hermann, K., Hussong, R., Richards, D. M., Fricke, H., Hill, O., Gieffers, C., Pinho, M. P., Barbuto, J. A. M., McArdle, S. E., Foulds, G., Vadakekolathu, J. N., Abdel-Fatah, T. M. A., Johnson, C., Hood, S., Moseley, P., Rees, R. C., Chan, S. Y. T., Pockley, A. G., Rutella, S., Geppert, C., Hartmann, A., Kumar, K. Senthil, Gokilavani, M., Wang, S., Redondo-Müller, M., Heinonen, K., Marschall, V., Thiemann, M., Zhang, L., Mao, B., Jin, Y., Zhai, G., Li, Z., Wang, Z., An, X., Qiao, M., Zhang, J., Weber, J., Kluger, H., Halaban, R., Sznol, M., Roder, H., Roder, J., Grigorieva, J., Asmellash, S., Meyer, K., Steingrimsson, A., Blackmon, S., Sullivan, R., Sutanto, W., Guenther, T., Schuster, F., Salih, H., Babor, F., Borkhardt, A., Kim, Y., Oh, I., Park, C., Ahn, S., Na, K., Song, S., Choi, Y., Poprach, A., Lakomy, R., Selingerova, I., Demlova, R., Kozakova, S., Valik, D., Petrakova, K., Vyzula, R., Aguilar-Cazares, D., Galicia-Velasco, M., Camacho-Mendoza, C., Islas-Vazquez, L., Chavez-Dominguez, R., Gonzalez-Gonzalez, C., Lopez-Gonzalez, J. S., Yang, S., Moynihan, K. D., Noh, M., Bekdemir, A., Stellacci, F., Irvine, D. J., Volz, B., Kapp, K., Oswald, D., Wittig, B., Schmidt, M., Kleef, R., Bohdjalian, A., McKee, D., Moss, R. W., Saeed, Mesha, Zalba, Sara, Debets, Reno, ten Hagen, Timo L. M., Javed, S., Becher, J., Koch-Nolte, F., Haag, F., Gordon, E. M., Sankhala, K. K., Stumpf, N., Tseng, W., Chawla, S. P., Suárez, N. González, Báez, G. Bergado, Rodríguez, M. Cruz, Pérez, A. Gutierrez, García, L. Chao, Fernández, D. Hernández, Pous, J. Raymond, Ramírez, B. Sánchez, Jacoberger-Foissac, C., Saliba, H., Seguin, C., Brion, A., Frisch, B., Fournel, S., Heurtault, B., Otterhaug, T., Håkerud, M., Nedberg, A., Edwards, V., Selbo, P., Høgset, A., Jaitly, T., Dörrie, J., Schaft, N., Gross, S., Schuler-Thurner, B., Gupta, S., Taher, L., Schuler, G., Vera, J., Rataj, F., Kraus, F., Grassmann, S., Chaloupka, M., Lesch, S., Heise, C., Cadilha, B. M. Loureiro, and Dorman, K.
- Subjects
Meeting Abstracts - Full Text
- View/download PDF
4. Erythrocytes of uranium miners: the activity of the pentose phosphate pathway
- Author
-
Vich, Z., primary, Novosad, F., additional, and Brychtova, V., additional
- Published
- 1970
- Full Text
- View/download PDF
5. ERYTHROCYTES OF URANIUM MINERS: THE ACTIVITY OF THE PENTOSE PHOSPHATE PATHWAY.
- Author
-
Brychtova, V
- Published
- 1970
- Full Text
- View/download PDF
6. Keratin 36, a specific marker of tongue filiform papillae, is downregulated in squamous cell carcinoma of the mobile tongue.
- Author
-
Brychtova V, Coates PJ, Hrabal V, Boldrup L, Fabian P, Vojtesek B, Sgaramella N, and Nylander K
- Abstract
Human keratin 36 (K36) is a member of the hair keratin family and is a marker of hair cortex differentiation. The human KRT36 gene is located on the long arm of chromosome 17 and belongs to the cluster of structurally unrelated acidic hair keratins. Recently, it has been reported that KRT36 mRNA is specifically expressed in normal tongue epithelium and downregulated in squamous cell carcinomas of the mobile tongue. Furthermore, KRT36 levels have been reported to be downregulated in clinically normal mobile tongue tissue that is adjacent to tumours, suggesting it could be a marker of pre-neoplastic changes. However, the exact role and the potential role of K36 in tongue tumour formation remains unclear. The aim of the present study was to investigate expression of K36 in a series of squamous cell carcinomas of the mobile tongue, normal mobile tongue and a small panel of other human tissues (normal tissue from the appendix, cervix, hair, lip, mamilla, nail, oesophagus, skin, thymus and vagina) and selected cancer tissue (cervical cancer, melanoma and basal cell carcinoma). Affinity purified polyclonal antibodies against K36 were generated and used for immunohistochemical analysis. The results revealed that in the normal tongue, K36 was detected specifically in the filiform papillae of the dorsal surface of the tongue. Additionally, none of the tongue cancer tissue samples were K36-positive. Immunostaining also revealed that K36 was expressed in nail beds, Hassal's corpuscles in the thymus and the hair cortex. However, K36 was not expressed in the squamous epithelia of the skin, cervix and oesophagus, and the squamous cells of cervical carcinomas, basal cell carcinoma or melanoma. The present data indicated that K36 may be inactivated in tumours of the tongue. However, whether this is part of the tumoural process or if it is an effect of the tumour itself remains to be elucidated., (Copyright: © Brychtova et al.)
- Published
- 2020
- Full Text
- View/download PDF
7. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage.
- Author
-
Muller P, Coates PJ, Nenutil R, Trcka F, Hrstka R, Chovanec J, Brychtova V, and Vojtesek B
- Subjects
- Adult, Aged, Aged, 80 and over, Biomarkers, Tumor genetics, Disease Progression, Female, Humans, Immunohistochemistry, Middle Aged, Mitochondrial Precursor Protein Import Complex Proteins, Mutation, Neoplasm Staging, Prognosis, Tumor Suppressor Protein p53 genetics, Biomarkers, Tumor metabolism, Carcinoma, Ovarian Epithelial metabolism, Carcinoma, Ovarian Epithelial pathology, Mitochondrial Membrane Transport Proteins metabolism, Ovarian Neoplasms metabolism, Ovarian Neoplasms pathology
- Abstract
Background: Increased activity of the chaperones Hsp70 and Hsp90 is a common feature of solid tumours. Translocase of the outer mitochondrial membrane 34 (Tomm34) is a cochaperone of both Hsp70 and Hsp90 that was found to be overexpressed in colorectal, hepatocellular, lung and breast carcinomas. The expression profile of Tomm34 in ovarian cancer has not been investigated. Therefore, the aim of the current study was to investigate the expression pattern of Tomm34 in ovarian carcinomas and analyse its correlation with clinico-pathological parameters., Results: Epithelial ovarian cancers (140) were histologically classified based on their morphology and graded into two types comprising 5 histologic subgroups. Type I carcinomas comprise low grade serous (LGSC), clear cell (CCOC) and endometrioid (ENOC), type II comprises high grade serous carcinomas (HGSC) and solid, pseudoendometrioid, transitional carcinomas (SET). Tomm34 was more highly expressed in type II than type I carcinomas (p < 0.0001). Comparing tumours based on the mutation in the TP53 gene revealed similar results, where mutant tumours exhibited significantly higher levels of Tomm34 (p < 0.0001). The decreased levels of Tomm34 in type I carcinomas were particularly evident in clear cell and mucinous carcinomas. The expression of Tomm34 was also positively correlated with FIGO stage (r = 0.23; p = 0.007). Tomm34 levels also indicated poor prognosis for patients with mutant p53., Conclusions: Our data indicate that Tomm34 is commonly expressed at high levels in epithelial ovarian cancers, except for the clear cell and mucinous subtypes. The expression of Tomm34 corresponds with the dualistic model of ovarian cancer pathogenesis where high grade, type II tumours exhibit higher expression of Tomm34 in contrast to type I tumours. These data are also comparable to the previous findings that Tomm34 is a marker of progression and poor prognosis in human cancer.
- Published
- 2019
- Full Text
- View/download PDF
8. Mechanisms of anterior gradient-2 regulation and function in cancer.
- Author
-
Brychtova V, Mohtar A, Vojtesek B, and Hupp TR
- Subjects
- Amino Acid Motifs, Animals, Asthma metabolism, Cell Survival, Endoplasmic Reticulum metabolism, Humans, Inflammation, Mice, Mucoproteins, Oncogene Proteins, Protein Binding, Protein Disulfide-Isomerases metabolism, Protein Folding, Protein Processing, Post-Translational, Protein Structure, Tertiary, Two-Hybrid System Techniques, Gene Expression Regulation, Neoplastic, Neoplasms genetics, Neoplasms metabolism, Proteins metabolism
- Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
9. Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients.
- Author
-
Obacz J, Brychtova V, Podhorec J, Fabian P, Dobes P, Vojtesek B, and Hrstka R
- Abstract
Anterior gradient protein (AGR) 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumorigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001) as well as low histological grade (P=0.003), and inversely correlated with the level of Ki-67 expression (P<0.0001). In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS), whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients.
- Published
- 2015
- Full Text
- View/download PDF
10. Discovery of a novel ligand that modulates the protein-protein interactions of the AAA+ superfamily oncoprotein reptin.
- Author
-
Healy AR, Houston DR, Remnant L, Huart AS, Brychtova V, Maslon MM, Meers O, Muller P, Krejci A, Blackburn EA, Vojtesek B, Hernychova L, Walkinshaw MD, Westwood NJ, and Hupp TR
- Abstract
Developing approaches to discover protein-protein interactions (PPIs) remains a fundamental challenge. A chemical biology platform is applied here to identify novel PPIs for the AAA+ superfamily oncoprotein reptin. An in silico screen coupled with chemical optimization provided Liddean, a nucleotide-mimetic which modulates reptin's oligomerization status, protein-binding activity and global conformation. Combinatorial peptide phage library screening of Liddean-bound reptin with next generation sequencing identified interaction motifs including a novel reptin docking site on the p53 tumor suppressor protein. Proximity ligation assays demonstrated that endogenous reptin forms a predominantly cytoplasmic complex with its paralog pontin in cancer cells and Liddean promotes a shift of this complex to the nucleus. An emerging view of PPIs in higher eukaryotes is that they occur through a striking diversity of linear peptide motifs. The discovery of a compound that alters reptin's protein interaction landscape potentially leads to novel avenues for therapeutic development.
- Published
- 2015
- Full Text
- View/download PDF
11. The role of AGR2 and AGR3 in cancer: similar but not identical.
- Author
-
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, and Hrstka R
- Subjects
- Cell Differentiation, Cell Movement, Cell Proliferation, Computer Simulation, Humans, Mucoproteins, Neoplasm Invasiveness, Oncogene Proteins, Carrier Proteins metabolism, Neoplasm Proteins metabolism, Neoplasms metabolism, Neoplasms pathology, Proteins metabolism
- Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function., (Copyright © 2015 Elsevier GmbH. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
12. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma.
- Author
-
Brychtova V, Zampachova V, Hrstka R, Fabian P, Novak J, Hermanova M, and Vojtesek B
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Bile Duct Neoplasms, Bile Ducts, Intrahepatic metabolism, Bile Ducts, Intrahepatic pathology, Biomarkers, Tumor genetics, Biomarkers, Tumor metabolism, Carcinoma, Hepatocellular diagnosis, Carrier Proteins genetics, Cholangiocarcinoma diagnosis, Diagnosis, Differential, Female, Genetic Markers, Glypicans genetics, Glypicans metabolism, Humans, Liver Neoplasms diagnosis, Male, Middle Aged, Neoplasm Proteins genetics, Young Adult, Carcinoma, Hepatocellular genetics, Carrier Proteins metabolism, Cholangiocarcinoma genetics, Liver Neoplasms genetics, Neoplasm Proteins metabolism
- Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer next to hepatocellular carcinoma (HCC). Despite the significant difference of the therapeutic strategy for both diseases, their histological appearance may be very similar. Thus the correct diagnosis is crucial for treatment choice but is often difficult to achieve. The aim of our study was to evaluate anterior gradient 3 (AGR3) as a new diagnostic marker helping to distinguish between ICC and HCC. AGR3 is a putative transmembrane protein implicated in breast, prostate and ovary tumorigenesis and belongs to the family of protein disulfide isomerases. Since there is little information on how AGR3 is expressed in normal and diseased tissues and what its exact function is, we analyzed its expression pattern in normal liver and tumor tissue of ICC and HCC. The immunohistochemical analysis in normal tissue revealed specific AGR3 expression in intrahepatic bile duct cholangiocytes which was not present in liver hepatocytes. Consequently we analyzed AGR3 expression in 74 representative samples of puncture biopsies, tissue excisions and resection specimens from which 48 samples were diagnosed as HCC and 26 as ICC. Our results showed AGR3 expression negative and weakly positive respectively in hepatocellular carcinomas compared to stronger AGR3 positivity in cholangiocellular carcinomas. AGR3 expression statistically significantly correlated to acid mucopolysaccharide expression and negatively correlated to glypican-3 expression. We conclude that according to receiver operating characteristics (ROC) analysis AGR3 expression is relatively specific for ICC and is potentially linked to mucosecretion, which may indicate potential implication in treatment resistance., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
13. Anterior gradient 2 and mucin 4 expression mirrors tumor cell differentiation in pancreatic adenocarcinomas, but aberrant anterior gradient 2 expression predicts worse patient outcome in poorly differentiated tumors.
- Author
-
Brychtova V, Hermanova M, Karasek P, Lenz J, Selingerova I, Vojtesek B, Kala Z, and Hrstka R
- Subjects
- Adenocarcinoma pathology, Adenocarcinoma surgery, Adult, Aged, Aged, 80 and over, Carcinoma, Pancreatic Ductal pathology, Carcinoma, Pancreatic Ductal surgery, Cohort Studies, Female, Humans, Immunohistochemistry, Kaplan-Meier Estimate, Male, Middle Aged, Mucin-4 metabolism, Mucoproteins, Oncogene Proteins, Outcome Assessment, Health Care statistics & numerical data, Pancreatectomy, Pancreatic Neoplasms pathology, Pancreatic Neoplasms surgery, Predictive Value of Tests, Prognosis, Proportional Hazards Models, Adenocarcinoma metabolism, Carcinoma, Pancreatic Ductal metabolism, Pancreatic Neoplasms metabolism, Proteins metabolism
- Abstract
Objectives: This study aimed to determine anterior gradient 2 (AGR2) expression in biopsies from pancreatic ductal adenocarcinomas (PDACs) and to evaluate AGR2 as a potential independent prognostic factor., Methods: Tissue sample sections from a cohort of 135 consecutive surgically resectable PDACs were subjected to semiquantitative immunohistochemical analysis of AGR2 and mucin 4 (MUC4) expression., Results: Anterior gradient 2 was over-expressed in PDAC compared with normal ductal cells. Since tumor lesions of PDAC are heterogeneous and constitute structures with various differentiation states, expression of both AGR2 and MUC4 was evaluated in each separate component. Expression levels of both proteins reflected the degree of tumor differentiation. Generally, well differentiated regions of tumor lesions expressed high levels of both proteins, moderately differentiated regions showed less AGR2 and MUC4, and poorly differentiated structures showed only weak positivity or were entirely negative. Of particular interest were occasional cases of strong AGR2 expression in high-grade tumors, where elevated protein levels were associated with shorter patient survival., Conclusions: Anterior gradient 2 and MUC4 reflect the level of differentiation of PDACs. However, in less differentiated tumors, aberrantly elevated AGR2 expression predicts poor patient outcome.
- Published
- 2014
- Full Text
- View/download PDF
14. Identification of an AKT-dependent signalling pathway that mediates tamoxifen-dependent induction of the pro-metastatic protein anterior gradient-2.
- Author
-
Hrstka R, Murray E, Brychtova V, Fabian P, Hupp TR, and Vojtesek B
- Subjects
- 3-Phosphoinositide-Dependent Protein Kinases, Antineoplastic Agents, Hormonal pharmacology, Base Sequence, Breast Neoplasms pathology, Cell Line, Tumor, Female, Humans, MicroRNAs, Molecular Sequence Data, Mucoproteins, Oncogene Proteins, Protein Serine-Threonine Kinases metabolism, Proteins genetics, Ribonucleosides pharmacology, Serine metabolism, Signal Transduction drug effects, Tamoxifen pharmacology, Breast Neoplasms drug therapy, Breast Neoplasms metabolism, Proteins metabolism, Proto-Oncogene Proteins c-akt metabolism
- Abstract
The pro-metastatic protein anterior gradient-2 (AGR2) was previously demonstrated as a predictive factor of poor response to tamoxifen treatment. In this study we aimed to delineate the key signalling pathway that may contribute to regulation of AGR2 protein induction in order to identify novel targets to overcome tamoxifen resistance in tumour cells. Together, our data identify PDPK1-AKT as a pro-oncogenic signalling pathway that triggers AGR2 protein induction in response to tamoxifen and suggest that AKT inhibitors could be used as part of a therapeutic strategy to treat tamoxifen resistant, AGR2 over-expressing cancers., (Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
15. AGR2 predicts tamoxifen resistance in postmenopausal breast cancer patients.
- Author
-
Hrstka R, Brychtova V, Fabian P, Vojtesek B, and Svoboda M
- Subjects
- Aged, Aged, 80 and over, Biomarkers, Tumor genetics, Breast Neoplasms diagnosis, Breast Neoplasms genetics, Breast Neoplasms metabolism, Carcinoma diagnosis, Carcinoma genetics, Carcinoma metabolism, Case-Control Studies, Female, Gene Expression Regulation, Neoplastic, Humans, Middle Aged, Mucoproteins, Oncogene Proteins, Postmenopause metabolism, Proteins genetics, RNA, Messenger genetics, RNA, Messenger metabolism, Treatment Outcome, Antineoplastic Agents, Hormonal therapeutic use, Biomarkers, Tumor metabolism, Breast Neoplasms drug therapy, Carcinoma drug therapy, Drug Resistance, Neoplasm genetics, Proteins metabolism, Tamoxifen therapeutic use
- Abstract
Endocrine resistance is a significant problem in breast cancer treatment. Thus identification and validation of novel resistance determinants is important to improve treatment efficacy and patient outcome. In our work, AGR2 expression was determined by qRT-PCR in Tru-Cut needle biopsies from tamoxifen-treated postmenopausal breast cancer patients. Our results showed inversed association of AGR2 mRNA levels with primary treatment response (P = 0.0011) and progression-free survival (P = 0.0366) in 61 ER-positive breast carcinomas. As shown by our experimental and clinical evaluations, elevated AGR2 expression predicts decreased efficacy of tamoxifen treatment. From this perspective, AGR2 is a potential predictive biomarker enabling selection of an optimal algorithm for adjuvant hormonal therapy in postmenopausal ER-positive breast cancer patients.
- Published
- 2013
- Full Text
- View/download PDF
16. Anterior gradient 2: a novel player in tumor cell biology.
- Author
-
Brychtova V, Vojtesek B, and Hrstka R
- Subjects
- Biomarkers, Tumor metabolism, Cell Transformation, Neoplastic metabolism, Humans, Mucoproteins, Oncogene Proteins, Prognosis, Neoplasms metabolism, Proteins physiology
- Abstract
AGR2 has evolutionarily conserved roles in development and tissue regeneration and is linked with several human cancers. The exact functions and regulation of AGR2 are poorly understood, but current data identify AGR2 as a clinically relevant factor that modulates the behavior and response of hormone-dependent cancers (breast, prostate) and hormone-independent cancers (colorectal, pancreatic, esophageal and other common cancers). AGR2 protein expression induces metastasis, acts as a p53 tumor suppressor inhibitor and survival factor, participates directly in neoplastic transformation and is involved in drug resistance. Thus, AGR2 is an important tumor biomarker and negative prognostic factor potentially exploitable in clinical practice., (Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
17. Changes of some properties of erythrocytes in workers occupationally exposed to radon and its daughter products: radiation effect or heavy metal poisoning?
- Author
-
Vich Z, Brychtova V, Prochazka J, and Safandova M
- Subjects
- Erythrocytes drug effects, Humans, Male, Metals toxicity, Occupational Diseases, Pentosephosphates metabolism, Radon, Erythrocytes radiation effects, Radiation Effects, Uranium
- Published
- 1973
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.