1. A kinetic approach of the bi-temperature Euler model
- Author
-
Stéphane Brull, Bruno Dubroca, Corentin Prigent, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Composites Thermostructuraux (LCTS), Centre National de la Recherche Scientifique (CNRS)-Snecma-SAFRAN group-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre d'Etudes Lasers Intenses et Applications (CELIA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Snecma-SAFRAN group-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Kinetic scheme ,010103 numerical & computational mathematics ,01 natural sciences ,Stability (probability) ,symbols.namesake ,asympotic preserving scheme ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Scaling ,Mathematics ,Numerical Analysis ,plasma physics ,Numerical analysis ,Mathematical analysis ,Order (ring theory) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,nonconservative hyperbolic system ,Euler equations ,010101 applied mathematics ,Modeling and Simulation ,symbols ,Euler's formula ,Bgk model ,kinetic scheme ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We are interested in the numerical approximation of the bi-temperature Euler equations, which is a non conservative hyperbolic system introduced in [ 4 ]. We consider a conservative underlying kinetic model, the Vlasov-BGK-Poisson system. We perform a scaling on this system in order to obtain its hydrodynamic limit. We present a deterministic numerical method to approximate this kinetic system. The method is shown to be Asymptotic-Preserving in the hydrodynamic limit, which means that any stability condition of the method is independant of any parameter \begin{document}$ \varepsilon $\end{document} , with \begin{document}$ \varepsilon \rightarrow 0 $\end{document} . We prove that the method is, under appropriate choices, consistant with the solution for bi-temperature Euler. Finally, our method is compared to methods for the fluid model (HLL, Suliciu).
- Published
- 2020