20 results on '"Brown JKM"'
Search Results
2. Multiple routes to fungicide resistance: Interaction of Cyp51 gene sequences, copy number and expression.
- Author
-
Arnold CJ, Meyers Hahn EA, Whetten R, Chartrain L, Cheema J, Brown JKM, and Cowger C
- Subjects
- Fungal Proteins genetics, Fungal Proteins metabolism, Triazoles pharmacology, Plant Diseases microbiology, Triticum microbiology, Triticum genetics, Gene Expression Regulation, Fungal drug effects, Cytochrome P-450 Enzyme System genetics, Cytochrome P-450 Enzyme System metabolism, Sterol 14-Demethylase genetics, Sterol 14-Demethylase metabolism, Drug Resistance, Fungal genetics, Ascomycota drug effects, Ascomycota genetics, Fungicides, Industrial pharmacology, Gene Dosage
- Abstract
We examined the molecular basis of triazole resistance in Blumeria graminis f. sp. tritici (wheat mildew, Bgt), a model organism among powdery mildews. Four genetic models for responses to triazole fungicides were identified among US and UK isolates, involving multiple genetic mechanisms. Firstly, only two amino acid substitutions in CYP51B lanosterol demethylase, the target of triazoles, were associated with resistance, Y136F and S509T (homologous to Y137F and S524T in the reference fungus Zymoseptoria tritici). As sequence variation did not explain the wide range of resistance, we also investigated Cyp51B copy number and expression, the latter using both reverse transcription-quantitative PCR and RNA-seq. The second model for resistance involved higher copy number and expression in isolates with a resistance allele; thirdly, however, moderate resistance was associated with higher copy number of wild-type Cyp51B in some US isolates. A fourth mechanism was heteroallelism with multiple alleles of Cyp51B. UK isolates, with significantly higher mean resistance than their US counterparts, had higher mean copy number, a high frequency of the S509T substitution, which was absent from the United States, and in the most resistant isolates, heteroallelism involving both sensitivity residues Y136+S509 and resistance residues F136+T509. Some US isolates were heteroallelic for Y136+S509 and F136+S509, but this was not associated with higher resistance. The obligate biotrophy of Bgt may constrain the tertiary structure and thus the sequence of CYP51B, so other variation that increases resistance may have a selective advantage. We describe a process by which heteroallelism may be adaptive when Bgt is intermittently exposed to triazoles., (© 2024 The Author(s). Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
- Published
- 2024
- Full Text
- View/download PDF
3. An optimised CRISPR Cas9 and Cas12a mutagenesis toolkit for Barley and Wheat.
- Author
-
Lawrenson T, Clarke M, Kirby R, Forner M, Steuernagel B, Brown JKM, and Harwood W
- Abstract
Background: CRISPR Cas9 and Cas12a are the two most frequently used programmable nucleases reported in plant systems. There is now a wide range of component parts for both which likely have varying degrees of effectiveness and potentially applicability to different species. Our aim was to develop and optimise Cas9 and Cas12a based systems for highly efficient genome editing in the monocotyledons barley and wheat and produce a user-friendly toolbox facilitating simplex and multiplex editing in the cereal community., Results: We identified a Zea mays codon optimised Cas9 with 13 introns in conjunction with arrayed guides driven by U6 and U3 promoters as the best performer in barley where 100% of T0 plants were simultaneously edited in all three target genes. When this system was used in wheat > 90% of T0 plants were edited in all three subgenome targets. For Cas12a, an Arabidopsis codon optimised sequence with 8 introns gave the best editing efficiency in barley when combined with a tRNA based multiguide array, resulting in 90% mutant alleles in three simultaneously targeted genes. When we applied this Cas12a system in wheat 86% & 93% of T0 plants were mutated in two genes simultaneously targeted. We show that not all introns contribute equally to enhanced mutagenesis when inserted into a Cas12a coding sequence and that there is rationale for including multiple introns. We also show that the combined effect of two features which boost Cas12a mutagenesis efficiency (D156R mutation and introns) is more than the sum of the features applied separately., Conclusion: Based on the results of our testing, we describe and provide a GoldenGate modular cloning system for Cas9 and Cas12a use in barley and wheat. Proven Cas nuclease and guide expression cassette options found in the toolkit will facilitate highly efficient simplex and multiplex mutagenesis in both species. We incorporate GRF-GIF transformation boosting cassettes in wheat options to maximise workflow efficiency., (© 2024. Crown.)
- Published
- 2024
- Full Text
- View/download PDF
4. Harnessing landrace diversity empowers wheat breeding.
- Author
-
Cheng S, Feng C, Wingen LU, Cheng H, Riche AB, Jiang M, Leverington-Waite M, Huang Z, Collier S, Orford S, Wang X, Awal R, Barker G, O'Hara T, Lister C, Siluveru A, Quiroz-Chávez J, Ramírez-González RH, Bryant R, Berry S, Bansal U, Bariana HS, Bennett MJ, Bicego B, Bilham L, Brown JKM, Burridge A, Burt C, Buurman M, Castle M, Chartrain L, Chen B, Denbel W, Elkot AF, Fenwick P, Feuerhelm D, Foulkes J, Gaju O, Gauley A, Gaurav K, Hafeez AN, Han R, Horler R, Hou J, Iqbal MS, Kerton M, Kondic-Spica A, Kowalski A, Lage J, Li X, Liu H, Liu S, Lovegrove A, Ma L, Mumford C, Parmar S, Philp C, Playford D, Przewieslik-Allen AM, Sarfraz Z, Schafer D, Shewry PR, Shi Y, Slafer GA, Song B, Song B, Steele D, Steuernagel B, Tailby P, Tyrrell S, Waheed A, Wamalwa MN, Wang X, Wei Y, Winfield M, Wu S, Wu Y, Wulff BBH, Xian W, Xu Y, Xu Y, Yuan Q, Zhang X, Edwards KJ, Dixon L, Nicholson P, Chayut N, Hawkesford MJ, Uauy C, Sanders D, Huang S, and Griffiths S
- Subjects
- Alleles, Genetic Introgression, Genome, Plant genetics, Haplotypes genetics, Linkage Disequilibrium genetics, Quantitative Trait Loci genetics, Whole Genome Sequencing, Phylogeny, Genetic Association Studies, Food Security, Crops, Agricultural genetics, Genetic Variation genetics, Phenotype, Plant Breeding methods, Triticum classification, Triticum genetics, Biodiversity
- Abstract
Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security
1 . Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion.
- Author
-
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, and Malone JG
- Subjects
- Soil Microbiology, Plant Exudates metabolism, Hordeum microbiology, Hordeum genetics, Hordeum metabolism, Plant Roots microbiology, Plant Roots metabolism, Rhizosphere, Genotype, Microbiota physiology, Microbiota genetics, Pseudomonas genetics, Pseudomonas metabolism, Pseudomonas physiology
- Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Pacheco-Moreno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
6. Classification of wheat diseases using deep learning networks with field and glasshouse images.
- Author
-
Long M, Hartley M, Morris RJ, and Brown JKM
- Abstract
Crop diseases can cause major yield losses, so the ability to detect and identify them in their early stages is important for disease control. Deep learning methods have shown promise in classifying multiple diseases; however, many studies do not use datasets that represent real field conditions, necessitating either further image processing or reducing their applicability. In this paper, we present a dataset of wheat images taken in real growth situations, including both field and glasshouse conditions, with five categories: healthy plants and four foliar diseases, yellow rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep learning model. The resulting model, named CerealConv, reached a 97.05% classification accuracy. When tested against trained pathologists on a subset of images from the larger dataset, the model delivered an accuracy score 2% higher than the best-performing pathologist. Image masks were used to show that the model was using the correct information to drive its classifications. These results show that deep learning networks are a viable tool for disease detection and classification in the field, and disease quantification is a logical next step., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (© 2022 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology.)
- Published
- 2023
- Full Text
- View/download PDF
7. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat.
- Author
-
Polturak G, Dippe M, Stephenson MJ, Chandra Misra R, Owen C, Ramirez-Gonzalez RH, Haidoulis JF, Schoonbeek HJ, Chartrain L, Borrill P, Nelson DR, Brown JKM, Nicholson P, Uauy C, and Osbourn A
- Subjects
- Bread, Disease Resistance genetics, Multigene Family genetics, Biosynthetic Pathways genetics, Host-Pathogen Interactions, Plant Diseases immunology, Plant Diseases microbiology, Triticum genetics, Triticum metabolism, Triticum microbiology
- Abstract
Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds—namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.
- Published
- 2022
- Full Text
- View/download PDF
8. Diversifying the menu for crop powdery mildew resistance.
- Author
-
Brown JKM and Wulff BBH
- Subjects
- Plant Proteins genetics, Ascomycota genetics, Plant Diseases genetics, Plant Diseases microbiology
- Abstract
Powdery mildew, a potentially severe crop disease, can be controlled by mlo mutations, which suppress fungal proliferation but typically also reduce yield. Li et al. (2022) demonstrate that productivity can be restored by overexpressing a host sugar transporter, thus offering a new option for economically and environmentally benign disease control., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
9. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa.
- Author
-
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, and Malone JG
- Subjects
- Bacterial Infections genetics, Bacterial Infections microbiology, Biosynthetic Pathways genetics, Glucans biosynthesis, Host-Pathogen Interactions genetics, Humans, Magnetic Resonance Spectroscopy, Osmotic Pressure physiology, Pseudomonas aeruginosa pathogenicity, Glucans genetics, Pseudomonas aeruginosa genetics, Stress, Physiological genetics, Trehalose genetics
- Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
10. Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment.
- Author
-
Latz MAC, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown JKM, Madsen AM, and Jørgensen HJL
- Subjects
- Endophytes, Fungi, Genotype, Plant Roots, Triticum genetics, Microbiota, Mycobiome
- Abstract
Fungi living inside plants affect many aspects of plant health, but little is known about how plant genotype influences the fungal endophytic microbiome. However, a deeper understanding of interactions between plant genotype and biotic and abiotic environment in shaping the plant microbiome is of significance for modern agriculture, with implications for disease management, breeding and the development of biocontrol agents. For this purpose, we analysed the fungal wheat microbiome from seed to plant to seeds and studied how different potential sources of inoculum contributed to shaping of the microbiome. We conducted a large-scale pot experiment with related wheat cultivars over one growth-season in two environments (indoors and outdoors) to disentangle the effects of host genotype, abiotic environment (temperature, humidity, precipitation) and fungi present in the seed stock, air and soil on the succession of the endophytic fungal communities in roots, flag leaves and seeds at harvest. The communities were studied with ITS1 metabarcoding and environmental climate factors were monitored during the experimental period. Host genotype, tissue type and abiotic factors influenced fungal communities significantly. The effect of host genotype was mostly limited to leaves and roots, and was location-independent. While there was a clear effect of plant genotype, the relatedness between cultivars was not reflected in the microbiome. For the phyllosphere microbiome, location-dependent weather conditions factors largely explained differences in abundance, diversity, and presence of genera containing pathogens, whereas the root communities were less affected by abiotic factors. Our findings suggest that airborne fungi are the primary inoculum source for fungal communities in aerial plant parts whereas vertical transmission is likely to be insignificant. In summary, our study demonstrates that host genotype, environment and presence of fungi in the environment shape the endophytic fungal community in wheat over a growing season., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
11. Naturally occurring circadian rhythm variation associated with clock gene loci in Swedish Arabidopsis accessions.
- Author
-
Rees H, Joynson R, Brown JKM, and Hall A
- Subjects
- Arabidopsis Proteins genetics, Genetic Variation genetics, Genome-Wide Association Study, Geography, Polymorphism, Single Nucleotide genetics, Repressor Proteins genetics, Sweden, Arabidopsis genetics, Circadian Rhythm genetics, Genes, Plant genetics, Genetic Loci genetics
- Abstract
Circadian clocks have evolved to resonate with external day and night cycles. However, these entrainment signals are not consistent everywhere and vary with latitude, climate and seasonality. This leads to divergent selection for clocks which are locally adapted. To investigate the genetic basis for this circadian variation, we used a delayed fluorescence imaging assay to screen 191 naturally occurring Swedish Arabidopsis accessions for their circadian phenotypes. We demonstrate that the period length co-varies with both geography and population sub-structure. Several candidate loci linked to period, phase and relative amplitude error (RAE) were revealed by genome-wide association mapping and candidate genes were investigated using TDNA mutants. We show that natural variation in a single non-synonymous substitution within COR28 is associated with a long-period and late-flowering phenotype similar to that seen in TDNA knock-out mutants. COR28 is a known coordinator of flowering time, freezing tolerance and the circadian clock; all of which may form selective pressure gradients across Sweden. We demonstrate the effect of the COR28-58S SNP in increasing period length through a co-segregation analysis. Finally, we show that period phenotypic tails remain diverged under lower temperatures and follow a distinctive "arrow-shaped" trend indicative of selection for a cold-biased temperature compensation response., (© 2020 Earlham Institute. Plant, Cell & Environment published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
12. Role of Effector-Sensitivity Gene Interactions and Durability of Quantitative Resistance to Septoria Nodorum Blotch in Eastern U.S. Wheat.
- Author
-
Cowger C, Ward B, Brown-Guedira G, and Brown JKM
- Abstract
Important advances have been made in understanding the relationship of necrotrophic effectors ( NE ) and host sensitivity ( Snn ) genes in the Parastagonospora nodorum -wheat pathosystem. Yet much remains to be learned about the role of these interactions in determining wheat resistance levels in the field, and there is mixed evidence on whether breeding programs have selected against Snn genes due to their role in conferring susceptibility. SNB occurs ubiquitously in the U.S. Atlantic seaboard, and the environment is especially well suited to field studies of resistance to natural P. nodorum populations, as there are no other important wheat leaf blights. Insights into the nature of SNB resistance have been gleaned from multi-year data on phenotypes and markers in cultivars representative of the region's germplasm. In this perspective article, we review the evidence that in this eastern region of the U.S., wheat cultivars have durable quantitative SNB resistance and Snn- NE interactions are of limited importance. This conclusion is discussed in light of the relevant available information from other parts of the world., (Copyright © 2020 Cowger, Ward, Brown-Guedira and Brown.)
- Published
- 2020
- Full Text
- View/download PDF
13. Improving plant transient expression through the rational design of synthetic 5' and 3' untranslated regions.
- Author
-
Peyret H, Brown JKM, and Lomonossoff GP
- Abstract
Background: The growing field of plant molecular farming relies on expression vectors that allow high yields of recombinant proteins to be produced through transient gene expression. While numerous expression vectors currently exist for this purpose, there are very few examples of systematic efforts to improve upon these. Moreover, the current generation of expression systems makes use of naturally-occurring regulatory elements, typically selected from plant viruses, to maximise yields. This study aims to use rational design to generate synthetic sequences that can rival existing ones., Results: In this work, we present the rational design of novel synthetic 5' and 3' untranslated regions (UTRs) which can be used in various combinations to modulate accumulation levels of transiently-expressed recombinant proteins. Using the pEAQ- HT expression vector as a point of comparison, we show that pre-existing expression systems can be improved by the deployment of rationally designed synthetic UTRs. Notably, we show that a suite of short, synthetic 5'UTRs behave as expression enhancers that outperform the HT 5'UTR present in the CPMV- HT expression system. Furthermore, we confirm the critical role played by the 3'UTR of cowpea mosaic virus RNA-2 in the performance of the CPMV- HT system. Finally, we use the knowledge obtained from these results to develop novel expression vectors (named pHRE and pHREAC) that equal or outperform pEAQ- HT in terms of recombinant protein yield. These new vectors are also domesticated for the use of certain Type IIS restriction enzymes, which allows for quicker cloning and straightforward assessment of different combinations of UTRs., Conclusions: We have shown that it is possible to rationally design a suite of expression modulators in the form of synthetic UTRs. We have created novel expression vectors that allow very high levels of recombinant protein expression in a transient expression context. This will have important consequences for future efforts to develop ever-better plant transient overexpression vectors for research or industrial applications., Competing Interests: Competing interestsGP.L. declares that he is a named inventor on granted patent WO 29087391 A1 that describes the CPMV-HT system used for transient expression in this paper.
- Published
- 2019
- Full Text
- View/download PDF
14. Durability of Quantitative Resistance in Crops: Greater Than We Know?
- Author
-
Cowger C and Brown JKM
- Subjects
- Adaptation, Physiological, Crops, Agricultural, Humans, Disease Resistance, Plant Diseases
- Abstract
Quantitative resistance (QR) to crop diseases has usually been much more durable than major-gene, effector-triggered resistance. It has been observed that the effectiveness of some QR has eroded as pathogens adapt to it, especially when deployment is extensive and epidemics occur regularly, but it generally declines more slowly than effector-triggered resistance. Changes in aggressiveness and specificity of diverse pathogens on cultivars with QR have been recorded, along with experimental data on fitness costs of pathogen adaptation to QR, but there is little information about molecular mechanisms of adaptation. Some QR has correlated or antagonistic effects on multiple diseases. Longitudinal data on cultivars' disease ratings in trials over several years can be used to assess the significance of QR for durable resistance in crops. It is argued that published data likely underreport the durability of QR, owing to publication bias. The implications of research on QR for plant breeding are discussed.
- Published
- 2019
- Full Text
- View/download PDF
15. Yield instability of winter oilseed rape modulated by early winter temperature.
- Author
-
Brown JKM, Beeby R, and Penfield S
- Subjects
- Seeds, United Kingdom, Agriculture, Brassica napus growth & development, Crops, Agricultural growth & development, Seasons, Temperature
- Abstract
Yield stability is a major problem in oilseed rape with inter-annual variation accounting for between 30-50% of the crop value among the major global rapeseed producers. The United Kingdom has persistent problems with yield instability, but the underlying causes remain unclear. We tested whether temperature plays a role in UK winter oilseed rape (WOSR) yield variation through analysis of aggregated country-wide on-farm yield data and in annual Recommended List variety trial data run by the UK Agriculture and Horticulture Development Board (AHDB). Our analyses of the two independent datasets both show that mean temperature in early winter is strongly and uniquely linked to variation in WOSR yield, with a rise in mean temperature of 1 °C associated with an average reduction of 113 (+-21) kg ha
-1 in yield. We propose that understanding the mechanism by which early winter chilling affects WOSR yield will enable the breeding of varieties with a more stable and resilient yield in Western Europe as climatic variation increases.- Published
- 2019
- Full Text
- View/download PDF
16. A versatile method for assessing pathogenicity of Hymenoscyphus fraxineus to ash foliage.
- Author
-
Orton ES, Clarke M, Brasier CM, Webber JF, and Brown JKM
- Abstract
We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five-point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), "pre-top dead," with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening.
- Published
- 2019
- Full Text
- View/download PDF
17. The ash dieback invasion of Europe was founded by two genetically divergent individuals.
- Author
-
McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, and Clark MD
- Subjects
- Europe, Haplotypes genetics, Ascomycota genetics, Fraxinus microbiology, Genome, Fungal, Plant Diseases microbiology
- Abstract
Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome, which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.
- Published
- 2018
- Full Text
- View/download PDF
18. The role of reactive oxygen in the development of Ramularia leaf spot disease in barley seedlings.
- Author
-
McGrann GRD and Brown JKM
- Subjects
- DNA, Fungal metabolism, DNA, Plant metabolism, Microscopy, Plant Leaves ultrastructure, Reverse Transcriptase Polymerase Chain Reaction, Ascomycota growth & development, Hordeum microbiology, Plant Diseases microbiology, Plant Leaves microbiology, Reactive Oxygen Species metabolism, Seedlings microbiology
- Abstract
Background and Aims: Ramularia collo-cygni is an ascomycete fungus that colonizes barley primarily as a benign endophyte, although this interaction can become pathogenic, causing the disease Ramularia leaf spot (RLS). Factors, particularly reactive oxygen species, that resulted in the transition of the fungus from endophyte to necrotrophic parasite and the development of disease symptoms were investigated., Methods: Disease development in artificially inoculated seedlings of barley varieties varying in partial resistance to RLS was related to exposure to abiotic stress prior to inoculation. Histochemical and molecular analysis determined the effect of R. collo-cygni colonization on accumulation of reactive oxygen species and antioxidant gene expression. Development of RLS on barley lines defective in antioxidant enzymes and with altered redox status or non-functional chloroplasts was compared with the accumulation of fungal biomass to determine how these factors affect disease symptom expression., Key Results: Exposure to abiotic stress increased symptom development in all susceptible and most partially resistant barley varieties, in association with greater hydrogen peroxide (H2O2) levels in leaves. Decreased activity of the antioxidant enzymes superoxide dismutase and catalase in transgenic and mutant plants had no effect on the disease transition, whereas manipulation of H2O2 levels during asymptomatic growth of the fungus increased disease symptoms in most susceptible varieties but not in partially resistant plants. Barley mutants that undergo rapid loss of green leaf area when infected by R. collo-cygni or albino mutants with non-functional chloroplasts showed reduced development of RLS symptoms., Conclusions: These results imply that in seedlings the pathogenic transition of the normally endophytic fungus R. collo-cygni does not result from senescence as such, but rather is promoted by factors that result in changes to host reactive oxygen species. Barley varieties vary in the extent to which these factors promote RLS disease., (© The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.)
- Published
- 2018
- Full Text
- View/download PDF
19. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus , in relation to its mode of arrival in the UK.
- Author
-
Orton ES, Brasier CM, Bilham LJ, Bansal A, Webber JF, and Brown JKM
- Abstract
The ash dieback fungus, Hymenoscyphus fraxineus , a destructive, alien pathogen of common ash ( Fraxinus excelsior ), has spread across Europe over the past 25 years and was first observed in the UK in 2012. To investigate the relationship of the pathogen's population structure to its mode of arrival, isolates were obtained from locations in England and Wales, either where established natural populations of ash had been infected by wind-dispersed ascospores or where the fungus had been introduced on imported planting stock. Population structure was determined by tests for vegetative compatibility (VC), mating type and single-nucleotide polymorphisms (SNPs). VC heterogeneity was high at all locations, with 96% of isolate pairings being incompatible. Frequencies of the MAT1-1-1 and MAT1-2-1 idiomorphs were approximately equal, consistent with H. fraxineus being an obligate outbreeder. Most SNP variation occurred within study location and there was little genetic differentiation between the two types of location in the UK, or between pathogen populations in the UK and continental Europe. There was modest differentiation between UK subpopulations, consistent with genetic variation between source populations in continental Europe. However, there was no evidence of strong founder effects, indicating that numerous individuals of H. fraxineus initiated infection at each location, regardless of the route of pathogen transmission. The ssRNA virus HfMV1 was present at moderate to high frequencies in all UK subpopulations. The results imply that management of an introduced plant pathogen requires action against its spread at the continental level involving coordinated efforts by European countries.
- Published
- 2018
- Full Text
- View/download PDF
20. Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter.
- Author
-
Menguer PK, Vincent T, Miller AJ, Brown JKM, Vincze E, Borg S, Holm PB, Sanders D, and Podar D
- Subjects
- Edible Grain genetics, Edible Grain metabolism, Endosperm genetics, Endosperm metabolism, Hordeum genetics, Hordeum metabolism, Membrane Transport Proteins genetics, Plant Proteins genetics, Membrane Transport Proteins metabolism, Plant Proteins metabolism, Zinc metabolism
- Abstract
Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm-specific D-hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP-OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn-specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP-OES in the endosperm of dissected grain. Synchrotron X-ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof-of-principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn., (©2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.