20 results on '"Brown AMV"'
Search Results
2. Experimental and natural host specificity of Loma salmonae (Microsporidia)
- Author
-
Shaw, RW, primary, Kent, ML, additional, Brown, AMV, additional, Whipps, CM, additional, and Adamson, ML, additional
- Published
- 2000
- Full Text
- View/download PDF
3. Discovery of a novel Wolbachia in Heterodera expands nematode host distribution.
- Author
-
Kaur T and Brown AMV
- Abstract
Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia , a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia . No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia- like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted w Het). Phylogenomic tree construction with PhyloBayes showed w Het was most closely related to another PPN Wolbachia, w Tex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in w Het suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Kaur and Brown.)
- Published
- 2024
- Full Text
- View/download PDF
4. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes.
- Author
-
Wang YL, Ikuma K, Brown AMV, and Deonarine A
- Subjects
- Methylation, Methylmercury Compounds metabolism, Seawater chemistry, Seawater microbiology, Bacteria genetics, Bacteria metabolism, Metagenome, Geologic Sediments chemistry, Geologic Sediments microbiology, Mercury metabolism, Water Pollutants, Chemical metabolism, Fresh Water
- Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Azithromycin resistance in Escherichia coli and Salmonella from food-producing animals and meat in Europe.
- Author
-
Ivanova M, Ovsepian A, Leekitcharoenphon P, Seyfarth AM, Mordhorst H, Otani S, Koeberl-Jelovcan S, Milanov M, Kompes G, Liapi M, Černý T, Vester CT, Perrin-Guyomard A, Hammerl JA, Grobbel M, Valkanou E, Jánosi S, Slowey R, Alba P, Carfora V, Avsejenko J, Pereckiene A, Claude D, Zerafa R, Veldman KT, Boland C, Garcia-Graells C, Wattiau P, Butaye P, Zając M, Amaro A, Clemente L, Vaduva AM, Romascu LM, Milita NM, Mojžišová A, Zdovc I, Escribano MJZ, De Frutos Escobar C, Overesch G, Teale C, Loneragan GH, Guerra B, Beloeil PA, Brown AMV, Hendriksen RS, Bortolaia V, and Kjeldgaard JS
- Subjects
- Animals, Europe, Plasmids genetics, Whole Genome Sequencing, Genotype, Escherichia coli Infections microbiology, Swine, Macrolides pharmacology, Epidemiological Monitoring, Genes, Bacterial, Azithromycin pharmacology, Anti-Bacterial Agents pharmacology, Escherichia coli drug effects, Escherichia coli genetics, Microbial Sensitivity Tests, Salmonella drug effects, Salmonella genetics, Salmonella isolation & purification, Drug Resistance, Bacterial genetics, Meat microbiology
- Abstract
Objectives: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19., Methods: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments., Results: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids., Conclusions: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales., (© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.)
- Published
- 2024
- Full Text
- View/download PDF
6. Microbiome Taxonomic and Functional Differences in C3H/HeJ Mice Fed a Long-Term High-Fat Diet with Beef Protein ± Ammonium Hydroxide Supplementation.
- Author
-
Garrison EC, Brown AMV, Salazar MM, Barr B, Moustaid-Moussa N, and Gollahon LS
- Subjects
- Animals, Female, Male, Mice, Feces microbiology, Red Meat microbiology, Dietary Proteins administration & dosage, Bacteria classification, Bacteria drug effects, Bacteria genetics, Cattle, Diet, High-Fat adverse effects, Gastrointestinal Microbiome drug effects, Dietary Supplements, Ammonium Hydroxide
- Abstract
Studies have suggested that alkalinized foods may reduce the effects of the acidogenic Western diet in promoting obesity, metabolic syndrome, type 2 diabetes, cancer, and coronary heart disease. Indeed, a recent study in mice fed a high-fat diet containing dietary beef supplemented with ammonium hydroxide showed improvement in a suite of metabolic outcomes. However, the effects of dietary protein ammonium supplementation on the microbiome remain unknown. In this study, the effects of ammonium supplementation on beef protein towards microbiome taxa and function in a high-fat diet were analyzed. Fecal microbiomes were characterized using a shotgun metagenomic approach for 16-month-old male and female mice after long-term diet treatments. The results for ammoniated diets showed that several bacteria known to be associated with health benefits increased significantly, including Romboutsia , Oscillospiraceae , and Lactococcus cremoris . The beneficial mucin-degrader Akkermansia was especially abundant, with a high prevalence (~86%) in females. Concurrently, the phyla Actinomycetota (Actinobacteria) and Bacteroidota (Bacteroidetes) were significantly reduced. While sex was a confounding factor affecting microbiome responses to ammonium supplementation in dietary protein, it is worth noting that several putatively beneficial microbiome functions increased with ammonium supplementation, such as glycine betaine transport, xenobiotic detoxification, enhanced defense, and others. Conversely, many disease-associated microbiome functions reduced. Importantly, modifying protein pH alone via ammonium supplementation induced beneficial microbiota changes. Taken together, these results suggest that ammonium-supplemented proteins may mediate some negative microbiome-associated effects of high-fat/Western diets.
- Published
- 2024
- Full Text
- View/download PDF
7. Detection and Analysis of Wolbachia in Plant-Parasitic Nematodes and Insights into Wolbachia Evolution.
- Author
-
Kaur A and Brown AMV
- Subjects
- Animals, Plants parasitology, Genomics, Metagenomics, Wolbachia genetics, Nematoda genetics
- Abstract
Since the discovery of Wolbachia in plant-parasitic nematodes (PPNs), there has been increased interest in this earliest branching clade that may hold important clues to early transitions in Wolbachia function in the Ecdysozoa. However, due to the specialized skills and equipment of nematology and the difficulty in culturing most PPNs, these PPN-type Wolbachia remain undersampled and poorly understood. To date, there are few established laboratory methods for working with PPN-type Wolbachia strains, and most research has relied on chance discovery and comparative genomics. Here, we address this challenge by providing detailed methods to assist researchers with more efficiently collecting PPNs and screen these communities, populations, or single nematodes with a newly developed PPN-type Wolbachia-specific PCR assay. We provide an overview of the typical yields and outcomes of these methods, to facilitate further targeted cultivation or experimental methods, and finally we provide a short introduction to some of the specific challenges and solutions in following through with comparative or population genomics on PPN-type Wolbachia strains., (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
8. Divergent endophytic viromes and phage genome repertoires among banana ( Musa ) species.
- Author
-
Aghdam SA, Lahowetz RM, and Brown AMV
- Abstract
Introduction: Viruses generally cause disease, but some viruses may be beneficial as resident regulators of their hosts or host microbiomes. Plant-associated viruses can help plants survive by increasing stress tolerance or regulating endophytic communities. The goal of this study was to characterize endophytic virus communities in banana and plantain ( Musa spp.) genotypes, including cultivated and wild species, to assess virome repertoires and detect novel viruses., Methods: DNA viral communities were characterized by shotgun sequencing of an enriched endosphere extract from leaves and roots or corm of 7 distinct Musa genotypes ( M. balbisiana , Thai Black, M. textilis , M. sikkimensis , Dwarf Cavendish, Williams Hybrid, and FHIA-25 Hybrid)., Results: Results showed abundant virus-like contigs up to 108,191 bp long with higher relative abundance in leaves than roots. Analyses predicted 733 phage species in 51 families, with little overlap in phage communities among plants. Phage diversity was higher in roots and in diploid wild hosts. Ackermanniviridae and Rhizobium phage were generally the most abundant taxa. A Rhizobium RR1-like phage related to a phage of an endophytic tumor-causing rhizobium was found, bearing a holin gene and a partial Shiga-like toxin gene, raising interest in its potential to regulate endophytic Rhizobiaceae. Klebsiella phages were of interest for possible protection against Fusarium wilt, and other phages were predicted with potential to regulate Erwinia , Pectobacterium , and Ralstonia -associated diseases. Although abundant phage-containing contigs were functionally annotated, revealing 1,038 predicted viral protein domains, gene repertoires showed high divergence from database sequences, suggesting novel phages in these banana cultivars. Plant DNA viruses included 56 species of Badnavirus and 26 additional non- Musa plant viruses with distributions that suggested a mixture of resident and transient plant DNA viruses in these samples., Discussion: Together, the disparate viral communities in these plants from a shared environment suggest hosts drive the composition of these virus communities. This study forms a first step in understanding the endophytic virome in this globally important food crop, which is currently threatened by fungal, bacterial, and viral diseases., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Aghdam, Lahowetz and Brown.)
- Published
- 2023
- Full Text
- View/download PDF
9. Metapangenomics of wild and cultivated banana microbiome reveals a plethora of host-associated protective functions.
- Author
-
Singh S, Aghdam SA, Lahowetz RM, and Brown AMV
- Abstract
Background: Microbiomes are critical to plants, promoting growth, elevating stress tolerance, and expanding the plant's metabolic repertoire with novel defense pathways. However, generally microbiomes within plant tissues, which intimately interact with their hosts, remain poorly characterized. These endospheres have become a focus in banana (Musa spp.)-an important plant for study of microbiome-based disease protection. Banana is important to global food security, while also being critically threatened by pandemic diseases. Domestication and clonal propagation are thought to have depleted protective microbiomes, whereas wild relatives may hold promise for new microbiome-based biological controls. The goal was to compare metapangenomes enriched from 7 Musa genotypes, including wild and cultivated varieties grown in sympatry, to assess the host associations with root and leaf endosphere functional profiles., Results: Density gradients successfully generated culture-free microbial enrichment, dominated by bacteria, with all together 24,325 species or strains distinguished, and 1.7 million metagenomic scaffolds harboring 559,108 predicted gene clusters. About 20% of sequence reads did not match any taxon databases and ~ 62% of gene clusters could not be annotated to function. Most taxa and gene clusters were unshared between Musa genotypes. Root and corm tissues had significantly richer endosphere communities that were significantly different from leaf communities. Agrobacterium and Rhizobium were the most abundant in all samples while Chitinophagia and Actinomycetia were more abundant in roots and Flavobacteria in leaves. At the bacterial strain level, there were > 2000 taxa unique to each of M. acuminata (AAA genotype) and M. balbisiana (B-genotype), with the latter 'wild' relatives having richer taxa and functions. Gene ontology functional enrichment showed core beneficial functions aligned with those of other plants but also many specialized prospective beneficial functions not reported previously. Some gene clusters with plant-protective functions showed signatures of phylosymbiosis, suggesting long-standing associations or heritable microbiomes in Musa., Conclusions: Metapangenomics revealed key taxa and protective functions that appeared to be driven by genotype, perhaps contributing to host resistance differences. The recovery of rich novel taxa and gene clusters provides a baseline dataset for future experiments in planta or in vivo bacterization or engineering of wild host endophytes., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
10. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes.
- Author
-
Weyandt N, Aghdam SA, and Brown AMV
- Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated w Tex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed w Tex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia . Higher dN/dS pathways between group L, w Pni from aphids, w Fol from springtails, and w CfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria , a spirochete-like thiamine synthesis operon shared only with w CfeT, an ATP/ADP carrier important in Rickettsia , and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Weyandt, Aghdam and Brown.)
- Published
- 2022
- Full Text
- View/download PDF
11. Lysis-Hi-C as a method to study polymicrobial communities and eDNA.
- Author
-
Hill BM, Bisht K, Atkins GR, Gomez AA, Rumbaugh KP, Wakeman CA, and Brown AMV
- Subjects
- Animals, Biofilms, Mice, Staphylococcus aureus, Cystic Fibrosis, Pseudomonas aeruginosa genetics, Pseudomonas aeruginosa metabolism
- Abstract
Microbes interact in natural communities in a spatially structured manner, particularly in biofilms and polymicrobial infections. While next generation sequencing approaches provide powerful insights into diversity, metabolic capacity, and mutational profiles of these communities, they generally fail to recover in situ spatial proximity between distinct genotypes in the interactome. Hi-C is a promising method that has assisted in analysing complex microbiomes, by creating chromatin cross-links in cells, that aid in identifying adjacent DNA, to improve de novo assembly. This study explored a modified Hi-C approach involving an initial lysis phase prior to DNA cross-linking, to test whether adjacent cell chromatin can be cross-linked, anticipating that this could provide a new avenue for study of spatial-mutational dynamics in structured microbial communities. An artificial polymicrobial mixture of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli was lysed for 1-18 h, then prepared for Hi-C. A murine biofilm infection model was treated with sonication, mechanical lysis, or chemical lysis before Hi-C. Bioinformatic analyses of resulting Hi-C interspecies chromatin links showed that while microbial species differed from one another, generally lysis significantly increased links between species and increased the distance of Hi-C links within species, while also increasing novel plasmid-chromosome links. The success of this modified lysis-Hi-C protocol in creating extracellular DNA links is a promising first step toward a new lysis-Hi-C based method to recover genotypic microgeography in polymicrobial communities, with potential future applications in diseases with localized resistance, such as cystic fibrosis lung infections and chronic diabetic ulcers., (© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
12. Co-Occurrence of Viruses, Plant Pathogens, and Symbionts in an Underexplored Hemipteran Clade.
- Author
-
Salazar MM, Pupo MT, and Brown AMV
- Subjects
- Animals, Phylogeny, Symbiosis, Aphids, Bacteriophages, Plant Viruses
- Abstract
Interactions between insect symbionts and plant pathogens are dynamic and complex, sometimes involving direct antagonism or synergy and sometimes involving ecological and evolutionary leaps, as insect symbionts transmit through plant tissues or plant pathogens transition to become insect symbionts. Hemipterans such as aphids, whiteflies, psyllids, leafhoppers, and planthoppers are well-studied plant pests that host diverse symbionts and vector plant pathogens. The related hemipteran treehoppers (family Membracidae) are less well-studied but offer a potentially new and diverse array of symbionts and plant pathogenic interactions through their distinct woody plant hosts and ecological interactions with diverse tending hymenopteran taxa. To explore membracid symbiont-pathogen diversity and co-occurrence, this study performed shotgun metagenomic sequencing on 20 samples (16 species) of treehopper, and characterized putative symbionts and pathogens using a combination of rapid blast database searches and phylogenetic analysis of assembled scaffolds and correlation analysis. Among the 8.7 billion base pairs of scaffolds assembled were matches to 9 potential plant pathogens, 12 potential primary and secondary insect endosymbionts, numerous bacteriophages, and other viruses, entomopathogens, and fungi. Notable discoveries include a divergent Brenneria plant pathogen-like organism, several bee-like Bombella and Asaia strains, novel strains of Arsenophonus -like and Sodalis -like symbionts, Ralstonia sp. and Ralstonia -type phages, Serratia sp., and APSE-type phages and bracoviruses. There were several short Phytoplasma and Spiroplasma matches, but there was no indication of plant viruses in these data. Clusters of positively correlated microbes such as yeast-like symbionts and Ralstonia , viruses and Serratia , and APSE phage with parasitoid-type bracoviruses suggest directions for future analyses. Together, results indicate membracids offer a rich palette for future study of symbiont-plant pathogen interactions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Salazar, Pupo and Brown.)
- Published
- 2021
- Full Text
- View/download PDF
13. Draft Genome Assemblies of Two Campylobacter novaezeelandiae and Four Unclassified Thermophilic Campylobacter Isolates from Canadian Agricultural Surface Water.
- Author
-
Ivanova M, Oh B, Khan IUH, Nightingale K, Bugarel M, Brown AMV, and Loneragan GH
- Abstract
This report presents the draft genome sequences of two Campylobacter novaezeelandiae and four unclassified Campylobacter isolates from Canadian agricultural surface water. Phylogenomic analysis revealed that the six isolates formed unique clades, closely related to the disease-causing species C. jejuni , C. coli , and C. hepaticus ., (Copyright © 2021 Ivanova et al.)
- Published
- 2021
- Full Text
- View/download PDF
14. Deep learning approaches for natural product discovery from plant endophytic microbiomes.
- Author
-
Aghdam SA and Brown AMV
- Abstract
Plant microbiomes are not only diverse, but also appear to host a vast pool of secondary metabolites holding great promise for bioactive natural products and drug discovery. Yet, most microbes within plants appear to be uncultivable, and for those that can be cultivated, their metabolic potential lies largely hidden through regulatory silencing of biosynthetic genes. The recent explosion of powerful interdisciplinary approaches, including multi-omics methods to address multi-trophic interactions and artificial intelligence-based computational approaches to infer distribution of function, together present a paradigm shift in high-throughput approaches to natural product discovery from plant-associated microbes. Arguably, the key to characterizing and harnessing this biochemical capacity depends on a novel, systematic approach to characterize the triggers that turn on secondary metabolite biosynthesis through molecular or genetic signals from the host plant, members of the rich 'in planta' community, or from the environment. This review explores breakthrough approaches for natural product discovery from plant microbiomes, emphasizing the promise of deep learning as a tool for endophyte bioprospecting, endophyte biochemical novelty prediction, and endophyte regulatory control. It concludes with a proposed pipeline to harness global databases (genomic, metabolomic, regulomic, and chemical) to uncover and unsilence desirable natural products., Supplementary Information: The online version contains supplementary material available at 10.1186/s40793-021-00375-0., Competing Interests: Competing interestsThe authors declare that they have no competing interests., (© The Author(s) 2021.)
- Published
- 2021
- Full Text
- View/download PDF
15. Essential Amino Acid Enrichment and Positive Selection Highlight Endosymbiont's Role in a Global Virus-Vectoring Pest.
- Author
-
Myers KN, Conn D, and Brown AMV
- Abstract
Host-associated microbes display remarkable convergence in genome repertoire resulting from selection to supplement missing host functions. Nutritional supplementation has been proposed in the verrucomicrobial endosymbiont Xiphinematobacter sp., which lives within a globally widespread group of plant-parasitic nematodes that vector damaging nepoviruses to plants. Only one genome sequence has been published from this symbiont, leaving unanswered questions about its diversity, host range, role, and selective pressures within its hosts. Because its hosts are exceptionally resistant to culturing, this symbiont is best studied through advanced genomic approaches. To analyze the role of Xiphinematobacter sp. in its host, sequencing was performed on nematode communities, and then genomes were extracted for comparative genomics, gene ontology enrichment tests, polymorphism analysis, de Bruijn-based genome-wide association studies, and tests of pathway- and site-specific selection on genes predicted play a role in the symbiosis. Results showed a closely clustered set of Xiphinematobacter isolates with reduced genomes of ∼917 kbp, for which a new species was proposed. Symbionts shared only 2.3% of genes with outgroup Verrucomicrobia , but comparative analyses showed high conservation of all 10 essential amino acid (EAA) biosynthesis pathways plus several vitamin pathways. These findings were supported by gene ontology enrichment tests and high polymorphisms in these pathways compared with background. Genome-wide association analysis confirmed high between-species fixation of alleles with significant functional enrichment for EAA and thiamine synthesis. Strong positive selection was detected on sites within these pathways, despite several being under increased purifying selection. Together, these results suggest that supplementation of EAAs missing in the host diet may drive this widespread symbiosis. IMPORTANCE Xiphinematobacter spp. are distinctly evolved intracellular symbionts in the phylum Verrucomicrobia , which includes the important human gut-associated microbe Akkermansia muciniphila and many highly abundant free-living soil microbes. Like Akkermansia sp., Xiphinematobacter sp. is obligately associated with the gut of its hosts, which in this case consists of a group of plant-parasitic nematodes that are among the top 10 most destructive species to global agriculture, by vectoring plant viruses. This study examined the hypothesis that the key to this symbiont's stable evolutionary association with its host is through provisioning nutrients that its host cannot make that may be lacking in the nematode's plant phloem diet, such as essential amino acids and several vitamins. The significance of our research is in demonstrating, using population genomics, the signatures of selective pressure on these hypothesized roles to ultimately learn how this independently evolved symbiont functionally mirrors symbionts of phloem-feeding insects., (Copyright © 2021 Myers et al.)
- Published
- 2021
- Full Text
- View/download PDF
16. Variable Abundance and Distribution of Wolbachia and Cardinium Endosymbionts in Plant-Parasitic Nematode Field Populations.
- Author
-
Wasala SK, Brown AMV, Kang J, Howe DK, Peetz AB, Zasada IA, and Denver DR
- Abstract
The bacterial endosymbiont Wolbachia interacts with different invertebrate hosts, engaging in diverse symbiotic relationships. Wolbachia is often a reproductive parasite in arthropods, but an obligate mutualist in filarial nematodes. Wolbachia was recently discovered in plant-parasitic nematodes, and, is thus far known in just two genera Pratylenchus and Radopholus , yet the symbiont's function remains unknown. The occurrence of Wolbachia in these economically important plant pests offers an unexplored biocontrol strategy. However, development of Wolbachia -based biocontrol requires an improved understanding of symbiont-host functional interactions and the symbiont's prevalence among nematode field populations. This study used a molecular-genetic approach to assess the prevalence of a Wolbachia lineage (wPpe) in 32 field populations of Pratylenchus penetrans. Populations were examined from eight different plant species in Washington, Oregon, and California. Nematodes were also screened for the endosymbiotic bacterium Cardinium (cPpe) that was recently shown to co-infect P. penetrans . Results identified wPpe in 9/32 and cPpe in 1/32 of P. penetrans field populations analyzed. No co-infection was observed in field populations. Wolbachia was detected in nematodes from 4/8 plant-hosts examined (raspberry, strawberry, clover, and lily), and in all three states surveyed. Cardinium was detected in nematodes from mint in Washington. In the wPpe-infected P. penetrans populations collected from raspberry, the prevalence of wPpe infection ranged from 11 to 58%. This pattern is unlike that in filarial nematodes where Wolbachia is an obligate mutualist and occurs in 100% of the host. Further analysis of wPpe-infected populations revealed female-skewed sex ratios (up to 96%), with the degree of skew positively correlating with wPpe prevalence. Uninfected nematode populations had approximately equal numbers of males and females. Comparisons of 54 wPpe 16S ribosomal RNA sequences revealed high similarity across the geographic isolates, with 45 of 54 isolates being identical at this locus. The complete absence of wPpe among some populations and low prevalence in others suggest that this endosymbiont is not an obligate mutualist of P. penetrans . The observed sex ratio bias in wPpe-infected nematode populations is similar to that observed in arthropods where Wolbachia acts as a reproductive manipulator, raising the question of a similar role in plant-parasitic nematodes.
- Published
- 2019
- Full Text
- View/download PDF
17. Comparative Genomics of Wolbachia - Cardinium Dual Endosymbiosis in a Plant-Parasitic Nematode.
- Author
-
Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, and Denver DR
- Abstract
Wolbachia and Cardinium are among the most important and widespread of all endosymbionts, occurring in nematodes and more than half of insect and arachnid species, sometimes as coinfections. These symbionts are of significant interest as potential biocontrol agents due to their abilities to cause major effects on host biology and reproduction through cytoplasmic incompatibility, sex ratio distortion, or obligate mutualism. The ecological and metabolic effects of coinfections are not well understood. This study examined a Wolbachia - Cardinium coinfection in the plant-parasitic nematode (PPN), Pratylenchus penetrans , producing the first detailed study of such a coinfection using fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), and comparative genomic analysis. Results from FISH and single-nematode PCR showed 123/127 individuals in a focal population carried Cardinium (denoted strain cPpe), and 48% were coinfected with Wolbachia strain wPpe. Both endosymbionts showed dispersed tissue distribution with highest densities in the anterior intestinal walls and gonads. Phylogenomic analyses confirmed an early place of cPpe and long distance from a sister strain in another PPN, Heterodera glycines , supporting a long history of both Cardinium and Wolbachia in PPNs. The genome of cPpe was 1.36 Mbp with 35.8% GC content, 1,131 predicted genes, 41% having no known function, and missing biotin and lipoate synthetic capacity and a plasmid present in other strains, despite having a slightly larger genome compared to other sequenced Cardinium . The larger genome revealed expansions of gene families likely involved in host-cellular interactions. More than 2% of the genes of cPpe and wPpe were identified as candidate horizontally transferred genes, with some of these from eukaryotes, including nematodes. A model of the possible Wolbachia - Cardinium interaction is proposed with possible complementation in function for pathways such as methionine and fatty acid biosynthesis and biotin transport.
- Published
- 2018
- Full Text
- View/download PDF
18. Endosymbionts of Plant-Parasitic Nematodes.
- Author
-
Brown AMV
- Subjects
- Animals, Host-Parasite Interactions, Plant Diseases parasitology, Bacterial Physiological Phenomena, Nematoda microbiology, Plant Diseases prevention & control, Plants parasitology, Symbiosis
- Abstract
Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. Cardinium, reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. Xiphinematobacter occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. Wolbachia, reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.
- Published
- 2018
- Full Text
- View/download PDF
19. The Draft Genome of Globodera ellingtonae .
- Author
-
Phillips WS, Howe DK, Brown AMV, Eves-van den Akker S, Dettwyler L, Peetz AB, Denver DR, and Zasada IA
- Abstract
Globodera ellingtonae is a newly described potato cyst nematode (PCN) found in Idaho, Oregon, and Argentina. Here, we present a genome assembly for G. ellingtonae , a relative of the quarantine nematodes G. pallida and G. rostochiensis , produced using data from Illumina and Pacific Biosciences DNA sequencing technologies.
- Published
- 2017
- Full Text
- View/download PDF
20. Population genomics of a symbiont in the early stages of a pest invasion.
- Author
-
Brown AMV, Huynh LY, Bolender CM, Nelson KG, and McCutcheon JP
- Subjects
- Animals, Gene Frequency, Genotype, Host Specificity, Introduced Species, Japan, Polymorphism, Genetic, Pueraria, Glycine max, United States, Enterobacteriaceae genetics, Evolution, Molecular, Genetics, Population, Genome, Bacterial, Heteroptera microbiology, Symbiosis genetics
- Abstract
Invasive species often depend on microbial symbionts, but few studies have examined the evolutionary dynamics of symbionts during the early stages of an invasion. The insect Megacopta cribraria and its bacterial nutritional symbiont Candidatus Ishikawaella capsulata invaded the southeastern US in 2009. While M. cribraria was initially discovered on wild kudzu plants, it was found as a pest on soybeans within 1 year of infestation. Because prior research suggests Ishikawaella confers the pest status--that is, the ability to thrive on soybeans--in some Megacopta species, we performed a genomic study on Ishikawaella from US. Megacopta cribraria populations to understand the role of the symbiont in driving host plant preferences. We included Ishikawaella samples collected in the first days of the invasion in 2009 and from 23 locations across the insect's 2011 US range. The 0.75 Mb symbiont genome revealed only 47 fixed differences from the pest-conferring Ishikawaella in Japan, with only one amino acid change in a nutrition-provisioning gene. This similarity, along with a lack of fixed substitutions in the US symbiont population, indicates that Ishikawella likely arrived in the US capable of being a soybean pest. Analyses of allele frequency changes between 2009 and 2011 uncover signatures of both positive and negative selection and suggest that symbionts on soybeans and kudzu experience differential selection for genes related to nutrient provisioning. Our data reveal the evolutionary trajectory of an important insect-bacteria symbiosis in the early stages of an invasion, highlighting the role microbial symbionts may play in the spread of invasive species., (© 2013 John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.