374,990 results on '"Brooks AS"'
Search Results
2. An Emerging Transformative Learning Journey to Foster Sustainability Leadership in Professional Development Programs
- Author
-
Rachel E. Brooks and Ann K. Brooks
- Abstract
Despite growing global attention to the 2015 UN Sustainable Development Goals, we have made limited progress towards achieving them. This article describes an emerging Transformative Learning Journey for Sustainability Leadership being developed for professionals at the University of St. Gallen in Switzerland. The purpose is to help participants achieve the individual transformations needed to enact sustainability-focused interventions in their communities and organizations. From a socio-material lens, we describe four phases of the emerging Learning Journey and identify how they are transformative. The Learning Journey includes spending time in nature, growing an understanding of climate justice, collaborating, and planning action. We draw on reflective data from participants, linking them to Hoggan's (2016a) transformative learning outcomes and other relevant studies, the goal being to contribute to the world's collective knowledge of "how" to facilitate development of the transformative skills identified by the United Nations, the European Commission, and the Inner Developmental Goals.
- Published
- 2024
- Full Text
- View/download PDF
3. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
- Author
-
Hwang, Wonmuk, Austin, Steven, Blondel, Arnaud, Boittier, Eric, Boresch, Stefan, Buck, Matthias, Buckner, Joshua, Caflisch, Amedeo, Chang, Hao-Ting, Cheng, Xi, Choi, Yeol, Chu, Jhih-Wei, Crowley, Michael, Cui, Qiang, Damjanovic, Ana, Deng, Yuqing, Devereux, Mike, Ding, Xinqiang, Feig, Michael, Gao, Jiali, Glowacki, David, Gonzales, James, Hamaneh, Mehdi, Harder, Edward, Hayes, Ryan, Huang, Jing, Huang, Yandong, Hudson, Phillip, Im, Wonpil, Islam, Shahidul, Jiang, Wei, Jones, Michael, Käser, Silvan, Kearns, Fiona, Kern, Nathan, Klauda, Jeffery, Lazaridis, Themis, Lee, Jinhyuk, Lemkul, Justin, Liu, Xiaorong, Luo, Yun, MacKerell, Alexander, Major, Dan, Meuwly, Markus, Nam, Kwangho, Nilsson, Lennart, Ovchinnikov, Victor, Paci, Emanuele, Park, Soohyung, Pastor, Richard, Pittman, Amanda, Post, Carol, Prasad, Samarjeet, Pu, Jingzhi, Qi, Yifei, Rathinavelan, Thenmalarchelvi, Roe, Daniel, Roux, Benoit, Rowley, Christopher, Shen, Jana, Simmonett, Andrew, Sodt, Alexander, Töpfer, Kai, Upadhyay, Meenu, van der Vaart, Arjan, Vazquez-Salazar, Luis, Venable, Richard, Warrensford, Luke, Woodcock, H, Wu, Yujin, Brooks, Charles, Brooks, Bernard, and Karplus, Martin
- Subjects
Quantum Theory ,Molecular Dynamics Simulation ,Software - Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
- Published
- 2024
4. Window convolution of the galaxy clustering bispectrum
- Author
-
Wang, Mike Shengbo, Beutler, Florian, Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., de la Macorra, A., Doel, P., Font-Ribera, A., Gaztañaga, E., Gutierrez, G., Honscheid, K., Howlett, C., Kirkby, D., Lambert, A., Landriau, M., Miquel, R., Niz, G., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In galaxy survey analysis, the observed clustering statistics do not directly match theoretical predictions but rather have been processed by a window function that arises from the survey geometry including the sky footprint, redshift-dependent background number density and systematic weights. While window convolution of the power spectrum is well studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant numerical and computational challenge. In this work, we consider the effect of the survey window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a formal procedure for their convolution via a series expansion of configuration-space three-point correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a linear algebra formulation of the full window convolution, where an unwindowed bispectrum model vector can be directly premultiplied by a window matrix specific to each survey geometry. To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in the redshift bin $0.4 \leqslant z \leqslant 0.6$. We first perform convergence checks on the measurement of the window function from discrete random catalogues, and then investigate the convergence of the window convolution series expansion truncated at a finite of number of terms as well as the performance of the window matrix. This work highlights the differences in window convolution between the power spectrum and bispectrum, and provides a streamlined pipeline for the latter for current surveys such as DESI and the Euclid mission., Comment: 30 pages, 12 figures, for submission to JCAP
- Published
- 2024
5. The SABRE South Technical Design Report Executive Summary
- Author
-
Barberio, E., Baroncelli, T., Bashu, V. U., Bignell, L. J., Bolognino, I., Brooks, G., Chun, S. S., Dastgiri, F., Duffy, A. R., Froehlich, M. B., Fruth, T., Fu, G., Hill, G. C., James, R. S., Janssens, K., Kapoor, S., Lane, G. J., Leaver, K. T., McGee, P., McKie, L. J., McNamara, P. C., McKenzie, J., Melbourne, W. J. D., Mews, M., Milana, G., Milligan, L. J., Mould, J., Rule, K. J., Scutti, F., Slavkovská, Z., Stanley, O., Stuchbery, A. E., Suerfu, B., Taylor, G. N., Tempra, D., Tunningly, T., Urquijo, P., Williams, A. G., Xing, Y., and Zurowski, M. J.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
In this Technical Design Report (TDR) we describe the SABRE South detector to be built at the Stawell Underground Physics Laboratory (SUPL). The SABRE South detector is designed to test the long-standing DAMA/LIBRA signal of an annually modulating rate consistent with dark matter by using the same target material. SABRE South uses seven ultra-high purity NaI(Tl) crystals (with a total target mass of either 35 kg or 50 kg), hermetically sealed in copper enclosures that are suspended within a liquid scintillator active veto. High quantum efficiency and low background Hamamatsu R11065 photomultiplier tubes are directly coupled to both ends of the crystal, and enclosed with the crystal in an oxygen free high thermal conductivity copper enclosure. The active veto system consists of 11.6 kL of linear alkylbenzene (LAB) doped with a mixture of fluorophores and contained in a steel vessel, which is instrumented with at least 18 Hamamatsu R5912 photomultipliers. The active veto tags key radiogenic backgrounds intrinsic to the crystals, such as ${^{40}}$K, and is expected to suppress the total background by 27% in the 1-6 keV region of interest. In addition to the liquid scintillator veto, a muon veto is positioned above the detector shielding. This muon veto consists of eight EJ-200 scintillator modules, with Hamamatsu R13089 photomultipliers coupled to both ends. With an expected total background of 0.72 cpd/kg/keV, SABRE South can test the DAMA/LIBRA signal with 5$\sigma$ discovery or 3$\sigma$ exclusion after two years of data taking.
- Published
- 2024
6. Advanced LIGO detector performance in the fourth observing run
- Author
-
Capote, E., Jia, W., Aritomi, N., Nakano, M., Xu, V., Abbott, R., Abouelfettouh, I., Adhikari, R. X., Ananyeva, A., Appert, S., Apple, S. K., Arai, K., Aston, S. M., Ball, M., Ballmer, S. W., Barker, D., Barsotti, L., Berger, B. K., Betzwieser, J., Bhattacharjee, D., Billingsley, G., Biscans, S., Blair, C. D., Bode, N., Bonilla, E., Bossilkov, V., Branch, A., Brooks, A. F., Brown, D. D., Bryant, J., Cahillane, C., Cao, H., Clara, F., Collins, J., Compton, C. M., Cottingham, R., Coyne, D. C., Crouch, R., Csizmazia, J., Cumming, A., Dartez, L. P., Davis, D., Demos, N., Dohmen, E., Driggers, J. C., Dwyer, S. E., Effler, A., Ejlli, A., Etzel, T., Evans, M., Feicht, J., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fuentes-Garcia, M., Fulda, P., Fyffe, M., Ganapathy, D., Gateley, B., Gayer, T., Giaime, J. A., Giardina, K. D., Glanzer, J., Goetz, E., Goetz, R., Goodwin-Jones, A. W., Gras, S., Gray, C., Griffith, D., Grote, H., Guidry, T., Gurs, J., Hall, E. D., Hanks, J., Hanson, J., Heintze, M. C., Helmling-Cornell, A. F., Holland, N. A., Hoyland, D., Huang, H. Y., Inoue, Y., James, A. L., Jamies, A., Jennings, A., Jones, D. H., Kabagoz, H. B., Karat, S., Karki, S., Kasprzack, M., Kawabe, K., Kijbunchoo, N., King, P. J., Kissel, J. S., Komori, K., Kontos, A., Kumar, Rahul, Kuns, K., Landry, M., Lantz, B., Laxen, M., Lee, K., Lesovsky, M., Villarreal, F. Llamas, Lormand, M., Loughlin, H. A., Macas, R., MacInnis, M., Makarem, C. N., Mannix, B., Mansell, G. L., Martin, R. M., Mason, K., Matichard, F., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McRae, T., Mera, F., Merilh, E. L., Meylahn, F., Mittleman, R., Moraru, D., Moreno, G., Mullavey, A., Nelson, T. J. N., Neunzert, A., Notte, J., Oberling, J., OHanlon, T., Osthelder, C., Ottaway, D. J., Overmier, H., Parker, W., Patane, O., Pele, A., Pham, H., Pirello, M., Pullin, J., Quetschke, V., Ramirez, K. E., Ransom, K., Reyes, J., Richardson, J. W., Robinson, M., Rollins, J. G., Romel, C. L., Romie, J. H., Ross, M. P., Ryan, K., Sadecki, T., Sanchez, A., Sanchez, E. J., Sanchez, L. E., Savage, R. L., Schaetzl, D., Schiworski, M. G., Schnabel, R., Schofield, R. M. S., Schwartz, E., Sellers, D., Shaffer, T., Short, R. W., Sigg, D., Slagmolen, B. J. J., Soike, C., Soni, S., Srivastava, V., Sun, L., Tanner, D. B., Thomas, M., Thomas, P., Thorne, K. A., Todd, M. R., Torrie, C. I., Traylor, G., Ubhi, A. S., Vajente, G., Vanosky, J., Vecchio, A., Veitch, P. J., Vibhute, A. M., von Reis, E. R. G., Warner, J., Weaver, B., Weiss, R., Whittle, C., Willke, B., Wipf, C. C., Wright, J. L., Yamamoto, H., Zhang, L., and Zucker, M. E.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors ,Physics - Optics ,Quantum Physics - Abstract
On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run., Comment: 26 pages, 18 figures
- Published
- 2024
7. Analytical and EZmock covariance validation for the DESI 2024 results
- Author
-
Forero-Sánchez, Daniel, Rashkovetskyi, Michael, Alves, Otávio, de Mattia, Arnaud, Nadathur, Seshadri, Zarrouk, Pauline, Gil-Marín, Héctor, Ding, Zhejie, Yu, Jiaxi, Andrade, Uendert, Chen, Xinyi, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Vargas, Miguel Enriquez, Gaztañaga, Enrique, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Miquel, Ramon, Moustakas, John, Palanque-Delabrouille, Nathalie, Percival, Will, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full Shape, two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on en ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full Shape analyses, which motivates the use of a corrected mock covariance for DESI's Full Shape analysis., Comment: 23 pages, 5 figures 7 tables, submitted to JCAP
- Published
- 2024
8. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024
- Author
-
Ishak, M., Pan, J., Calderon, R., Lodha, K., Valogiannis, G., Aviles, A., Niz, G., Yi, L., Zheng, C., Garcia-Quintero, C., de Mattia, A., Medina-Varela, L., Cervantes-Cota, J. L., Andrade, U., Huterer, D., Noriega, H. E., Zhao, G., Shafieloo, A., Fang, W., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Leauthaud, A., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Pérez-Ràfols, I., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magana, M., Weaver, B. A., Wechsler, R. H., Yèche, C., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.009\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also alleviated when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.0120^{+0.0021}_{-0.013}$ and $s_0 = 0.99^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.24$, and are all consistent with GR. [Abridged.], Comment: 52 pages, 10 figures. This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
9. Characterization of DESI fiber assignment incompleteness effect on 2-point clustering and mitigation methods for DR1 analysis
- Author
-
Bianchi, D., Hanif, M. M. S, Rosell, A. Carnero, Lasker, J., Ross, A. J., Pinon, M., de Mattia, A., White, M., Ahlen, S., Bailey, S., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., McDonald, P., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sharples, R., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data., Comment: 42 pages, 19 figures
- Published
- 2024
10. Mitigating Imaging Systematics for DESI 2024 Emission Line Galaxies and Beyond
- Author
-
Rosado-Marín, A. J., Ross, A. J., Seo, H., Rezaie, M., Kong, H., de Mattia, A., Zhou, R., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., de la Macorra, A., Doel, P., Fanning, K., Ferraro, S., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Juneau, S., Kehoe, R., Kremin, A., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Vargas-Magaña, M., Weaver, B. A., Zou, H., Ruggeri, R., Krolewski, A., Yu, J., Raichoor, A., and Hanif, M. M. S
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Emission Line Galaxies (ELGs) are one of the main tracers that the Dark Energy Spectroscopic Instrument (DESI) uses to probe the universe. However, they are afflicted by strong spurious correlations between target density and observing conditions known as imaging systematics. We present the imaging systematics mitigation applied to the DESI Data Release 1 (DR1) large-scale structure catalogs used in the DESI 2024 cosmological analyses. We also explore extensions of the fiducial treatment. This includes a combined approach, through forward image simulations in conjunction with neural network-based regression, to obtain an angular selection function that mitigates the imaging systematics observed in the DESI DR1 ELGs target density. We further derive a line-of-sight selection function from the forward model that removes the strong redshift dependence between imaging systematics and low redshift ELGs. Combining both angular and redshift-dependent systematics, we construct a 3D selection function and assess the impact of all selection functions on clustering statistics. We quantify differences between these extended treatments and the fiducial treatment in terms of the measured 2-point statistics. We find that the results are generally consistent with the fiducial treatment and conclude that the differences are far less than the imaging systematics uncertainty included in DESI 2024 full-shape measurements. We extend our investigation to the ELGs at $0.6
- Published
- 2024
11. DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bahr-Kalus, B., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bonici, M., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chebat, D., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elbers, W., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Joyce, R., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lahav, O., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Matthewson, W., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Taylor, P., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Valogiannis, G., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yi, L., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., Zhuang, T., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.], Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 55 pages, 10 figures
- Published
- 2024
12. DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Demina, R., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kitaura, F. -S., Kong, H., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1., Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
13. DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Rodríguez-Martínez, F., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1
- Published
- 2024
14. Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis
- Author
-
Findlay, N., Nadathur, S., Percival, W. J., de Mattia, A., Zarrouk, P., Gil-Marín, H., Alves, O., Mena-Fernández, J., Garcia-Quintero, C., Rocher, A., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data., Comment: This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 26 pages, 10 figures
- Published
- 2024
15. Contextualizing Security and Privacy of Software-Defined Vehicles: State of the Art and Industry Perspectives
- Author
-
De Vincenzi, Marco, Pesé, Mert D., Bodei, Chiara, Matteucci, Ilaria, Brooks, Richard R., Hasan, Monowar, Saracino, Andrea, Hamad, Mohammad, and Steinhorst, Sebastian
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Operating Systems - Abstract
The growing reliance on software in vehicles has given rise to the concept of Software-Defined Vehicles (SDVs), fundamentally reshaping the vehicles and the automotive industry. This survey explores the cybersecurity and privacy challenges posed by SDVs, which increasingly integrate features like Over-the-Air (OTA) updates and Vehicle-to-Everything (V2X) communication. While these advancements enhance vehicle capabilities and flexibility, they also come with a flip side: increased exposure to security risks including API vulnerabilities, third-party software risks, and supply-chain threats. The transition to SDVs also raises significant privacy concerns, with vehicles collecting vast amounts of sensitive data, such as location and driver behavior, that could be exploited using inference attacks. This work aims to provide a detailed overview of security threats, mitigation strategies, and privacy risks in SDVs, primarily through a literature review, enriched with insights from a targeted questionnaire with industry experts. Key topics include defining SDVs, comparing them to Connected Vehicles (CVs) and Autonomous Vehicles (AVs), discussing the security challenges associated with OTA updates and the impact of SDV features on data privacy. Our findings highlight the need for robust security frameworks, standardized communication protocols, and privacy-preserving techniques to address the issues of SDVs. This work ultimately emphasizes the importance of a multi-layered defense strategy,integrating both in-vehicle and cloud-based security solutions, to safeguard future SDVs and increase user trust.
- Published
- 2024
16. New methods of neutrino and anti-neutrino detection from 0.115 to 105 MeV
- Author
-
Solomey, Nickolas, Christl, Mark, Doty, Brian, Folkerts, Jonathan, Hartsock, Brooks, Kuznetsco, Evgen, McTaggart, Robert, Meyer, Holger, Nolan, Tyler, Pawloski, Greg, Reichart, Daniel, Rodriguez-Otero, Miguel, Smith, Dan, and Solomey, Lisa
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We have developed a neutrino detector with threshold energies from ~0.115 to 105 MeV in a clean detection mode almost completely void of accidental backgrounds. It was initially developed for the NASA $\nu$SOL project to put a solar neutrino detector very close to the Sun with 1,000 to 10,000 times higher solar neutrino flux than on Earth. Similar interactions have been found for anti-neutrinos, which were initially intended for Beta decay neutrinos from reactors, geological sources, or for nuclear security applications. These techniques work at the 1 to 100 MeV region for neutrinos from the ORNL Spallation Neutron Source or low energy accelerator neutrino and anti-neutrino production targets less than $\sim$100 MeV. The identification process is clean, with a double pulse detection signature within a time window between the first interaction producing the conversion electron or positron and the secondary gamma emission 100 ns to ~1 $\mu$s, which removes most accidental backgrounds. These new modes for neutrino and anti-neutrino detection of low energy neutrinos and anti-neutrinos could allow improvements to neutrino interaction measurements from an accelerator beam on a target., Comment: Contribution to the 25th International Workshop on Neutrinos from Accelerators
- Published
- 2024
17. Conversations and Deliberations: Non-Standard Cosmological Epochs and Expansion Histories
- Author
-
Batell, Brian, Dienes, Keith R., Thomas, Brooks, Watson, Scott, Allahverdi, Rouzbeh, Amin, Mustafa, Boddy, Kimberly K., Delos, M. Sten, Erickcek, Adrienne L., Ghalsasi, Akshay, Giblin Jr., John T., Halverson, James, Huang, Fei, Long, Andrew J., Pearce, Lauren, Haghi, Barmak Shams Es, Shelton, Jessie, Shiu, Gary, Sinha, Kuver, and Smith, Tristan L.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
This document summarizes the discussions which took place during the PITT-PACC Workshop entitled "Non-Standard Cosmological Epochs and Expansion Histories," held in Pittsburgh, Pennsylvania, Sept. 5-7, 2024. Much like the non-standard cosmological epochs that were the subject of these discussions, the format of this workshop was also non-standard. Rather than consisting of a series of talks from participants, with each person presenting their own work, this workshop was instead organized around free-form discussion blocks, with each centered on a different overall theme and guided by a different set of Discussion Leaders. This document is not intended to serve as a comprehensive review of these topics, but rather as an informal record of the discussions that took place during the workshop, in the hope that the content and free-flowing spirit of these discussions may inspire new ideas and research directions., Comment: 33 pages, LaTeX, 2 figures
- Published
- 2024
18. The first identification of Lyman $\alpha$ Changing-look Quasars at high-redshift in DESI
- Author
-
Guo, Wei-Jian, Pan, Zhiwei, Siudek, Małgorzata, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Dawson, Kyle, de la Macorra, Axel, Doel, Peter, Fanning, Kevin, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Honscheid, Klaus, Kehoe, Robert, Kisner, Theodore, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Manera, Marc, Meisner, Aaron, Moustakas, John, Muñoz-Gutiérrez, Andrea, Myers, Adam, Nie, Jundan, Palanque-Delabrouille, Nathalie, Poppett, Claire, Prada, Francisco, Rezaie, Mehdi, Rossi, Graziano, Sanchez, Eusebio, Schubnelll, Michael, Seo, Hee-Jong, Silber, Joseph Harry, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Zhou, Zhimin, and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present two cases of Ly$\alpha$ changing-look (CL) quasars (J1306 and J1512) along with two additional candidates (J1511 and J1602), all discovered serendipitously at $z >2$ through the Dark Energy Spectroscopic Instrument (DESI) and the Sloan Digital Sky Survey (SDSS). It is the first time to capture CL events in Ly$\alpha$ at high redshift, which is crucial for understanding underlying mechanisms driving the CL phenomenon and the evolution of high-redshift quasars and galaxies. The variability of all four sources is confirmed by the significant change of amplitude in the $r$ band ($|r_{\rm DESI}-r_{\rm SDSS}| >0.5 \ \rm mag$). We find that the accretion rate in the dim state for these CL objects corresponds to a relatively low value ($\mathscr{\dot M} \approx 2\times10^{-3}$), which suggests that the inner region of the accretion disk might be in transition between the Advection Dominated Accretion Flow ($\mathscr{\dot M}<10^{-3}\sim 10^{-2}$) and the canonical accretion disk (optically thick, geometrically thin). However, unlike in C {\sc iv} CL quasars in which broad Ly$\alpha$ remained, the broad C {\sc iv} may still persist after a CL event occurs in Ly$\alpha$, making the physical origin of the CL and ionization mechanism event more puzzling and interesting.
- Published
- 2024
19. New Cold Subdwarf Discoveries from Backyard Worlds and a Metallicity Classification System for T Subdwarfs
- Author
-
Burgasser, Adam J., Schneider, Adam C., Meisner, Aaron M., Caselden, Dan, Hsu, Chih-Chun, Gerasimov, Roman, Aganze, Christian, Softich, Emma, Karpoor, Preethi, Theissen, Christopher A., Brooks, Hunter, Bickle, Thomas P., Gagné, Jonathan, Artigau, Étienne, Marsset, Michaël, Rothermich, Austin, Faherty, Jacqueline K., Kirkpatrick, J. Davy, Kuchner, Marc J., Andersen, Nikolaj Stevnbak, Beaulieu, Paul, Colin, Guillaume, Gantier, Jean Marc, Gramaize, Leopold, Hamlet, Les, Hinckley, Ken, Kabatnik, Martin, Kiwy, Frank, Martin, David W., Massat, Diego H., Pendrill, William, Sainio, Arttu, Schümann, Jörg, Thévenot, Melina, Walla, Jim, Wędracki, Zbigniew, Worlds, the Backyard, and Collaboration, Planet 9
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We report the results of a spectroscopic survey of candidate T subdwarfs identified by the Backyard Worlds: Planet 9 program. Near-infrared spectra of 31 sources with red $J-W2$ colors and large $J$-band reduced proper motions show varying signatures of subsolar metallicity, including strong collision-induced H$_2$ absorption, obscured methane and water features, and weak K I absorption. These metallicity signatures are supported by spectral model fits and 3D velocities, indicating thick disk and halo population membership for several sources. We identify three new metal-poor T subdwarfs ([M/H] $\lesssim$ $-$0.5), CWISE J062316.19+071505.6, WISEA J152443.14$-$262001.8, and CWISE J211250.11-052925.2; and 19 new "mild" subdwarfs with modest metal deficiency ([M/H] $\lesssim$ $-$0.25). We also identify three metal-rich brown dwarfs with thick disk kinematics. We provide kinematic evidence that the extreme L subdwarf 2MASS J053253.46+824646.5 and the mild T subdwarf CWISE J113010.07+313944.7 may be part of the Thamnos population, while the T subdwarf CWISE J155349.96+693355.2 may be part of the Helmi stream. We define a metallicity classification system for T dwarfs that adds mild subdwarfs (d/sdT), subdwarfs (sdT), and extreme subdwarfs (esdT) to the existing dwarf sequence. We also define a metallicity spectral index that correlates with metallicities inferred from spectral model fits and iron abundances from stellar primaries of benchmark T dwarf companions. This expansion of the T dwarf classification system supports investigations of ancient, metal-poor brown dwarfs now being uncovered in deep imaging and spectroscopic surveys., Comment: 82 pages, 19 figures, accepted to ApJS
- Published
- 2024
20. DESIVAST: A Catalog of Low-Redshift Voids using Data from the DESI DR1 Bright Galaxy Survey
- Author
-
Rincon, Hernan, BenZvi, Segev, Douglass, Kelly, Veyrat, Dahlia, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Juneau, Stephanie, Kehoe, Robert, Koposov, Sergey, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Niz, Gustavo, Percival, Will, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present three separate void catalogs created using a volume-limited sample of the DESI Year 1 Bright Galaxy Survey. We use the algorithms VoidFinder and V2 to construct void catalogs out to a redshift of z=0.24. We obtain 1,461 interior voids with VoidFinder, 420 with V2 using REVOLVER pruning, and 295 with V2 using VIDE pruning. Comparing our catalog with an overlapping SDSS void catalog, we find generally consistent void properties but significant differences in the void volume overlap, which we attribute to differences in the galaxy selection and survey masks. These catalogs are suitable for studying the variation in galaxy properties with cosmic environment and for cosmological studies., Comment: 17 pages, 6 figures
- Published
- 2024
21. Tripling the Census of Dwarf AGN Candidates Using DESI Early Data
- Author
-
Pucha, Ragadeepika, Juneau, S., Dey, Arjun, Siudek, M., Mezcua, M., Moustakas, J., BenZvi, S., Hainline, K., Hviding, R., Mao, Yao-Yuan, Alexander, D. M., Alfarsy, R., Circosta, C., Guo, Wei-Jian, Manwadkar, V., Martini, P., Weaver, B. A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Canning, R., Claybaugh, T., Dawson, K., de la Macorra, A., Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Kehoe, R., Koposov, S. E., Lambert, A., Landriau, M., Guillou, L. Le, Meisner, A., Miquel, R., Prada, F., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Using early data from the Dark Energy Spectroscopic Instrument (DESI) survey, we search for AGN signatures in 410,757 line-emitting galaxies. By employing the BPT emission-line ratio diagnostic diagram, we identify AGN in 75,928/296,261 ($\approx$25.6%) high-mass ($\log (M_{\star}/\rm M_{\odot}) >$ 9.5) and 2,444/114,496 ($\approx$2.1%) dwarf ($\log (M_{\star}/\rm M_{\odot}) \leq$ 9.5) galaxies. Of these AGN candidates, 4,181 sources exhibit a broad H$\alpha$ component, allowing us to estimate their BH masses via virial techniques. This study more than triples the census of dwarf AGN as well as that of intermediate-mass black hole (IMBH; $M_{\rm BH} \le 10^6~\rm M_{\odot}$) candidates, spanning a broad discovery space in stellar mass (7 $< \log (M_{\star}/\rm M_{\odot}) <$ 12) and redshift (0.001 $< \rm z <$ 0.45). The observed AGN fraction in dwarf galaxies ($\approx$2.1%) is nearly four times higher than prior estimates, primarily due to DESI's smaller fiber size, which enables the detection of lower luminosity dwarf AGN candidates. We also extend the $M_{\rm BH}$ - $M_{\star}$ scaling relation down to $\log (M_{\star}/\rm M_{\odot}) \approx$ 8.5 and $\log (M_{\rm BH}/M_{\odot}) \approx$ 4.4, with our results aligning well with previous low-redshift studies. The large statistical sample of dwarf AGN candidates from current and future DESI releases will be invaluable for enhancing our understanding of galaxy evolution at the low-mass end of the galaxy mass function., Comment: 35 pages, 22 figures, Submitted to AAS Journals, Comments are welcome
- Published
- 2024
22. Sigmoid eruption associated with X9.3 flare from AR 12673 drives gradual SEP event on 2017 September 6
- Author
-
Yardley, Stephanie L. and Brooks, David H.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
Large gradual solar energetic particle (SEP) events can pose a radiation risk to crewed spaceflight and a significant threat to near-Earth satellites however, the origin of the SEP seed particle population, how these particles are released, accelerated and transported into the heliosphere are not well understood. We analyse NOAA active region (AR) 12673, that was the source responsible for multiple large gradual SEP events during September 2017, and found that almost immediately after each significant eruptive event associated with SEPs an enhanced Si/S abundance ratio was measured by Wind, consistent with the previous work by Brooks et al. Hinode/EIS took data roughly 8~hours before the second SEP event on 2017 September 6 that allowed the regions of enhanced Si/S abundance ratio in the AR to be determined. We have shown that the AR contains plasma with elemental abundance values detected in situ by Wind. In particular, the plasma originates from the core of the AR, similar to Brooks et al., but in the moss (footpoints) associated with hot sigmoidal AR loops. The sigmoid, that contains highly fractionated plasma, erupts and propagates towards an Earth-connected magnetic null point, providing a direct channel for the highly fractionated plasma to escape and be detected in the near-Earth environment., Comment: 10 pages, 4 figures, accepted for publication in ApJ
- Published
- 2024
23. Dark Energy Survey Year 3: Blue Shear
- Author
-
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., and Collaboration, DES
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the $\Omega_{m}$ and $S_8$ better agree with the cosmic microwave background. Mitigating IA with sample selection, instead of flexible model choices, can reduce uncertainty in $S_8$ by a factor of 1.5., Comment: Data access available at https://jamiemccullough.github.io/data/blueshear/
- Published
- 2024
24. Improving Galaxy Cluster Selection with the Outskirt Stellar Mass of Galaxies
- Author
-
Kwiecien, Matthew, Jeltema, Tesla, Leauthaud, Alexie, Huang, Song, Rykoff, Eli, Heydenreich, Sven, Lange, Johannes, Everett, Spencer, Zhou, Conghao, Kelly, Paige, Zhang, Yuanyuan, Shin, Tae-Hyeon, Golden-Marx, Jesse, Marshall, J. L., Aguena, M., Allam, S. S., Bocquet, S., Brooks, D., Rosell, A. Carnero, Carretero, J., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Lee, S., Miquel, R., Pieres, A., Malagón, A. A. Plazas, Romer, A. K., Samuroff, S., Sanchez, E., Santiago, B., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Vikram, V., Weaverdyck, N., and Wiseman, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The number density and redshift evolution of optically selected galaxy clusters offer an independent measurement of the amplitude of matter fluctuations, $S_8$. However, recent results have shown that clusters chosen by the redMaPPer algorithm show richness-dependent biases that affect the weak lensing signals and number densities of clusters, increasing uncertainty in the cluster mass calibration and reducing their constraining power. In this work, we evaluate an alternative cluster proxy, outskirt stellar mass, $M_{\textrm{out}}$, defined as the total stellar mass within a $[50,100]$ kpc envelope centered on a massive galaxy. This proxy exhibits scatter comparable to redMaPPer richness, $\lambda$, but is less likely to be subject to projection effects. We compare the Dark Energy Survey Year 3 redMaPPer cluster catalog with a $M_{\textrm{out}}$ selected cluster sample from the Hyper-Suprime Camera survey. We use weak lensing measurements to quantify and compare the scatter of $M_{\textrm{out}}$ and $\lambda$ with halo mass. Our results show $M_{\textrm{out}}$ has a scatter consistent with $\lambda$, with a similar halo mass dependence, and that both proxies contain unique information about the underlying halo mass. We find $\lambda$-selected samples introduce features into the measured $\Delta \Sigma$ signal that are not well fit by a log-normal scatter only model, absent in $M_{\textrm{out}}$ selected samples. Our findings suggest that $M_{\textrm{out}}$ offers an alternative for cluster selection with more easily calibrated selection biases, at least at the generally lower richnesses probed here. Combining both proxies may yield a mass proxy with a lower scatter and more tractable selection biases, enabling the use of lower mass clusters in cosmology. Finally, we find the scatter and slope in the $\lambda-M_{\textrm{out}}$ scaling relation to be $0.49 \pm 0.02$ and $0.38 \pm 0.09$., Comment: 22 pages, 8 figures, 4 tables, submitted to PRD
- Published
- 2024
25. Optimizing Edge Offloading Decisions for Object Detection
- Author
-
Qiu, Jiaming, Wang, Ruiqi, Hu, Brooks, Guerin, Roch, and Lu, Chenyang
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Machine Learning ,Computer Science - Networking and Internet Architecture - Abstract
Recent advances in machine learning and hardware have produced embedded devices capable of performing real-time object detection with commendable accuracy. We consider a scenario in which embedded devices rely on an onboard object detector, but have the option to offload detection to a more powerful edge server when local accuracy is deemed too low. Resource constraints, however, limit the number of images that can be offloaded to the edge. Our goal is to identify which images to offload to maximize overall detection accuracy under those constraints. To that end, the paper introduces a reward metric designed to quantify potential accuracy improvements from offloading individual images, and proposes an efficient approach to make offloading decisions by estimating this reward based only on local detection results. The approach is computationally frugal enough to run on embedded devices, and empirical findings indicate that it outperforms existing alternatives in improving detection accuracy even when the fraction of offloaded images is small., Comment: SEC 2024
- Published
- 2024
26. How host mobility patterns shape antigenic escape during viral-immune co-evolution
- Author
-
Blot, Natalie, Brooks, Caelan, Swartz, Daniel W., Abdelaleem, Eslam, Garic, Martin, Iglesias-Ramas, Andrea, Pasek, Michael, Mora, Thierry, and Walczak, Aleksandra M.
- Subjects
Quantitative Biology - Populations and Evolution - Abstract
Viruses like influenza have long coevolved with host immune systems, gradually shaping the evolutionary trajectory of these pathogens. Host immune systems develop immunity against circulating strains, which in turn avoid extinction by exploiting antigenic escape mutations that render new strains immune from existing antibodies in the host population. Infected hosts are also mobile, which can spread the virus to regions without developed host immunity, offering additional reservoirs for viral growth. While the effects of migration on long term stability have been investigated, we know little about how antigenic escape coupled with migration changes the survival and spread of emerging viruses. By considering the two processes on equal footing, we show that on short timescales an intermediate host mobility rate increases the survival probability of the virus through antigenic escape. We show that more strongly connected migratory networks decrease the survival probability of the virus. Using data from high traffic airports we argue that current human migration rates are beneficial for viral survival.
- Published
- 2024
27. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
28. An elemental abundance diagnostic for coordinated Solar Orbiter/SPICE and Hinode/EIS observations
- Author
-
Brooks, David H., Warren, Harry P., Baker, Deborah, Matthews, Sarah A., and Yardley, Stephanie L.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Plasma composition measurements are a vital tool for the success of current and future solar missions, but density and temperature insensitive spectroscopic diagnostic ratios are sparse, and their underlying accuracy in determining the magnitude of the First Ionization Potential (FIP) effect in the solar atmosphere remains an open question. Here we assess the Fe VIII 185.213A/Ne VIII 770.428A intensity ratio that can be observed as a multi-spacecraft combination between Solar Orbiter/SPICE and Hinode/EIS. We find that it is fairly insensitive to temperature and density in the range of log (T/K) = 5.65-6.05 and is therefore useful, in principle, for analyzing on-orbit EUV spectra. We also perform an empirical experiment, using Hinode/EIS measurements of coronal fan loop temperature distributions weighted by randomnly generated FIP bias values, to show that our diagnostic method can provide accurate results as it recovers the input FIP bias to within 10--14%. This is encouraging since it is smaller than the magnitude of variations seen throughout the solar corona. We apply the diagnostic to coordinated observations from 2023 March, and show that the combination of SPICE and EIS allows measurements of the Fe/Ne FIP bias in the regions where the footpoints of the magnetic field connected to Solar Orbiter are predicted to be located. The results show an increase in FIP bias between the main leading polarity and the trailing decayed polarity that broadly agrees with Fe/O in-situ measurements from Solar Orbiter/SWA. Multi-spacecraft coordinated observations are complex, but this diagnostic also falls within the planned wavebands for Solar-C/EUVST., Comment: To be published in The Astrophysical Journal
- Published
- 2024
- Full Text
- View/download PDF
29. Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data
- Author
-
Dang, Quang, Kucukosmanoglu, Murat, Anoruo, Michael, Kargosha, Golshan, Conklin, Sarah, and Brooks, Justin
- Subjects
Computer Science - Machine Learning ,Computer Science - Human-Computer Interaction ,Quantitative Biology - Neurons and Cognition - Abstract
Assessing cognitive workload is crucial for human performance as it affects information processing, decision making, and task execution. Pupil size is a valuable indicator of cognitive workload, reflecting changes in attention and arousal governed by the autonomic nervous system. Cognitive events are closely linked to cognitive workload as they activate mental processes and trigger cognitive responses. This study explores the potential of using machine learning to automatically detect cognitive events experienced using individuals. We framed the problem as a binary classification task, focusing on detecting stimulus onset across four cognitive tasks using CNN models and 1-second pupillary data. The results, measured by Matthew's correlation coefficient, ranged from 0.47 to 0.80, depending on the cognitive task. This paper discusses the trade-offs between generalization and specialization, model behavior when encountering unseen stimulus onset times, structural variances among cognitive tasks, factors influencing model predictions, and real-time simulation. These findings highlight the potential of machine learning techniques in detecting cognitive events based on pupil and eye movement responses, contributing to advancements in personalized learning and optimizing neurocognitive workload management., Comment: 10 pages, 7 figures
- Published
- 2024
30. An Annotated Dataset of Errors in Premodern Greek and Baselines for Detecting Them
- Author
-
Brooks, Creston, Haubold, Johannes, Cowen-Breen, Charlie, White, Jay, DeVaul, Desmond, Riemenschneider, Frederick, Narasimhan, Karthik, and Graziosi, Barbara
- Subjects
Computer Science - Computation and Language - Abstract
As premodern texts are passed down over centuries, errors inevitably accrue. These errors can be challenging to identify, as some have survived undetected for so long precisely because they are so elusive. While prior work has evaluated error detection methods on artificially-generated errors, we introduce the first dataset of real errors in premodern Greek, enabling the evaluation of error detection methods on errors that genuinely accumulated at some stage in the centuries-long copying process. To create this dataset, we use metrics derived from BERT conditionals to sample 1,000 words more likely to contain errors, which are then annotated and labeled by a domain expert as errors or not. We then propose and evaluate new error detection methods and find that our discriminator-based detector outperforms all other methods, improving the true positive rate for classifying real errors by 5%. We additionally observe that scribal errors are more difficult to detect than print or digitization errors. Our dataset enables the evaluation of error detection methods on real errors in premodern texts for the first time, providing a benchmark for developing more effective error detection algorithms to assist scholars in restoring premodern works.
- Published
- 2024
31. The Atacama Cosmology Telescope DR6 and DESI: Structure growth measurements from the cross-correlation of DESI Legacy Imaging galaxies and CMB lensing from ACT DR6 and Planck PR4
- Author
-
Qu, Frank J., Hang, Qianjun, Farren, Gerrit, Bolliet, Boris, Aguilar, Jessica Nicole, Ahlen, Steven, Alam, Shadab, Brooks, David, Cai, Yan-Chuan, Calabrese, Erminia, Claybaugh, Todd, de la Macorra, Axel, Devlin, Mark J., Doel, Peter, Embil-Villagra, Carmen, Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gluscevic, Vera, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Howlett, Cullan, Kehoe, Robert, Kim, Joshua, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Louis, Thibaut, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Newman, Jeffrey A., Niz, Gustavo, Peacock, John, Percival, Will, Poppett, Claire, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Sehgal, Neelima, Shaikh, Shabbir, Sherwin, Blake, Sifón, Cristóbal, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Wollack, Edward J., and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the growth of cosmic density fluctuations on large scales and across the redshift range $0.3
- Published
- 2024
32. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
33. Exploring the interaction between the MW and LMC with a large sample of blue horizontal branch stars from the DESI survey
- Author
-
Byström, Amanda, Koposov, Sergey E., Lilleengen, Sophia, Li, Ting S., Bell, Eric, Silva, Leandro Beraldo e, Carrillo, Andreia, Chandra, Vedant, Gnedin, Oleg Y., Han, Jiwon Jesse, Medina, Gustavo E., Najita, Joan, Riley, Alexander H., Thomas, Guillaume, Valluri, Monica, Aguilar, Jessica N., Ahlen, Steven, Prieto, Carlos Allende, Brooks, David, Claybaugh, Todd, Cole, Shaun, Dawson, Kyle, de la Macorra, Axel, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin A., and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Large Magellanic Cloud (LMC) is a Milky Way (MW) satellite that is massive enough to gravitationally attract the MW disc and inner halo, causing significant motion of the inner MW with respect to the outer halo. In this work, we probe this interaction by constructing a sample of 9,866 blue horizontal branch (BHB) stars with radial velocities from the DESI spectroscopic survey out to 120 kpc from the Galactic centre. This is the largest spectroscopic set of BHB stars in the literature to date, and it contains four times more stars with Galactocentric distances beyond 50 kpc than previous BHB catalogues. Using the DESI BHB sample combined with SDSS BHBs, we measure the bulk radial velocity of stars in the outer halo and observe that the velocity in the Southern Galactic hemisphere is different by 3.7$\sigma$ from the North. Modelling the projected velocity field shows that its dipole component is directed at a point 22 degrees away from the LMC along its orbit, which we interpret as the travel direction of the inner MW. The velocity field includes a monopole term that is -24 km/s, which we refer to as compression velocity. This velocity is significantly larger than predicted by the current models of the MW and LMC interaction. This work uses DESI data from its first two years of observations, but we expect that with upcoming DESI data releases, the sample of BHB stars will increase and our ability to measure the MW-LMC interaction will improve significantly., Comment: 22 pages, 19 figures. Submitted to MNRAS
- Published
- 2024
34. Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction
- Author
-
Rector-Brooks, Jarrid, Hasan, Mohsin, Peng, Zhangzhi, Quinn, Zachary, Liu, Chenghao, Mittal, Sarthak, Dziri, Nouha, Bronstein, Michael, Bengio, Yoshua, Chatterjee, Pranam, Tong, Alexander, and Bose, Avishek Joey
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typically via RLHF - to satisfy a specified property, reward, or affinity metric. In this paper, we study the problem of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion models that offer a compelling alternative to traditional autoregressive models. We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference by learning to sample from a target Bayesian posterior. Our DDPP framework leads to a family of three novel objectives that are all simulation-free, and thus scalable while applying to general non-differentiable reward functions. Empirically, we instantiate DDPP by steering MDMs to perform class-conditional pixel-level image modeling, RLHF-based alignment of MDMs using text-based rewards, and finetuning protein language models to generate more diverse secondary structures and shorter proteins. We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
- Published
- 2024
35. High-redshift LBG selection from broadband and wide photometric surveys using a Random Forest algorithm
- Author
-
Payerne, C., Doumerg, W. d'Assignies, Yèche, C., Ruhlmann-Kleider, V., Raichoor, A., Lang, D., Aguilar, J. N., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, B., Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Juneau, S., Lambert, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper, we investigate the possibility of selecting high-redshift Lyman-Break Galaxies (LBG) using current and future broadband wide photometric surveys, such as UNIONS or the Vera C. Rubin LSST, using a Random Forest algorithm. This work is conducted in the context of future large-scale structure spectroscopic surveys like DESI-II, the next phase of the Dark Energy Spectroscopic Instrument (DESI), which will start around 2029. We use deep imaging data from HSC and CLAUDS on the COSMOS and XMM-LSS fields. To predict the selection performance of LBGs with image quality similar to UNIONS, we degrade the $u, g, r, i$ and $z$ bands to UNIONS depth. The Random Forest algorithm is trained with the $u,g,r,i$ and $z$ bands to classify LBGs in the $2.5 < z < 3.5$ range. We find that fixing a target density budget of $1,100$ deg$^{-2}$, the Random Forest approach gives a density of $z>2$ targets of $873$ deg$^{-2}$, and a density of $493$ deg$^{-2}$ of confirmed LBGs after spectroscopic confirmation with DESI. This UNIONS-like selection was tested in a dedicated spectroscopic observation campaign of 1,000 targets with DESI on the COSMOS field, providing a safe spectroscopic sample with a mean redshift of 3. This sample is used to derive forecasts for DESI-II, assuming a sky coverage of 5,000 deg$^2$. We predict uncertainties on Alcock-Paczynski parameters $\alpha_\perp$ and $\alpha_{\parallel}$ to be 0.7$\%$ and 1$\%$ for $2.6
- Published
- 2024
36. The Rise of AI-Generated Content in Wikipedia
- Author
-
Brooks, Creston, Eggert, Samuel, and Peskoff, Denis
- Subjects
Computer Science - Computation and Language - Abstract
The rise of AI-generated content in popular information sources raises significant concerns about accountability, accuracy, and bias amplification. Beyond directly impacting consumers, the widespread presence of this content poses questions for the long-term viability of training language models on vast internet sweeps. We use GPTZero, a proprietary AI detector, and Binoculars, an open-source alternative, to establish lower bounds on the presence of AI-generated content in recently created Wikipedia pages. Both detectors reveal a marked increase in AI-generated content in recent pages compared to those from before the release of GPT-3.5. With thresholds calibrated to achieve a 1% false positive rate on pre-GPT-3.5 articles, detectors flag over 5% of newly created English Wikipedia articles as AI-generated, with lower percentages for German, French, and Italian articles. Flagged Wikipedia articles are typically of lower quality and are often self-promotional or partial towards a specific viewpoint on controversial topics.
- Published
- 2024
37. Constraints on compact objects from the Dark Energy Survey five-year supernova sample
- Author
-
Shah, Paul, Davis, Tamara M., Vincenzi, Maria, Armstrong, Patrick, Brout, Dillon, Camilleri, Ryan, Galbany, Lluis, Garcia-Bellido, Juan, Gill, Mandeep S. S., Lahav, Ofer, Lee, Jason, Lidman, Chris, Moeller, Anais, Sako, Masao, Sanchez, Bruno O., Sullivan, Mark, Whiteway, Lorne, Wiseman, Phillip, Allam, S., Aguena, M., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, da Costa, L. N., Pereira, M. E. S., Desai, S., Dodelson, S., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lee, S., Marshall, J. L., Mena-Fernandez, J., Miquel, R., Myles, J., Palmese, A., Pieres, A., Malagon, A. A. Plazas, Roodman, A., Samuroff, S., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., and Vikram, V.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitational lensing magnification of Type Ia supernovae (SNe Ia) allows information to be obtained about the distribution of matter on small scales. In this paper, we derive limits on the fraction $\alpha$ of the total matter density in compact objects (which comprise stars, stellar remnants, small stellar groupings and primordial black holes) of mass $M > 0.03 M_{\odot}$ over cosmological distances. Using 1,532 SNe Ia from the Dark Energy Survey Year 5 sample (DES-SN5YR) combined with a Bayesian prior for the absolute magnitude $M$, we obtain $\alpha < 0.12$ at the 95\% confidence level after marginalisation over cosmological parameters, lensing due to large-scale structure, and intrinsic non-Gaussianity. Similar results are obtained using priors from the cosmic microwave background, baryon acoustic oscillations and galaxy weak lensing, indicating our results do not depend on the background cosmology. We argue our constraints are likely to be conservative (in the sense of the values we quote being higher than the truth), but discuss scenarios in which they could be weakened by systematics of the order of $\Delta \alpha \sim 0.04$, Comment: Accepted by MNRAS
- Published
- 2024
38. DESI Emission Line Galaxies: Unveiling the Diversity of [OII] Profiles and its Links to Star Formation and Morphology
- Author
-
Lan, Ting-Wen, Prochaska, J. Xavier, Moustakas, John, Siudek, Małgorzata, Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Doel, P., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Kehoe, R., Kisner, T., Lambert, A., Landriau, M., Meisner, A., Miquel, R., Muñoz-Gutiérrez, A., Newman, J. A., Poppett, C., Prada, F., Rossi, G., Sanchez, E., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the [OII] profiles of emission line galaxies (ELGs) from the Early Data Release of the Dark Energy Spectroscopic Instrument (DESI). To this end, we decompose and classify the shape of [OII] profiles with the first two eigenspectra derived from Principal Component Analysis. Our results show that DESI ELGs have diverse line profiles which can be categorized into three main types: (1) narrow lines with a median width of ~50 km/s, (2) broad lines with a median width of ~80 km/s, and (3) two-redshift systems with a median velocity separation of ~150 km/s, i.e., double-peak galaxies. To investigate the connections between the line profiles and galaxy properties, we utilize the information from the COSMOS dataset and compare the properties of ELGs, including star-formation rate (SFR) and galaxy morphology, with the average properties of reference star-forming galaxies with similar stellar mass, sizes, and redshifts. Our findings show that on average, DESI ELGs have higher SFR and more asymmetrical/disturbed morphology than the reference galaxies. Moreover, we uncover a relationship between the line profiles, the excess SFR and the excess asymmetry parameter, showing that DESI ELGs with broader [OII] line profiles have more disturbed morphology and higher SFR than the reference star-forming galaxies. Finally, we discuss possible physical mechanisms giving rise to the observed relationship and the implications of our findings on the galaxy clustering measurements, including the halo occupation distribution modeling of DESI ELGs and the observed excess velocity dispersion of the satellite ELGs., Comment: 24 pages, 13 figures, submitted to ApJ
- Published
- 2024
39. Observation of disorder-free localization and efficient disorder averaging on a quantum processor
- Author
-
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning.
- Published
- 2024
40. Here There Be (Dusty) Monsters: High Redshift AGN are Dustier Than Their Hosts
- Author
-
Brooks, Madisyn, Simons, Raymond C., Trump, Jonathan R., Taylor, Anthony J., Backhaus, Bren, Davis, Kelcey, Buat, Véronique, Cleri, Nikko J., Finkelstein, Steven L., Hirschmann, Michaela, Holwerda, Benne W., Kocevski, Dale D., Koekemoer, Anton M., Lucas, Ray A., Pacucci, Fabio, and Seillé, Lise-Marie
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
JWST spectroscopy has discovered a population of $z \gtrsim 3.5$ galaxies with broad Balmer emission lines, and narrow forbidden lines, that are consistent with hosting active galactic nuclei (AGN). Many of these systems, now known as ``little red dots" (LRDs), are compact and have unique colors that are very red in the optical/near-infrared and blue in the ultraviolet. The relative contribution of galaxy starlight and AGN to these systems remains uncertain, especially for the galaxies with unusual blue+red spectral energy distributions. In this work, we use Balmer decrements to measure the independent dust attenuation of the broad and narrow emission-line components of a sample of 29 broad-line AGN identified from three public JWST spectroscopy surveys: CEERS, JADES, and RUBIES. Stacking the narrow components from the spectra of 25 sources with broad H$\rm{\alpha}$ and no broad H$\rm{\beta}$ results in a median narrow H$\rm{\alpha}$/H$\rm{\beta}$ = $2.47^{+0.05}_{-0.05}$ (consistent with $A_{v} = 0$) and broad H$\rm{\alpha}$/H$\rm{\beta}$ $> 8.85$ ($A_{v} > 3.63$). The narrow and broad Balmer decrements imply little-to-no attenuation of the narrow emission lines, which are consistent with being powered by star formation and located on larger physical scales. Meanwhile, the lower limit in broad H$\rm{\alpha}$/H$\rm{\beta}$ decrement, with broad H$\rm{\beta}$ undetected in the stacked spectrum of 25 broad-H$\rm{\alpha}$ AGN, implies significant dust attenuation of the broad-line emitting region that is presumably associated with the central AGN. Our results indicate that these systems, on average, are consistent with heavily dust-attenuated AGN powering the red parts of their SED while their blue UV emission is powered by unattenuated star formation in the host galaxy., Comment: 4 figures, 3 tables
- Published
- 2024
41. Resilience to Non-Compliance in Coupled Cooperating Systems
- Author
-
Butler, Brooks A. and Paré, Philip E.
- Subjects
Mathematics - Optimization and Control - Abstract
This letter explores the implementation of a safe control law for systems of dynamically coupled cooperating agents. Under a CBF-based collaborative safety framework, we examine how the maximum safety capability for a given agent, which is computed using a collaborative safety condition, influences safety requests made to neighbors. We provide conditions under which neighbors may be resilient to non-compliance of neighbors to safety requests, and compute an upper bound for the total amount of non-compliance an agent is resilient to, given its 1-hop neighborhood state and knowledge of the network dynamics. We then illustrate our results via simulation on a networked susceptible-infected-susceptible (SIS) epidemic model., Comment: This work is under review for publication in IEEE Control Systems Letters (L-CSS)
- Published
- 2024
42. Safe Reference Tracking and Collision Avoidance for Taxiing Aircraft Using an MPC-CBF Framework
- Author
-
Butler, Brooks A., Cabrera, Zarif, Nguyen, Andy, and Paré, Philip E.
- Subjects
Electrical Engineering and Systems Science - Systems and Control ,Computer Science - Robotics - Abstract
In this paper, we develop a framework for the automatic taxiing of aircraft between hangar and take-off given a graph-based model of an airport. We implement a high-level path-planning algorithm that models taxiway intersections as nodes in an undirected graph, algorithmically constructs a directed graph according to the physical limitations of the aircraft, and finds the shortest valid taxi path through the directed graph using Dijkstra's algorithm. We then use this shortest path to construct a reference trajectory for the aircraft to follow that considers the turning capabilities of a given aircraft. Using high-order control barrier functions (HOCBFs), we construct safety conditions for multi-obstacle avoidance and safe reference tracking for simple 2D unicycle dynamics with acceleration control inputs. We then use these safety conditions to design an MPC-CBF framework that tracks the reference trajectory while adhering to the safety constraints. We compare the performance of our MPC-CBF controller with a PID-CBF control method via simulations., Comment: This work is under review to be presented at the 2025 American Control Conference
- Published
- 2024
43. Collaborative Safety-Critical Formation Control with Obstacle Avoidance
- Author
-
Butler, Brooks A., Leung, Chi Ho, and Paré, Philip E.
- Subjects
Computer Science - Robotics ,Electrical Engineering and Systems Science - Systems and Control ,Mathematics - Optimization and Control - Abstract
This work explores a collaborative method for ensuring safety in multi-agent formation control problems. We formulate a control barrier function (CBF) based safety filter control law for a generic distributed formation controller and extend our previously developed collaborative safety framework to an obstacle avoidance problem for agents with acceleration control inputs. We then incorporate multi-obstacle collision avoidance into the collaborative safety framework. This framework includes a method for computing the maximum capability of agents to satisfy their individual safety requirements. We analyze the convergence rate of our collaborative safety algorithm, and prove the linear-time convergence of cooperating agents to a jointly feasible safe action for all agents under the special case of a tree-structured communication network with a single obstacle for each agent. We illustrate the analytical results via simulation on a mass-spring kinematics-based formation controller and demonstrate the finite-time convergence of the collaborative safety algorithm in the simple proven case, the more general case of a fully-connected system with multiple static obstacles, and with dynamic obstacles., Comment: This work is under review for publication in Automatica. arXiv admin note: text overlap with arXiv:2311.11156
- Published
- 2024
44. LMC Calls, Milky Way Halo Answers: Disentangling the Effects of the MW--LMC Interaction on Stellar Stream Populations
- Author
-
Brooks, Richard A. N., Garavito-Camargo, Nicolás, Johnston, Kathryn V., Price-Whelan, Adrian M., Sanders, Jason L., and Lilleengen, Sophia
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The infall of the LMC into the Milky Way (MW) has dynamical implications throughout the MW's dark matter halo. We study the impact of this merger on the statistical properties of populations of simulated stellar streams. Specifically, we investigate the radial and on-sky angular dependence of stream perturbations caused by the direct effect of stream-LMC interactions and/or the response of the MW dark matter halo. We use a time-evolving MW--LMC simulation described by basis function expansions to simulate streams. We quantify the degree of perturbation using a set of stream property statistics including the misalignment of proper motions with the stream track. In the outer halo, direct stream--LMC interactions produce a statistically significant effect, boosting the fraction of misaligned proper motions by ~25% compared to the model with no LMC. Moreover, there is on-sky angular dependence of stream perturbations:~the highest fractions of perturbed streams coincide with the same on-sky quadrant as the present-day LMC location. In the inner halo, the MW halo dipole response primarily drives stream perturbations, but it remains uncertain whether this is a detectable signature distinct from the LMC's influence. For the fiducial MW--LMC model, we find agreement between the predicted fraction of streams with significantly misaligned proper motions, $\bar{\vartheta}>10^{\circ}$, and Dark Energy Survey data. Finally, we predict this fraction for the Vera Rubin Large Synoptic Survey Telescope (LSST) footprint. Using LSST data will improve our constraints on dark matter models and LMC properties as it is sensitive to both., Comment: ApJ submitted. 22 pages, 8 figures
- Published
- 2024
45. Adaptive teachers for amortized samplers
- Author
-
Kim, Minsu, Choi, Sanghyeok, Yun, Taeyoung, Bengio, Emmanuel, Feng, Leo, Rector-Brooks, Jarrid, Ahn, Sungsoo, Park, Jinkyoo, Malkin, Nikolay, and Bengio, Yoshua
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnormalized density where exact sampling is intractable. When sampling is implemented as a sequential decision-making process, reinforcement learning (RL) methods, such as generative flow networks, can be used to train the sampling policy. Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration. We propose to use an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions. The Teacher, an auxiliary behavior model, is trained to sample high-error regions of the Student and can generalize across unexplored modes, thereby enhancing mode coverage by providing an efficient training curriculum. We validate the effectiveness of this approach in a synthetic environment designed to present an exploration challenge, two diffusion-based sampling tasks, and four biochemical discovery tasks demonstrating its ability to improve sample efficiency and mode coverage., Comment: 26 pages, 12 figures
- Published
- 2024
46. Merian: A Wide-Field Imaging Survey of Dwarf Galaxies at z~0.06-0.10
- Author
-
Danieli, Shany, Kado-Fong, Erin, Huang, Song, Luo, Yifei, Li, Ting S, Kelvin, Lee S, Leauthaud, Alexie, Greene, Jenny E., Mintz, Abby, Lin, Xiaojing, Li, Jiaxuan, Baldassare, Vivienne, Banerjee, Arka, Bhattacharyya, Joy, Blanco, Diana, Brooks, Alyson, Cai, Zheng, Chen, Xinjun, Cruz, Akaxia, Geda, Robel, Guan, Runquan, Johnson, Sean, Kannawadi, Arun, Kim, Stacy Y., Li, Mingyu, Lupton, Robert, Mace, Charlie, Medina, Gustavo E., Pan, Yue, Peter, Annika H. G., Read, Justin I., Rosado, Rodrigo Córdova, Seifert, Allen, Wasleske, Erik J., and Wick, Joseph
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the Merian Survey, an optical imaging survey optimized for studying the physical properties of bright star-forming dwarf galaxies. Merian is carried out with two medium-band filters ($N708$ and $N540$, centered at $708$ and $540$ nm), custom-built for the Dark Energy Camera (DECam) on the Blanco telescope. Merian covers $\sim 750\,\mathrm{deg}^2$ of equatorial fields, overlapping with the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) wide, deep, and ultra-deep fields. When combined with the HSC-SSP imaging data ($grizy$), the new Merian DECam medium-band imaging allows for photometric redshift measurements via the detection of H$\rm\alpha$ and [OIII] line emission flux excess in the $N708$ and $N540$ filters, respectively, at $0.06
- Published
- 2024
47. Quantum-private distributed sensing
- Author
-
Ho, Joseph, Webb, Jonathan W., Brooks, Russell M. J., Grasselli, Federico, Gauger, Erik, and Fedrizzi, Alessandro
- Subjects
Quantum Physics - Abstract
Quantum networks will provide unconditional security for communication, computation and distributed sensing tasks. We report on an experimental demonstration of private parameter estimation, which allows a global phase to be evaluated without revealing the constituent local phase values. This is achieved by sharing a Greenberger-Horne-Zeilinger (GHZ) state among three users who first verify the shared state before performing the sensing task. We implement the verification protocol, based on stabilizer measurements, and measure an average failure rate of 0.038(5) which we use to establish the security and privacy parameters. We validate the privacy conditions established by the protocol by evaluating the quantum Fisher information of the experimentally prepared GHZ states., Comment: 14 pages, 8 figures. Updated
- Published
- 2024
48. Intel(R) SHMEM: GPU-initiated OpenSHMEM using SYCL
- Author
-
Brooks, Alex, Marshall, Philip, Ozog, David, Rahman, Md. Wasi-ur, Stewart, Lawrence, and Tom, Rithwik
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
Modern high-end systems are increasingly becoming heterogeneous, providing users options to use general purpose Graphics Processing Units (GPU) and other accelerators for additional performance. High Performance Computing (HPC) and Artificial Intelligence (AI) applications are often carefully arranged to overlap communications and computation for increased efficiency on such platforms. This has led to efforts to extend popular communication libraries to support GPU awareness and more recently, GPU-initiated operations. In this paper, we present Intel SHMEM, a library that enables users to write programs that are GPU aware, in that API calls support GPU memory, and also support GPU-initiated communication operations by embedding OpenSHMEM style calls within GPU kernels. We also propose thread-collaborative extensions to the OpenSHMEM standard that can enable users to better exploit the strengths of GPUs. Our implementation adapts to choose between direct load/store from GPU and the GPU copy engine based transfer to optimize performance on different configurations.
- Published
- 2024
49. Value Added Catalog of physical properties of more than 1.3 million galaxies from the DESI Survey
- Author
-
Siudek, M., Pucha, R., Mezcua, M., Juneau, S., Aguilar, J., Ahlen, S., Brooks, D., Circosta, C., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Howlett, C., Ishak, M., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Lambert, A., Landriau, M., Guillou, L. Le, Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Pan, Z., Percival, W. J., Poppett, C., Prada, F., Rossi, G., Saintonge, A., Sanchez, E., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Speranza, F., Sprayberry, D., Tarle, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Aims. We present an extensive catalog of the physical properties of more than a million galaxies within the Dark Energy Spectroscopic Instrument (DESI), one of the largest spectroscopic surveys to date. Spanning over a full variety of target types, including emission line galaxies and luminous red galaxies as well as quasars, our survey encompasses an unprecedented range of spectroscopic redshifts, stretching from 0 to 6. Methods. The physical properties, such as stellar masses and star formation rates, are derived via the CIGALE spectral energy distribution (SED) fitting code accounting for the contribution coming from active galactic nuclei (AGN). Based on the modeling of the optical-mid-infrared (grz complemented by WISE photometry) SEDs, we study galaxy properties with respect to their location on the main sequence. Results. We revise the dependence of stellar mass estimates on model choices and availability of the WISE photometry. The WISE information is mandatory to minimize the misclassification of star-forming galaxies as AGN. The lack of WISE bands in SED fits leads to elevated AGN fractions for 68% of star-forming galaxies identified using emission line diagnostic diagram but does not significantly affect their stellar mass nor star formation estimates., Comment: resubmitted after addressing minor referee comments
- Published
- 2024
50. The Ancient Star Formation History of the Extremely Low-Mass Galaxy Leo P: An Emerging Trend of a Post-Reionization Pause in Star Formation
- Author
-
McQuinn, Kristen B. W., Newman, Max J. B., Skillman, Evan D., Telford, O. Grace, Brooks, Alyson, Adams, Elizabeth A. K., Berg, Danielle A., Boyer, Martha L., Cannon, John M., Dolphin, Andrew E., Pahl, Anthony, Rhode, Katherine L., Salzer, John J., Cohen, Roger E., and Goldman, Steve R.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Isolated, low-mass galaxies provide the opportunity to assess the impact of reionization on their star formation histories (SFHs) without the ambiguity of environmental processes associated with massive host galaxies. There are very few isolated, low-mass galaxies that are close enough to determine their SFHs from resolved star photometry reaching below the oldest main sequence turnoff. JWST has increased the volume for which this is possible, and here we report on JWST observations of the low-mass, isolated galaxy Leo P. From NIRCam imaging in F090W, F150W, and F277W, we derive a SFH which shows early star formation followed by a pause subsequent to the epoch of reionization which is then later followed by a re-ignition of star formation. This is very similar to the SFHs from previous studies of other dwarf galaxies in the ``transition zone'' between quenched very low-mass galaxies and the more massive galaxies which show no evidence of the impact of reionization on their SFHs; this pattern is rarely produced in simulations of SFHs. The lifetime SFH reveals that Leo P's stellar mass at the epoch of reionization was in the range that is normally associated with being totally quenched. The extended pause in star formation from z~5-1 has important implications for the contribution of low-mass galaxies to the UV photon budget at intermediate redshifts. We also demonstrate that, due to higher sensitivity and angular resolution, observing in two NIRCam short wavelength filters is superior to observing in a combination of a short and a long wavelength filter., Comment: 24 pages, 9 figures, 3 tables
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.