1. Effects of anthranilic diamide insecticides on metamorphosis in the common toad Rhinella arenarum (Hensel, 1867) at concentrations found in aquatic environments.
- Author
-
Peña SVDF and Brodeur JC
- Subjects
- Animals, Pyrazoles toxicity, Bufonidae growth & development, Dose-Response Relationship, Drug, Metamorphosis, Biological drug effects, Insecticides toxicity, Water Pollutants, Chemical toxicity, ortho-Aminobenzoates toxicity, Larva drug effects, Larva growth & development
- Abstract
Anthranilic diamides (AD) are a modern class of insecticides used as alternatives to pyrethroids and neonicotinoids, particularly against lepidopteran pests. Despite their widespread use and presence in surface waters, little is known regarding their effects on amphibians. The aim of this study was to examine the effects of environmentally-relevant concentrations of AD insecticides chlorantraniliprole (CHLO) and cyantraniliprole (CYAN) on metamorphosis of the toad Rhinella arenarum . Tadpoles were exposed to CHLO or CYAN at concentrations ranging from 5 and 5000 µg/L from stage 27 until metamorphosis completion. Both insecticides produced a non-monotonic acceleration of the time required for individuals to progress through development and a decrease in the proportion of individuals completing metamorphosis, although a delay in metamorphosis was also observed at 5 µg/L of CHLO. Snout-vent length and body weight of metamorphosed toads were not markedly affected by either insecticide. CHLO was more toxic than CYAN, with a lowest observed effect concentration (LOEC) for CHLO on time to metamorphosis defined as 5 µg/L compared to 5000 µg/L for CYAN. The LOEC for reduced metamorphic success defined as 50 µg/L for CHLO compared to 500 µg/L for CYAN. As most effects occurred after stage 39, when metamorphosis depends upon thyroid hormones, it is conceivable that that AD insecticides act as endocrine disruptors. These findings suggest that contamination of surface waters with CHLO and CYAN may disrupt amphibian development in the wild and warrant further research to investigate the possibility of endocrine-disruption by ADs.
- Published
- 2024
- Full Text
- View/download PDF