110 results on '"Broaddus VC"'
Search Results
2. Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors
- Author
-
Broaddus, V Courtney, Echeverry, N, Ziltener, G, Barbone, D, Weder, W, Stahel, RA, Broaddus, VC, and Felley-Bosco, E
- Published
- 2015
3. BAK and NOXA Are Critical Determinants of Mitochondrial Apoptosis Induced by Bortezomib in Mesothelioma
- Author
-
Broaddus, V Courtney, Busacca, S, Chacko, AD, Klabatsa, A, Arthur, K, Sheaff, M, Gunasekharan, VK, Gorski, JJ, El-Tanani, M, Broaddus, VC, and Gaudino, G
- Abstract
Based on promising preclinical efficacy associated with the 20S proteasome inhibitor bortezomib in malignant pleural mesothelioma (MPM), two phase II clinical trials have been initiated (EORTC 08052 and ICORG 05-10). However, the potential mechanisms under
- Published
- 2013
4. Ligation of CM1 enhances apoptosis of lung cancer cells through different mechanisms in conformity with EGFR mutation
- Author
-
Broaddus, V Courtney, Lee, HK, Park, GB, Kim, YS, Song, H, Broaddus, VC, and Hur, DY
- Abstract
Although remarkable developments in lung cancer treatments have been made, lung cancer remains the leading cause of cancer mortality worldwide. Epidermal growth factor receptor (EGFR) is occasionally mutated in non-small cell lung cancer and heterogeneity
- Published
- 2013
5. Vorinostat Eliminates Multicellular Resistance of Mesothelioma 3D Spheroids via Restoration of Noxa Expression
- Author
-
Broaddus, V Courtney, Barbone, D, Cheung, P, Battula, S, Busacca, S, Gray, SG, Longley, DB, Bueno, R, Sugarbaker, DJ, Fennell, DA, and Broaddus, VC
- Abstract
When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack
- Published
- 2012
6. The Bcl-2 repertoire of mesothelioma spheroids underlies acquired apoptotic multicellular resistance.
- Author
-
Barbone, D, Ryan, JA, Kolhatkar, N, Chacko, AD, Jablons, DM, Sugarbaker, DJ, Bueno, R, Letai, AG, Coussens, LM, Fennell, DA, and Broaddus, VC
- Subjects
Spheroids ,Cellular ,Tumor Cells ,Cultured ,Humans ,Mesothelioma ,Sulfonamides ,Biphenyl Compounds ,Nitrophenols ,Piperazines ,Proto-Oncogene Proteins c-bcl-2 ,Apoptosis ,Structure-Activity Relationship ,Drug Resistance ,Neoplasm ,mitochondria ,3D ,chemotherapy ,BH3-profiling ,bortezomib ,Spheroids ,Cellular ,Tumor Cells ,Cultured ,Drug Resistance ,Neoplasm ,Biochemistry and Cell Biology ,Oncology and Carcinogenesis - Abstract
Three-dimensional (3D) cultures are a valuable platform to study acquired multicellular apoptotic resistance of cancer. We used spheroids of cell lines and actual tumor to study resistance to the proteasome inhibitor bortezomib in mesothelioma, a highly chemoresistant tumor. Spheroids from mesothelioma cell lines acquired resistance to bortezomib by failing to upregulate Noxa, a pro-apoptotic sensitizer BH3-only protein that acts by displacing Bim, a pro-apoptotic Bax/Bak-activator protein. Surprisingly, despite their resistance, spheroids also upregulated Bim and thereby acquired sensitivity to ABT-737, an inhibitor of anti-apoptotic Bcl-2 molecules. Analysis using BH3 profiling confirmed that spheroids acquired a dependence on anti-apoptotic Bcl-2 proteins and were 'primed for death'. We then studied spheroids grown from actual mesothelioma. ABT-737 was active in spheroids grown from those tumors (5/7, ∼70%) with elevated levels of Bim. Using immunocytochemistry of tissue microarrays of 48 mesotheliomas, we found that most (33, 69%) expressed elevated Bim. In conclusion, mesothelioma cells in 3D alter the expression of Bcl-2 molecules, thereby acquiring both apoptotic resistance and sensitivity to Bcl-2 blockade. Mesothelioma tumors ex vivo also show sensitivity to Bcl-2 blockade that may depend on Bim, which is frequently elevated in mesothelioma. Therefore, mesothelioma, a highly resistant tumor, may have an intrinsic sensitivity to Bcl-2 blockade that can be exploited therapeutically.
- Published
- 2011
7. Crocidolite asbestos induces apoptosis of pleural mesothelial cells: role of reactive oxygen species and poly(ADP-ribosyl) polymerase.
- Author
-
Broaddus, VC, Yang, L, Scavo, LM, Ernst, JD, and Boylan, AM
- Subjects
Pleura ,Cell Nucleus ,Epithelial Cells ,Animals ,Rabbits ,Asbestos ,Crocidolite ,Reactive Oxygen Species ,Deferoxamine ,Catalase ,Superoxide Dismutase ,Poly(ADP-ribose) Polymerases ,Membrane Lipids ,Annexin A5 ,Iron Chelating Agents ,Carcinogens ,Apoptosis ,DNA Fragmentation ,Poly(ADP-ribose) Polymerase Inhibitors ,oxygen radicals ,annexin V ,flow cytometry ,deferoxamine ,internalization ,Asbestos ,Crocidolite ,Toxicology ,Environmental Sciences ,Medical and Health Sciences - Abstract
Mesothelial cells, the progenitor cells of the asbestos-induced tumor mesothelioma, are particularly sensitive to the toxic effects of asbestos, although the molecular mechanisms by which asbestos induces injury in mesothelial cells are not known. We asked whether asbestos induced apoptosis in mesothelial cells and whether reactive oxygen species were important. Rabbit pleural mesothelial cells were exposed to crocidolite asbestos or control particles (1-10 micrograms/cm2) over 24 hr and evaluated for oligonucleosomal DNA fragmentation, loss of membrane phospholipid asymmetry, and nuclear condensation. Asbestos fibers, not control particles, induced apoptosis in mesothelial cells by all assays. Induction of apoptosis was dose dependent; crocidolite (5 micrograms/cm2) induced apoptosis (15.0 +/- 1.1%, mean +/- SE; n = 12) versus control particles (< 4%), as measured by appearance of nuclear condensation. Apoptosis induced by asbestos, but not by actinomycin D, was inhibited by extracellular catalase, superoxide dismutase in the presence of catalase, hypoxia (8% oxygen), deferoxamine, and 3-aminobenzamide (an inhibitor of the nuclear enzyme, poly(adenosine diphosphate-ribosyl) polymerase). We conclude that asbestos induces apoptosis in mesothelial cells via reactive oxygen species. We speculate that escape from this pathway could allow the abnormal survival of mesothelial cells with asbestos-induced mutations.
- Published
- 1997
8. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
- Author
-
Klionsky, DJ, Abdel-Aziz, AK, Abdelfatah, S, Abdellatif, M, Abdoli, A, Abel, S, Abeliovich, H, Abildgaard, MH, Abudu, YP, Acevedo-Arozena, A, Adamopoulos, IE, Adeli, K, Adolph, TE, Adornetto, A, Aflaki, E, Agam, G, Agarwal, A, Aggarwal, BB, Agnello, M, Agostinis, P, Agrewala, JN, Agrotis, A, Aguilar, PV, Ahmad, ST, Ahmed, ZM, Ahumada-Castro, U, Aits, S, Aizawa, S, Akkoc, Y, Akoumianaki, T, Akpinar, HA, Al-Abd, AM, Al-Akra, L, Al-Gharaibeh, A, Alaoui-Jamali, MA, Alberti, S, Alcocer-Gómez, E, Alessandri, C, Ali, M, Alim Al-Bari, MA, Aliwaini, S, Alizadeh, J, Almacellas, E, Almasan, A, Alonso, A, Alonso, GD, Altan-Bonnet, N, Altieri, DC, Álvarez, ÉMC, Alves, S, Alves da Costa, C, Alzaharna, MM, Amadio, M, Amantini, C, Amaral, C, Ambrosio, S, Amer, AO, Ammanathan, V, An, Z, Andersen, SU, Andrabi, SA, Andrade-Silva, M, Andres, AM, Angelini, S, Ann, D, Anozie, UC, Ansari, MY, Antas, P, Antebi, A, Antón, Z, Anwar, T, Apetoh, L, Apostolova, N, Araki, T, Araki, Y, Arasaki, K, Araújo, WL, Araya, J, Arden, C, Arévalo, M-A, Arguelles, S, Arias, E, Arikkath, J, Arimoto, H, Ariosa, AR, Armstrong-James, D, Arnauné-Pelloquin, L, Aroca, A, Arroyo, DS, Arsov, I, Artero, R, Asaro, DML, Aschner, M, Ashrafizadeh, M, Ashur-Fabian, O, Atanasov, AG, Au, AK, Auberger, P, Auner, HW, Aurelian, L, Autelli, R, Avagliano, L, Ávalos, Y, Aveic, S, Aveleira, CA, Avin-Wittenberg, T, Aydin, Y, Ayton, S, Ayyadevara, S, Azzopardi, M, Baba, M, Backer, JM, Backues, SK, Bae, D-H, Bae, O-N, Bae, SH, Baehrecke, EH, Baek, A, Baek, S-H, Baek, SH, Bagetta, G, Bagniewska-Zadworna, A, Bai, H, Bai, J, Bai, X, Bai, Y, Bairagi, N, Baksi, S, Balbi, T, Baldari, CT, Balduini, W, Ballabio, A, Ballester, M, Balazadeh, S, Balzan, R, Bandopadhyay, R, Banerjee, S, Bánréti, Á, Bao, Y, Baptista, MS, Baracca, A, Barbati, C, Bargiela, A, Barilà, D, Barlow, PG, Barmada, SJ, Barreiro, E, Barreto, GE, Bartek, J, Bartel, B, Bartolome, A, Barve, GR, Basagoudanavar, SH, Bassham, DC, Bast, RC, Basu, A, Batoko, H, Batten, I, Baulieu, EE, Baumgarner, BL, Bayry, J, Beale, R, Beau, I, Beaumatin, F, Bechara, LRG, Beck, GR, Beers, MF, Begun, J, Behrends, C, Behrens, GMN, Bei, R, Bejarano, E, Bel, S, Behl, C, Belaid, A, Belgareh-Touzé, N, Bellarosa, C, Belleudi, F, Belló Pérez, M, Bello-Morales, R, Beltran, JSDO, Beltran, S, Benbrook, DM, Bendorius, M, Benitez, BA, Benito-Cuesta, I, Bensalem, J, Berchtold, MW, Berezowska, S, Bergamaschi, D, Bergami, M, Bergmann, A, Berliocchi, L, Berlioz-Torrent, C, Bernard, A, Berthoux, L, Besirli, CG, Besteiro, S, Betin, VM, Beyaert, R, Bezbradica, JS, Bhaskar, K, Bhatia-Kissova, I, Bhattacharya, R, Bhattacharya, S, Bhattacharyya, S, Bhuiyan, MS, Bhutia, SK, Bi, L, Bi, X, Biden, TJ, Bijian, K, Billes, VA, Binart, N, Bincoletto, C, Birgisdottir, AB, Bjorkoy, G, Blanco, G, Blas-Garcia, A, Blasiak, J, Blomgran, R, Blomgren, K, Blum, JS, Boada-Romero, E, Boban, M, Boesze-Battaglia, K, Boeuf, P, Boland, B, Bomont, P, Bonaldo, P, Bonam, SR, Bonfili, L, Bonifacino, JS, Boone, BA, Bootman, MD, Bordi, M, Borner, C, Bornhauser, BC, Borthakur, G, Bosch, J, Bose, S, Botana, LM, Botas, J, Boulanger, CM, Boulton, ME, Bourdenx, M, Bourgeois, B, Bourke, NM, Bousquet, G, Boya, P, Bozhkov, PV, Bozi, LHM, Bozkurt, TO, Brackney, DE, Brandts, CH, Braun, RJ, Braus, GH, Bravo-Sagua, R, Bravo-San Pedro, JM, Brest, P, Bringer, M-A, Briones-Herrera, A, Broaddus, VC, Brodersen, P, Brodsky, JL, Brody, SL, Bronson, PG, Bronstein, JM, Brown, CN, Brown, RE, Brum, PC, Brumell, JH, Brunetti-Pierri, N, Bruno, D, Bryson-Richardson, RJ, Bucci, C, Buchrieser, C, Bueno, M, Buitrago-Molina, LE, Buraschi, S, Buch, S, Buchan, JR, Buckingham, EM, Budak, H, Budini, M, Bultynck, G, Burada, F, Burgoyne, JR, Burón, MI, Bustos, V, Büttner, S, Butturini, E, Byrd, A, Cabas, I, Cabrera-Benitez, S, Cadwell, K, Cai, J, Cai, L, Cai, Q, Cairó, M, Calbet, JA, Caldwell, GA, Caldwell, KA, Call, JA, Calvani, R, Calvo, AC, Calvo-Rubio Barrera, M, Camara, NO, Camonis, JH, Camougrand, N, Campanella, M, Campbell, EM, Campbell-Valois, F-X, Campello, S, Campesi, I, Campos, JC, Camuzard, O, Cancino, J, Candido de Almeida, D, Canesi, L, Caniggia, I, Canonico, B, Cantí, C, Cao, B, Caraglia, M, Caramés, B, Carchman, EH, Cardenal-Muñoz, E, Cardenas, C, Cardenas, L, Cardoso, SM, Carew, JS, Carle, GF, Carleton, G, Carloni, S, Carmona-Gutierrez, D, Carneiro, LA, Carnevali, O, Carosi, JM, Carra, S, Carrier, A, Carrier, L, Carroll, B, Carter, AB, Carvalho, AN, Casanova, M, Casas, C, Casas, J, Cassioli, C, Castillo, EF, Castillo, K, Castillo-Lluva, S, Castoldi, F, Castori, M, Castro, AF, Castro-Caldas, M, Castro-Hernandez, J, Castro-Obregon, S, Catz, SD, Cavadas, C, Cavaliere, F, Cavallini, G, Cavinato, M, Cayuela, ML, Cebollada Rica, P, Cecarini, V, Cecconi, F, Cechowska-Pasko, M, Cenci, S, Ceperuelo-Mallafré, V, Cerqueira, JJ, Cerutti, JM, Cervia, D, Cetintas, VB, Cetrullo, S, Chae, H-J, Chagin, AS, Chai, C-Y, Chakrabarti, G, Chakrabarti, O, Chakraborty, T, Chami, M, Chamilos, G, Chan, DW, Chan, EYW, Chan, ED, Chan, HYE, Chan, HH, Chan, H, Chan, MTV, Chan, YS, Chandra, PK, Chang, C-P, Chang, C, Chang, H-C, Chang, K, Chao, J, Chapman, T, Charlet-Berguerand, N, Chatterjee, S, Chaube, SK, Chaudhary, A, Chauhan, S, Chaum, E, Checler, F, Cheetham, ME, Chen, C-S, Chen, G-C, Chen, J-F, Chen, LL, Chen, L, Chen, M, Chen, M-K, Chen, N, Chen, Q, Chen, R-H, Chen, S, Chen, W, Chen, X-M, Chen, X-W, Chen, X, Chen, Y, Chen, Y-G, Chen, Y-J, Chen, Y-Q, Chen, ZS, Chen, Z, Chen, Z-H, Chen, ZJ, Cheng, H, Cheng, J, Cheng, S-Y, Cheng, W, Cheng, X, Cheng, X-T, Cheng, Y, Cheng, Z, Cheong, H, Cheong, JK, Chernyak, BV, Cherry, S, Cheung, CFR, Cheung, CHA, Cheung, K-H, Chevet, E, Chi, RJ, Chiang, AKS, Chiaradonna, F, Chiarelli, R, Chiariello, M, Chica, N, Chiocca, S, Chiong, M, Chiou, S-H, Chiramel, AI, Chiurchiù, V, Cho, D-H, Choe, S-K, Choi, AMK, Choi, ME, Choudhury, KR, Chow, NS, Chu, CT, Chua, JP, Chua, JJE, Chung, H, Chung, KP, Chung, S, Chung, S-H, Chung, Y-L, Cianfanelli, V, Ciechomska, IA, Cifuentes, M, Cinque, L, Cirak, S, Cirone, M, Clague, MJ, Clarke, R, Clementi, E, Coccia, EM, Codogno, P, Cohen, E, Cohen, MM, Colasanti, T, Colasuonno, F, Colbert, RA, Colell, A, Čolić, M, Coll, NS, Collins, MO, Colombo, MI, Colón-Ramos, DA, Combaret, L, Comincini, S, Cominetti, MR, Consiglio, A, Conte, A, Conti, F, Contu, VR, Cookson, MR, Coombs, KM, Coppens, I, Corasaniti, MT, Corkery, DP, Cordes, N, Cortese, K, Costa, MDC, Costantino, S, Costelli, P, Coto-Montes, A, Crack, PJ, Crespo, JL, Criollo, A, Crippa, V, Cristofani, R, Csizmadia, T, Cuadrado, A, Cui, B, Cui, J, Cui, Y, Culetto, E, Cumino, AC, Cybulsky, AV, Czaja, MJ, Czuczwar, SJ, D'Adamo, S, D'Amelio, M, D'Arcangelo, D, D'Lugos, AC, D'Orazi, G, da Silva, JA, Dafsari, HS, Dagda, RK, Dagdas, Y, Daglia, M, Dai, X, Dai, Y, Dal Col, J, Dalhaimer, P, Dalla Valle, L, Dallenga, T, Dalmasso, G, Damme, M, Dando, I, Dantuma, NP, Darling, AL, Das, H, Dasarathy, S, Dasari, SK, Dash, S, Daumke, O, Dauphinee, AN, Davies, JS, Dávila, VA, Davis, RJ, Davis, T, Dayalan Naidu, S, De Amicis, F, De Bosscher, K, De Felice, F, De Franceschi, L, De Leonibus, C, de Mattos Barbosa, MG, De Meyer, GRY, De Milito, A, De Nunzio, C, De Palma, C, De Santi, M, De Virgilio, C, De Zio, D, Debnath, J, DeBosch, BJ, Decuypere, J-P, Deehan, MA, Deflorian, G, DeGregori, J, Dehay, B, Del Rio, G, Delaney, JR, Delbridge, LMD, Delorme-Axford, E, Delpino, MV, Demarchi, F, Dembitz, V, Demers, ND, Deng, H, Deng, Z, Dengjel, J, Dent, P, Denton, D, DePamphilis, ML, Der, CJ, Deretic, V, Descoteaux, A, Devis, L, Devkota, S, Devuyst, O, Dewson, G, Dharmasivam, M, Dhiman, R, di Bernardo, D, Di Cristina, M, Di Domenico, F, Di Fazio, P, Di Fonzo, A, Di Guardo, G, Di Guglielmo, GM, Di Leo, L, Di Malta, C, Di Nardo, A, Di Rienzo, M, Di Sano, F, Diallinas, G, Diao, J, Diaz-Araya, G, Díaz-Laviada, I, Dickinson, JM, Diederich, M, Dieudé, M, Dikic, I, Ding, S, Ding, W-X, Dini, L, Dinić, J, Dinic, M, Dinkova-Kostova, AT, Dionne, MS, Distler, JHW, Diwan, A, Dixon, IMC, Djavaheri-Mergny, M, Dobrinski, I, Dobrovinskaya, O, Dobrowolski, R, Dobson, RCJ, Đokić, J, Dokmeci Emre, S, Donadelli, M, Dong, B, Dong, X, Dong, Z, Dorn Ii, GW, Dotsch, V, Dou, H, Dou, J, Dowaidar, M, Dridi, S, Drucker, L, Du, A, Du, C, Du, G, Du, H-N, Du, L-L, du Toit, A, Duan, S-B, Duan, X, Duarte, SP, Dubrovska, A, Dunlop, EA, Dupont, N, Durán, RV, Dwarakanath, BS, Dyshlovoy, SA, Ebrahimi-Fakhari, D, Eckhart, L, Edelstein, CL, Efferth, T, Eftekharpour, E, Eichinger, L, Eid, N, Eisenberg, T, Eissa, NT, Eissa, S, Ejarque, M, El Andaloussi, A, El-Hage, N, El-Naggar, S, Eleuteri, AM, El-Shafey, ES, Elgendy, M, Eliopoulos, AG, Elizalde, MM, Elks, PM, Elsasser, H-P, Elsherbiny, ES, Emerling, BM, Emre, NCT, Eng, CH, Engedal, N, Engelbrecht, A-M, Engelsen, AST, Enserink, JM, Escalante, R, Esclatine, A, Escobar-Henriques, M, Eskelinen, E-L, Espert, L, Eusebio, M-O, Fabrias, G, Fabrizi, C, Facchiano, A, Facchiano, F, Fadeel, B, Fader, C, Faesen, AC, Fairlie, WD, Falcó, A, Falkenburger, BH, Fan, D, Fan, J, Fan, Y, Fang, EF, Fang, Y, Fanto, M, Farfel-Becker, T, Faure, M, Fazeli, G, Fedele, AO, Feldman, AM, Feng, D, Feng, J, Feng, L, Feng, Y, Feng, W, Fenz Araujo, T, Ferguson, TA, Fernández, ÁF, Fernandez-Checa, JC, Fernández-Veledo, S, Fernie, AR, Ferrante, AW, Ferraresi, A, Ferrari, MF, Ferreira, JCB, Ferro-Novick, S, Figueras, A, Filadi, R, Filigheddu, N, Filippi-Chiela, E, Filomeni, G, Fimia, GM, Fineschi, V, Finetti, F, Finkbeiner, S, Fisher, EA, Fisher, PB, Flamigni, F, Fliesler, SJ, Flo, TH, Florance, I, Florey, O, Florio, T, Fodor, E, Follo, C, Fon, EA, Forlino, A, Fornai, F, Fortini, P, Fracassi, A, Fraldi, A, Franco, B, Franco, R, Franconi, F, Frankel, LB, Friedman, SL, Fröhlich, LF, Frühbeck, G, Fuentes, JM, Fujiki, Y, Fujita, N, Fujiwara, Y, Fukuda, M, Fulda, S, Furic, L, Furuya, N, Fusco, C, Gack, MU, Gaffke, L, Galadari, S, Galasso, A, Galindo, MF, Gallolu Kankanamalage, S, Galluzzi, L, Galy, V, Gammoh, N, Gan, B, Ganley, IG, Gao, F, Gao, H, Gao, M, Gao, P, Gao, S-J, Gao, W, Gao, X, Garcera, A, Garcia, MN, Garcia, VE, García-Del Portillo, F, Garcia-Escudero, V, Garcia-Garcia, A, Garcia-Macia, M, García-Moreno, D, Garcia-Ruiz, C, García-Sanz, P, Garg, AD, Gargini, R, Garofalo, T, Garry, RF, Gassen, NC, Gatica, D, Ge, L, Ge, W, Geiss-Friedlander, R, Gelfi, C, Genschik, P, Gentle, IE, Gerbino, V, Gerhardt, C, Germain, K, Germain, M, Gewirtz, DA, Ghasemipour Afshar, E, Ghavami, S, Ghigo, A, Ghosh, M, Giamas, G, Giampietri, C, Giatromanolaki, A, Gibson, GE, Gibson, SB, Ginet, V, Giniger, E, Giorgi, C, Girao, H, Girardin, SE, Giridharan, M, Giuliano, S, Giulivi, C, Giuriato, S, Giustiniani, J, Gluschko, A, Goder, V, Goginashvili, A, Golab, J, Goldstone, DC, Golebiewska, A, Gomes, LR, Gomez, R, Gómez-Sánchez, R, Gomez-Puerto, MC, Gomez-Sintes, R, Gong, Q, Goni, FM, González-Gallego, J, Gonzalez-Hernandez, T, Gonzalez-Polo, RA, Gonzalez-Reyes, JA, González-Rodríguez, P, Goping, IS, Gorbatyuk, MS, Gorbunov, NV, Görgülü, K, Gorojod, RM, Gorski, SM, Goruppi, S, Gotor, C, Gottlieb, RA, Gozes, I, Gozuacik, D, Graef, M, Gräler, MH, Granatiero, V, Grasso, D, Gray, JP, Green, DR, Greenhough, A, Gregory, SL, Griffin, EF, Grinstaff, MW, Gros, F, Grose, C, Gross, AS, Gruber, F, Grumati, P, Grune, T, Gu, X, Guan, J-L, Guardia, CM, Guda, K, Guerra, F, Guerri, C, Guha, P, Guillén, C, Gujar, S, Gukovskaya, A, Gukovsky, I, Gunst, J, Günther, A, Guntur, AR, Guo, C, Guo, H, Guo, L-W, Guo, M, Gupta, P, Gupta, SK, Gupta, S, Gupta, VB, Gupta, V, Gustafsson, AB, Gutterman, DD, H B, R, Haapasalo, A, Haber, JE, Hać, A, Hadano, S, Hafrén, AJ, Haidar, M, Hall, BS, Halldén, G, Hamacher-Brady, A, Hamann, A, Hamasaki, M, Han, W, Hansen, M, Hanson, PI, Hao, Z, Harada, M, Harhaji-Trajkovic, L, Hariharan, N, Haroon, N, Harris, J, Hasegawa, T, Hasima Nagoor, N, Haspel, JA, Haucke, V, Hawkins, WD, Hay, BA, Haynes, CM, Hayrabedyan, SB, Hays, TS, He, C, He, Q, He, R-R, He, Y-W, He, Y-Y, Heakal, Y, Heberle, AM, Hejtmancik, JF, Helgason, GV, Henkel, V, Herb, M, Hergovich, A, Herman-Antosiewicz, A, Hernández, A, Hernandez, C, Hernandez-Diaz, S, Hernandez-Gea, V, Herpin, A, Herreros, J, Hervás, JH, Hesselson, D, Hetz, C, Heussler, VT, Higuchi, Y, Hilfiker, S, Hill, JA, Hlavacek, WS, Ho, EA, Ho, IHT, Ho, PW-L, Ho, S-L, Ho, WY, Hobbs, GA, Hochstrasser, M, Hoet, PHM, Hofius, D, Hofman, P, Höhn, A, Holmberg, CI, Hombrebueno, JR, Yi-Ren Hong, C-WH, Hooper, LV, Hoppe, T, Horos, R, Hoshida, Y, Hsin, I-L, Hsu, H-Y, Hu, B, Hu, D, Hu, L-F, Hu, MC, Hu, R, Hu, W, Hu, Y-C, Hu, Z-W, Hua, F, Hua, J, Hua, Y, Huan, C, Huang, C, Huang, H, Huang, K, Huang, MLH, Huang, R, Huang, S, Huang, T, Huang, X, Huang, YJ, Huber, TB, Hubert, V, Hubner, CA, Hughes, SM, Hughes, WE, Humbert, M, Hummer, G, Hurley, JH, Hussain, S, Hussey, PJ, Hutabarat, M, Hwang, H-Y, Hwang, S, Ieni, A, Ikeda, F, Imagawa, Y, Imai, Y, Imbriano, C, Imoto, M, Inman, DM, Inoki, K, Iovanna, J, Iozzo, RV, Ippolito, G, Irazoqui, JE, Iribarren, P, Ishaq, M, Ishikawa, M, Ishimwe, N, Isidoro, C, Ismail, N, Issazadeh-Navikas, S, Itakura, E, Ito, D, Ivankovic, D, Ivanova, S, Iyer, AKV, Izquierdo, JM, Izumi, M, Jäättelä, M, Jabir, MS, Jackson, WT, Jacobo-Herrera, N, Jacomin, A-C, Jacquin, E, Jadiya, P, Jaeschke, H, Jagannath, C, Jakobi, AJ, Jakobsson, J, Janji, B, Jansen-Dürr, P, Jansson, PJ, Jantsch, J, Januszewski, S, Jassey, A, Jean, S, Jeltsch-David, H, Jendelova, P, Jenny, A, Jensen, TE, Jessen, N, Jewell, JL, Ji, J, Jia, L, Jia, R, Jiang, L, Jiang, Q, Jiang, R, Jiang, T, Jiang, X, Jiang, Y, Jimenez-Sanchez, M, Jin, E-J, Jin, F, Jin, H, Jin, L, Jin, M, Jin, S, Jo, E-K, Joffre, C, Johansen, T, Johnson, GVW, Johnston, SA, Jokitalo, E, Jolly, MK, Joosten, LAB, Jordan, J, Joseph, B, Ju, D, Ju, J-S, Ju, J, Juárez, E, Judith, D, Juhász, G, Jun, Y, Jung, CH, Jung, S-C, Jung, YK, Jungbluth, H, Jungverdorben, J, Just, S, Kaarniranta, K, Kaasik, A, Kabuta, T, Kaganovich, D, Kahana, A, Kain, R, Kajimura, S, Kalamvoki, M, Kalia, M, Kalinowski, DS, Kaludercic, N, Kalvari, I, Kaminska, J, Kaminskyy, VO, Kanamori, H, Kanasaki, K, Kang, C, Kang, R, Kang, SS, Kaniyappan, S, Kanki, T, Kanneganti, T-D, Kanthasamy, AG, Kanthasamy, A, Kantorow, M, Kapuy, O, Karamouzis, MV, Karim, MR, Karmakar, P, Katare, RG, Kato, M, Kaufmann, SHE, Kauppinen, A, Kaushal, GP, Kaushik, S, Kawasaki, K, Kazan, K, Ke, P-Y, Keating, DJ, Keber, U, Kehrl, JH, Keller, KE, Keller, CW, Kemper, JK, Kenific, CM, Kepp, O, Kermorgant, S, Kern, A, Ketteler, R, Keulers, TG, Khalfin, B, Khalil, H, Khambu, B, Khan, SY, Khandelwal, VKM, Khandia, R, Kho, W, Khobrekar, NV, Khuansuwan, S, Khundadze, M, Killackey, SA, Kim, D, Kim, DR, Kim, D-H, Kim, D-E, Kim, EY, Kim, E-K, Kim, H-R, Kim, H-S, Hyung-Ryong Kim, Kim, JH, Kim, JK, Kim, J-H, Kim, J, Kim, KI, Kim, PK, Kim, S-J, Kimball, SR, Kimchi, A, Kimmelman, AC, Kimura, T, King, MA, Kinghorn, KJ, Kinsey, CG, Kirkin, V, Kirshenbaum, LA, Kiselev, SL, Kishi, S, Kitamoto, K, Kitaoka, Y, Kitazato, K, Kitsis, RN, Kittler, JT, Kjaerulff, O, Klein, PS, Klopstock, T, Klucken, J, Knævelsrud, H, Knorr, RL, Ko, BCB, Ko, F, Ko, J-L, Kobayashi, H, Kobayashi, S, Koch, I, Koch, JC, Koenig, U, Kögel, D, Koh, YH, Koike, M, Kohlwein, SD, Kocaturk, NM, Komatsu, M, König, J, Kono, T, Kopp, BT, Korcsmaros, T, Korkmaz, G, Korolchuk, VI, Korsnes, MS, Koskela, A, Kota, J, Kotake, Y, Kotler, ML, Kou, Y, Koukourakis, MI, Koustas, E, Kovacs, AL, Kovács, T, Koya, D, Kozako, T, Kraft, C, Krainc, D, Krämer, H, Krasnodembskaya, AD, Kretz-Remy, C, Kroemer, G, Ktistakis, NT, Kuchitsu, K, Kuenen, S, Kuerschner, L, Kukar, T, Kumar, A, Kumar, D, Kumar, S, Kume, S, Kumsta, C, Kundu, CN, Kundu, M, Kunnumakkara, AB, Kurgan, L, Kutateladze, TG, Kutlu, O, Kwak, S, Kwon, HJ, Kwon, TK, Kwon, YT, Kyrmizi, I, La Spada, A, Labonté, P, Ladoire, S, Laface, I, Lafont, F, Lagace, DC, Lahiri, V, Lai, Z, Laird, AS, Lakkaraju, A, Lamark, T, Lan, S-H, Landajuela, A, Lane, DJR, Lane, JD, Lang, CH, Lange, C, Langel, Ü, Langer, R, Lapaquette, P, Laporte, J, LaRusso, NF, Lastres-Becker, I, Lau, WCY, Laurie, GW, Lavandero, S, Law, BYK, Law, HK-W, Layfield, R, Le, W, Le Stunff, H, Leary, AY, Lebrun, J-J, Leck, LYW, Leduc-Gaudet, J-P, Lee, C, Lee, C-P, Lee, D-H, Lee, EB, Lee, EF, Lee, GM, Lee, H-J, Lee, HK, Lee, JM, Lee, JS, Lee, J-A, Lee, J-Y, Lee, JH, Lee, M, Lee, MG, Lee, MJ, Lee, M-S, Lee, SY, Lee, S-J, Lee, SB, Lee, WH, Lee, Y-R, Lee, Y-H, Lee, Y, Lefebvre, C, Legouis, R, Lei, YL, Lei, Y, Leikin, S, Leitinger, G, Lemus, L, Leng, S, Lenoir, O, Lenz, G, Lenz, HJ, Lenzi, P, León, Y, Leopoldino, AM, Leschczyk, C, Leskelä, S, Letellier, E, Leung, C-T, Leung, PS, Leventhal, JS, Levine, B, Lewis, PA, Ley, K, Li, B, Li, D-Q, Li, J, Li, K, Li, L, Li, M, Li, P-L, Li, M-Q, Li, Q, Li, S, Li, T, Li, W, Li, X, Li, Y-P, Li, Y, Li, Z, Lian, J, Liang, C, Liang, Q, Liang, W, Liang, Y, Liao, G, Liao, L, Liao, M, Liao, Y-F, Librizzi, M, Lie, PPY, Lilly, MA, Lim, HJ, Lima, TRR, Limana, F, Lin, C, Lin, C-W, Lin, D-S, Lin, F-C, Lin, JD, Lin, KM, Lin, K-H, Lin, L-T, Lin, P-H, Lin, Q, Lin, S, Lin, S-J, Lin, W, Lin, X, Lin, Y-X, Lin, Y-S, Linden, R, Lindner, P, Ling, S-C, Lingor, P, Linnemann, AK, Liou, Y-C, Lipinski, MM, Lipovšek, S, Lira, VA, Lisiak, N, Liton, PB, Liu, C, Liu, C-H, Liu, C-F, Liu, CH, Liu, F, Liu, H, Liu, H-S, Liu, H-F, Liu, J, Liu, L, Liu, M, Liu, Q, Liu, W, Liu, X-H, Liu, X, Liu, Y, Livingston, JA, Lizard, G, Lizcano, JM, Ljubojevic-Holzer, S, LLeonart, ME, Llobet-Navàs, D, Llorente, A, Lo, CH, Lobato-Márquez, D, Long, Q, Long, YC, Loos, B, Loos, JA, López, MG, López-Doménech, G, López-Guerrero, JA, López-Jiménez, AT, López-Pérez, Ó, López-Valero, I, Lorenowicz, MJ, Lorente, M, Lorincz, P, Lossi, L, Lotersztajn, S, Lovat, PE, Lovell, JF, Lovy, A, Lőw, P, Lu, G, Lu, H, Lu, J-H, Lu, J-J, Lu, M, Lu, S, Luciani, A, Lucocq, JM, Ludovico, P, Luftig, MA, Luhr, M, Luis-Ravelo, D, Lum, JJ, Luna-Dulcey, L, Lund, AH, Lund, VK, Lünemann, JD, Lüningschrör, P, Luo, H, Luo, R, Luo, S, Luo, Z, Luparello, C, Lüscher, B, Luu, L, Lyakhovich, A, Lyamzaev, KG, Lystad, AH, Lytvynchuk, L, Ma, AC, Ma, C, Ma, M, Ma, N-F, Ma, Q-H, Ma, X, Ma, Y, Ma, Z, MacDougald, OA, Macian, F, MacIntosh, GC, MacKeigan, JP, Macleod, KF, Maday, S, Madeo, F, Madesh, M, Madl, T, Madrigal-Matute, J, Maeda, A, Maejima, Y, Magarinos, M, Mahavadi, P, Maiani, E, Maiese, K, Maiti, P, Maiuri, MC, Majello, B, Major, MB, Makareeva, E, Malik, F, Mallilankaraman, K, Malorni, W, Maloyan, A, Mammadova, N, Man, GCW, Manai, F, Mancias, JD, Mandelkow, E-M, Mandell, MA, Manfredi, AA, Manjili, MH, Manjithaya, R, Manque, P, Manshian, BB, Manzano, R, Manzoni, C, Mao, K, Marchese, C, Marchetti, S, Marconi, AM, Marcucci, F, Mardente, S, Mareninova, OA, Margeta, M, Mari, M, Marinelli, S, Marinelli, O, Mariño, G, Mariotto, S, Marshall, RS, Marten, MR, Martens, S, Martin, APJ, Martin, KR, Martin, S, Martín-Segura, A, Martín-Acebes, MA, Martin-Burriel, I, Martin-Rincon, M, Martin-Sanz, P, Martina, JA, Martinet, W, Martinez, A, Martinez, J, Martinez Velazquez, M, Martinez-Lopez, N, Martinez-Vicente, M, Martins, DO, Martins, JO, Martins, WK, Martins-Marques, T, Marzetti, E, Masaldan, S, Masclaux-Daubresse, C, Mashek, DG, Massa, V, Massieu, L, Masson, GR, Masuelli, L, Masyuk, AI, Masyuk, TV, Matarrese, P, Matheu, A, Matoba, S, Matsuzaki, S, Mattar, P, Matte, A, Mattoscio, D, Mauriz, JL, Mauthe, M, Mauvezin, C, Maverakis, E, Maycotte, P, Mayer, J, Mazzoccoli, G, Mazzoni, C, Mazzulli, JR, McCarty, N, McDonald, C, McGill, MR, McKenna, SL, McLaughlin, B, McLoughlin, F, McNiven, MA, McWilliams, TG, Mechta-Grigoriou, F, Medeiros, TC, Medina, DL, Megeney, LA, Megyeri, K, Mehrpour, M, Mehta, JL, Meijer, AJ, Meijer, AH, Mejlvang, J, Meléndez, A, Melk, A, Memisoglu, G, Mendes, AF, Meng, D, Meng, F, Meng, T, Menna-Barreto, R, Menon, MB, Mercer, C, Mercier, AE, Mergny, J-L, Merighi, A, Merkley, SD, Merla, G, Meske, V, Mestre, AC, Metur, SP, Meyer, C, Meyer, H, Mi, W, Mialet-Perez, J, Miao, J, Micale, L, Miki, Y, Milan, E, Milczarek, M, Miller, DL, Miller, SI, Miller, S, Millward, SW, Milosevic, I, Minina, EA, Mirzaei, H, Mirzaei, HR, Mirzaei, M, Mishra, A, Mishra, N, Mishra, PK, Misirkic Marjanovic, M, Misasi, R, Misra, A, Misso, G, Mitchell, C, Mitou, G, Miura, T, Miyamoto, S, Miyazaki, M, Miyazaki, T, Miyazawa, K, Mizushima, N, Mogensen, TH, Mograbi, B, Mohammadinejad, R, Mohamud, Y, Mohanty, A, Mohapatra, S, Möhlmann, T, Mohmmed, A, Moles, A, Moley, KH, Molinari, M, Mollace, V, Møller, AB, Mollereau, B, Mollinedo, F, Montagna, C, Monteiro, MJ, Montella, A, Montes, LR, Montico, B, Mony, VK, Monzio Compagnoni, G, Moore, MN, Moosavi, MA, Mora, AL, Mora, M, Morales-Alamo, D, Moratalla, R, Moreira, PI, Morelli, E, Moreno, S, Moreno-Blas, D, Moresi, V, Morga, B, Morgan, AH, Morin, F, Morishita, H, Moritz, OL, Moriyama, M, Moriyasu, Y, Morleo, M, Morselli, E, Moruno-Manchon, JF, Moscat, J, Mostowy, S, Motori, E, Moura, AF, Moustaid-Moussa, N, Mrakovcic, M, Muciño-Hernández, G, Mukherjee, A, Mukhopadhyay, S, Mulcahy Levy, JM, Mulero, V, Muller, S, Münch, C, Munjal, A, Munoz-Canoves, P, Muñoz-Galdeano, T, Münz, C, Murakawa, T, Muratori, C, Murphy, BM, Murphy, JP, Murthy, A, Myöhänen, TT, Mysorekar, IU, Mytych, J, Nabavi, SM, Nabissi, M, Nagy, P, Nah, J, Nahimana, A, Nakagawa, I, Nakamura, K, Nakatogawa, H, Nandi, SS, Nanjundan, M, Nanni, M, Napolitano, G, Nardacci, R, Narita, M, Nassif, M, Nathan, I, Natsumeda, M, Naude, RJ, Naumann, C, Naveiras, O, Navid, F, Nawrocki, ST, Nazarko, TY, Nazio, F, Negoita, F, Neill, T, Neisch, AL, Neri, LM, Netea, MG, Neubert, P, Neufeld, TP, Neumann, D, Neutzner, A, Newton, PT, Ney, PA, Nezis, IP, Ng, CCW, Ng, TB, Nguyen, HTT, Nguyen, LT, Ni, H-M, Ní Cheallaigh, C, Ni, Z, Nicolao, MC, Nicoli, F, Nieto-Diaz, M, Nilsson, P, Ning, S, Niranjan, R, Nishimune, H, Niso-Santano, M, Nixon, RA, Nobili, A, Nobrega, C, Noda, T, Nogueira-Recalde, U, Nolan, TM, Nombela, I, Novak, I, Novoa, B, Nozawa, T, Nukina, N, Nussbaum-Krammer, C, Nylandsted, J, O'Donovan, TR, O'Leary, SM, O'Rourke, EJ, O'Sullivan, MP, O'Sullivan, TE, Oddo, S, Oehme, I, Ogawa, M, Ogier-Denis, E, Ogmundsdottir, MH, Ogretmen, B, Oh, GT, Oh, S-H, Oh, YJ, Ohama, T, Ohashi, Y, Ohmuraya, M, Oikonomou, V, Ojha, R, Okamoto, K, Okazawa, H, Oku, M, Oliván, S, Oliveira, JMA, Ollmann, M, Olzmann, JA, Omari, S, Omary, MB, Önal, G, Ondrej, M, Ong, S-B, Ong, S-G, Onnis, A, Orellana, JA, Orellana-Muñoz, S, Ortega-Villaizan, MDM, Ortiz-Gonzalez, XR, Ortona, E, Osiewacz, HD, Osman, A-HK, Osta, R, Otegui, MS, Otsu, K, Ott, C, Ottobrini, L, Ou, J-HJ, Outeiro, TF, Oynebraten, I, Ozturk, M, Pagès, G, Pahari, S, Pajares, M, Pajvani, UB, Pal, R, Paladino, S, Pallet, N, Palmieri, M, Palmisano, G, Palumbo, C, Pampaloni, F, Pan, L, Pan, Q, Pan, W, Pan, X, Panasyuk, G, Pandey, R, Pandey, UB, Pandya, V, Paneni, F, Pang, SY, Panzarini, E, Papademetrio, DL, Papaleo, E, Papinski, D, Papp, D, Park, EC, Park, HT, Park, J-M, Park, J-I, Park, JT, Park, J, Park, SC, Park, S-Y, Parola, AH, Parys, JB, Pasquier, A, Pasquier, B, Passos, JF, Pastore, N, Patel, HH, Patschan, D, Pattingre, S, Pedraza-Alva, G, Pedraza-Chaverri, J, Pedrozo, Z, Pei, G, Pei, J, Peled-Zehavi, H, Pellegrini, JM, Pelletier, J, Peñalva, MA, Peng, D, Peng, Y, Penna, F, Pennuto, M, Pentimalli, F, Pereira, CM, Pereira, GJS, Pereira, LC, Pereira de Almeida, L, Perera, ND, Pérez-Lara, Á, Perez-Oliva, AB, Pérez-Pérez, ME, Periyasamy, P, Perl, A, Perrotta, C, Perrotta, I, Pestell, RG, Petersen, M, Petrache, I, Petrovski, G, Pfirrmann, T, Pfister, AS, Philips, JA, Pi, H, Picca, A, Pickrell, AM, Picot, S, Pierantoni, GM, Pierdominici, M, Pierre, P, Pierrefite-Carle, V, Pierzynowska, K, Pietrocola, F, Pietruczuk, M, Pignata, C, Pimentel-Muiños, FX, Pinar, M, Pinheiro, RO, Pinkas-Kramarski, R, Pinton, P, Pircs, K, Piya, S, Pizzo, P, Plantinga, TS, Platta, HW, Plaza-Zabala, A, Plomann, M, Plotnikov, EY, Plun-Favreau, H, Pluta, R, Pocock, R, Pöggeler, S, Pohl, C, Poirot, M, Poletti, A, Ponpuak, M, Popelka, H, Popova, B, Porta, H, Porte Alcon, S, Portilla-Fernandez, E, Post, M, Potts, MB, Poulton, J, Powers, T, Prahlad, V, Prajsnar, TK, Praticò, D, Prencipe, R, Priault, M, Proikas-Cezanne, T, Promponas, VJ, Proud, CG, Puertollano, R, Puglielli, L, Pulinilkunnil, T, Puri, D, Puri, R, Puyal, J, Qi, X, Qi, Y, Qian, W, Qiang, L, Qiu, Y, Quadrilatero, J, Quarleri, J, Raben, N, Rabinowich, H, Ragona, D, Ragusa, MJ, Rahimi, N, Rahmati, M, Raia, V, Raimundo, N, Rajasekaran, N-S, Ramachandra Rao, S, Rami, A, Ramírez-Pardo, I, Ramsden, DB, Randow, F, Rangarajan, PN, Ranieri, D, Rao, H, Rao, L, Rao, R, Rathore, S, Ratnayaka, JA, Ratovitski, EA, Ravanan, P, Ravegnini, G, Ray, SK, Razani, B, Rebecca, V, Reggiori, F, Régnier-Vigouroux, A, Reichert, AS, Reigada, D, Reiling, JH, Rein, T, Reipert, S, Rekha, RS, Ren, H, Ren, J, Ren, W, Renault, T, Renga, G, Reue, K, Rewitz, K, Ribeiro de Andrade Ramos, B, Riazuddin, SA, Ribeiro-Rodrigues, TM, Ricci, J-E, Ricci, R, Riccio, V, Richardson, DR, Rikihisa, Y, Risbud, MV, Risueño, RM, Ritis, K, Rizza, S, Rizzuto, R, Roberts, HC, Roberts, LD, Robinson, KJ, Roccheri, MC, Rocchi, S, Rodney, GG, Rodrigues, T, Rodrigues Silva, VR, Rodriguez, A, Rodriguez-Barrueco, R, Rodriguez-Henche, N, Rodriguez-Rocha, H, Roelofs, J, Rogers, RS, Rogov, VV, Rojo, AI, Rolka, K, Romanello, V, Romani, L, Romano, A, Romano, PS, Romeo-Guitart, D, Romero, LC, Romero, M, Roney, JC, Rongo, C, Roperto, S, Rosenfeldt, MT, Rosenstiel, P, Rosenwald, AG, Roth, KA, Roth, L, Roth, S, Rouschop, KMA, Roussel, BD, Roux, S, Rovere-Querini, P, Roy, A, Rozieres, A, Ruano, D, Rubinsztein, DC, Rubtsova, MP, Ruckdeschel, K, Ruckenstuhl, C, Rudolf, E, Rudolf, R, Ruggieri, A, Ruparelia, AA, Rusmini, P, Russell, RR, Russo, GL, Russo, M, Russo, R, Ryabaya, OO, Ryan, KM, Ryu, K-Y, Sabater-Arcis, M, Sachdev, U, Sacher, M, Sachse, C, Sadhu, A, Sadoshima, J, Safren, N, Saftig, P, Sagona, AP, Sahay, G, Sahebkar, A, Sahin, M, Sahin, O, Sahni, S, Saito, N, Saito, S, Saito, T, Sakai, R, Sakai, Y, Sakamaki, J-I, Saksela, K, Salazar, G, Salazar-Degracia, A, Salekdeh, GH, Saluja, AK, Sampaio-Marques, B, Sanchez, MC, Sanchez-Alcazar, JA, Sanchez-Vera, V, Sancho-Shimizu, V, Sanderson, JT, Sandri, M, Santaguida, S, Santambrogio, L, Santana, MM, Santoni, G, Sanz, A, Sanz, P, Saran, S, Sardiello, M, Sargeant, TJ, Sarin, A, Sarkar, C, Sarkar, S, Sarrias, M-R, Sarmah, DT, Sarparanta, J, Sathyanarayan, A, Sathyanarayanan, R, Scaglione, KM, Scatozza, F, Schaefer, L, Schafer, ZT, Schaible, UE, Schapira, AHV, Scharl, M, Schatzl, HM, Schein, CH, Scheper, W, Scheuring, D, Schiaffino, MV, Schiappacassi, M, Schindl, R, Schlattner, U, Schmidt, O, Schmitt, R, Schmidt, SD, Schmitz, I, Schmukler, E, Schneider, A, Schneider, BE, Schober, R, Schoijet, AC, Schott, MB, Schramm, M, Schröder, B, Schuh, K, Schüller, C, Schulze, RJ, Schürmanns, L, Schwamborn, JC, Schwarten, M, Scialo, F, Sciarretta, S, Scott, MJ, Scotto, KW, Scovassi, AI, Scrima, A, Scrivo, A, Sebastian, D, Sebti, S, Sedej, S, Segatori, L, Segev, N, Seglen, PO, Seiliez, I, Seki, E, Selleck, SB, Sellke, FW, Selsby, JT, Sendtner, M, Senturk, S, Seranova, E, Sergi, C, Serra-Moreno, R, Sesaki, H, Settembre, C, Setty, SRG, Sgarbi, G, Sha, O, Shacka, JJ, Shah, JA, Shang, D, Shao, C, Shao, F, Sharbati, S, Sharkey, LM, Sharma, D, Sharma, G, Sharma, K, Sharma, P, Sharma, S, Shen, H-M, Shen, H, Shen, J, Shen, M, Shen, W, Shen, Z, Sheng, R, Sheng, Z, Sheng, Z-H, Shi, J, Shi, X, Shi, Y-H, Shiba-Fukushima, K, Shieh, J-J, Shimada, Y, Shimizu, S, Shimozawa, M, Shintani, T, Shoemaker, CJ, Shojaei, S, Shoji, I, Shravage, BV, Shridhar, V, Shu, C-W, Shu, H-B, Shui, K, Shukla, AK, Shutt, TE, Sica, V, Siddiqui, A, Sierra, A, Sierra-Torre, V, Signorelli, S, Sil, P, Silva, BJDA, Silva, JD, Silva-Pavez, E, Silvente-Poirot, S, Simmonds, RE, Simon, AK, Simon, H-U, Simons, M, Singh, A, Singh, LP, Singh, R, Singh, SV, Singh, SK, Singh, SB, Singh, S, Singh, SP, Sinha, D, Sinha, RA, Sinha, S, Sirko, A, Sirohi, K, Sivridis, EL, Skendros, P, Skirycz, A, Slaninová, I, Smaili, SS, Smertenko, A, Smith, MD, Soenen, SJ, Sohn, EJ, Sok, SPM, Solaini, G, Soldati, T, Soleimanpour, SA, Soler, RM, Solovchenko, A, Somarelli, JA, Sonawane, A, Song, F, Song, HK, Song, J-X, Song, K, Song, Z, Soria, LR, Sorice, M, Soukas, AA, Soukup, S-F, Sousa, D, Sousa, N, Spagnuolo, PA, Spector, SA, Srinivas Bharath, MM, St Clair, D, Stagni, V, Staiano, L, Stalnecker, CA, Stankov, MV, Stathopulos, PB, Stefan, K, Stefan, SM, Stefanis, L, Steffan, JS, Steinkasserer, A, Stenmark, H, Sterneckert, J, Stevens, C, Stoka, V, Storch, S, Stork, B, Strappazzon, F, Strohecker, AM, Stupack, DG, Su, H, Su, L-Y, Su, L, Suarez-Fontes, AM, Subauste, CS, Subbian, S, Subirada, PV, Sudhandiran, G, Sue, CM, Sui, X, Summers, C, Sun, G, Sun, J, Sun, K, Sun, M-X, Sun, Q, Sun, Y, Sun, Z, Sunahara, KKS, Sundberg, E, Susztak, K, Sutovsky, P, Suzuki, H, Sweeney, G, Symons, JD, Sze, SCW, Szewczyk, NJ, Tabęcka-Łonczynska, A, Tabolacci, C, Tacke, F, Taegtmeyer, H, Tafani, M, Tagaya, M, Tai, H, Tait, SWG, Takahashi, Y, Takats, S, Talwar, P, Tam, C, Tam, SY, Tampellini, D, Tamura, A, Tan, CT, Tan, E-K, Tan, Y-Q, Tanaka, M, Tang, D, Tang, J, Tang, T-S, Tanida, I, Tao, Z, Taouis, M, Tatenhorst, L, Tavernarakis, N, Taylor, A, Taylor, GA, Taylor, JM, Tchetina, E, Tee, AR, Tegeder, I, Teis, D, Teixeira, N, Teixeira-Clerc, F, Tekirdag, KA, Tencomnao, T, Tenreiro, S, Tepikin, AV, Testillano, PS, Tettamanti, G, Tharaux, P-L, Thedieck, K, Thekkinghat, AA, Thellung, S, Thinwa, JW, Thirumalaikumar, VP, Thomas, SM, Thomes, PG, Thorburn, A, Thukral, L, Thum, T, Thumm, M, Tian, L, Tichy, A, Till, A, Timmerman, V, Titorenko, VI, Todi, SV, Todorova, K, Toivonen, JM, Tomaipitinca, L, Tomar, D, Tomas-Zapico, C, Tomić, S, Tong, BC-K, Tong, C, Tong, X, Tooze, SA, Torgersen, ML, Torii, S, Torres-López, L, Torriglia, A, Towers, CG, Towns, R, Toyokuni, S, Trajkovic, V, Tramontano, D, Tran, Q-G, Travassos, LH, Trelford, CB, Tremel, S, Trougakos, IP, Tsao, BP, Tschan, MP, Tse, H-F, Tse, TF, Tsugawa, H, Tsvetkov, AS, Tumbarello, DA, Tumtas, Y, Tuñón, MJ, Turcotte, S, Turk, B, Turk, V, Turner, BJ, Tuxworth, RI, Tyler, JK, Tyutereva, EV, Uchiyama, Y, Ugun-Klusek, A, Uhlig, HH, Ułamek-Kozioł, M, Ulasov, IV, Umekawa, M, Ungermann, C, Unno, R, Urbe, S, Uribe-Carretero, E, Üstün, S, Uversky, VN, Vaccari, T, Vaccaro, MI, Vahsen, BF, Vakifahmetoglu-Norberg, H, Valdor, R, Valente, MJ, Valko, A, Vallee, RB, Valverde, AM, Van den Berghe, G, van der Veen, S, Van Kaer, L, van Loosdregt, J, van Wijk, SJL, Vandenberghe, W, Vanhorebeek, I, Vannier-Santos, MA, Vannini, N, Vanrell, MC, Vantaggiato, C, Varano, G, Varela-Nieto, I, Varga, M, Vasconcelos, MH, Vats, S, Vavvas, DG, Vega-Naredo, I, Vega-Rubin-de-Celis, S, Velasco, G, Velázquez, AP, Vellai, T, Vellenga, E, Velotti, F, Verdier, M, Verginis, P, Vergne, I, Verkade, P, Verma, M, Verstreken, P, Vervliet, T, Vervoorts, J, Vessoni, AT, Victor, VM, Vidal, M, Vidoni, C, Vieira, OV, Vierstra, RD, Viganó, S, Vihinen, H, Vijayan, V, Vila, M, Vilar, M, Villalba, JM, Villalobo, A, Villarejo-Zori, B, Villarroya, F, Villarroya, J, Vincent, O, Vindis, C, Viret, C, Viscomi, MT, Visnjic, D, Vitale, I, Vocadlo, DJ, Voitsekhovskaja, OV, Volonté, C, Volta, M, Vomero, M, Von Haefen, C, Vooijs, MA, Voos, W, Vucicevic, L, Wade-Martins, R, Waguri, S, Waite, KA, Wakatsuki, S, Walker, DW, Walker, MJ, Walker, SA, Walter, J, Wandosell, FG, Wang, B, Wang, C-Y, Wang, C, Wang, D, Wang, F, Wang, G, Wang, H, Wang, H-G, Wang, J, Wang, K, Wang, L, Wang, MH, Wang, M, Wang, N, Wang, P, Wang, QJ, Wang, Q, Wang, QK, Wang, QA, Wang, W-T, Wang, W, Wang, X, Wang, Y, Wang, Y-Y, Wang, Z, Warnes, G, Warnsmann, V, Watada, H, Watanabe, E, Watchon, M, Wawrzyńska, A, Weaver, TE, Wegrzyn, G, Wehman, AM, Wei, H, Wei, L, Wei, T, Wei, Y, Weiergräber, OH, Weihl, CC, Weindl, G, Weiskirchen, R, Wells, A, Wen, RH, Wen, X, Werner, A, Weykopf, B, Wheatley, SP, Whitton, JL, Whitworth, AJ, Wiktorska, K, Wildenberg, ME, Wileman, T, Wilkinson, S, Willbold, D, Williams, B, Williams, RSB, Williams, RL, Williamson, PR, Wilson, RA, Winner, B, Winsor, NJ, Witkin, SS, Wodrich, H, Woehlbier, U, Wollert, T, Wong, E, Wong, JH, Wong, RW, Wong, VKW, Wong, WW-L, Wu, A-G, Wu, C, Wu, J, Wu, KK, Wu, M, Wu, S-Y, Wu, S, Wu, WKK, Wu, X, Wu, Y-W, Wu, Y, Xavier, RJ, Xia, H, Xia, L, Xia, Z, Xiang, G, Xiang, J, Xiang, M, Xiang, W, Xiao, B, Xiao, G, Xiao, H, Xiao, H-T, Xiao, J, Xiao, L, Xiao, S, Xiao, Y, Xie, B, Xie, C-M, Xie, M, Xie, Y, Xie, Z, Xilouri, M, Xu, C, Xu, E, Xu, H, Xu, J, Xu, L, Xu, WW, Xu, X, Xue, Y, Yakhine-Diop, SMS, Yamaguchi, M, Yamaguchi, O, Yamamoto, A, Yamashina, S, Yan, S, Yan, S-J, Yan, Z, Yanagi, Y, Yang, C, Yang, D-S, Yang, H, Yang, H-T, Yang, J-M, Yang, J, Yang, L, Yang, M, Yang, P-M, Yang, Q, Yang, S, Yang, S-F, Yang, W, Yang, WY, Yang, X, Yang, Y, Yao, H, Yao, S, Yao, X, Yao, Y-G, Yao, Y-M, Yasui, T, Yazdankhah, M, Yen, PM, Yi, C, Yin, X-M, Yin, Y, Yin, Z, Ying, M, Ying, Z, Yip, CK, Yiu, SPT, Yoo, YH, Yoshida, K, Yoshii, SR, Yoshimori, T, Yousefi, B, Yu, B, Yu, H, Yu, J, Yu, L, Yu, M-L, Yu, S-W, Yu, VC, Yu, WH, Yu, Z, Yuan, J, Yuan, L-Q, Yuan, S, Yuan, S-SF, Yuan, Y, Yuan, Z, Yue, J, Yue, Z, Yun, J, Yung, RL, Zacks, DN, Zaffagnini, G, Zambelli, VO, Zanella, I, Zang, QS, Zanivan, S, Zappavigna, S, Zaragoza, P, Zarbalis, KS, Zarebkohan, A, Zarrouk, A, Zeitlin, SO, Zeng, J, Zeng, J-D, Žerovnik, E, Zhan, L, Zhang, B, Zhang, DD, Zhang, H, Zhang, H-L, Zhang, J, Zhang, J-P, Zhang, KYB, Zhang, LW, Zhang, L, Zhang, M, Zhang, P, Zhang, S, Zhang, W, Zhang, X, Zhang, X-W, Zhang, XD, Zhang, Y, Zhang, Y-D, Zhang, Y-Y, Zhang, Z, Zhao, H, Zhao, L, Zhao, S, Zhao, T, Zhao, X-F, Zhao, Y, Zheng, G, Zheng, K, Zheng, L, Zheng, S, Zheng, X-L, Zheng, Y, Zheng, Z-G, Zhivotovsky, B, Zhong, Q, Zhou, A, Zhou, B, Zhou, C, Zhou, G, Zhou, H, Zhou, J, Zhou, K, Zhou, R, Zhou, X-J, Zhou, Y, Zhou, Z-Y, Zhou, Z, Zhu, B, Zhu, C, Zhu, G-Q, Zhu, H, Zhu, W-G, Zhu, Y, Zhuang, H, Zhuang, X, Zientara-Rytter, K, Zimmermann, CM, Ziviani, E, Zoladek, T, Zong, W-X, Zorov, DB, Zorzano, A, Zou, W, Zou, Z, Zuryn, S, Zwerschke, W, Brand-Saberi, B, Dong, XC, Kenchappa, CS, Lin, Y, Oshima, S, Rong, Y, Sluimer, JC, Stallings, CL, and Tong, C-K
- Abstract
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- Published
- 2021
9. Workshop on Lung Disease and the Environment
- Author
-
Wright, Brody Ar, Jonathan M. Samet, Broaddus Vc, Malindzak G, and James D. Crapo
- Subjects
Lung Diseases ,Pulmonary and Respiratory Medicine ,medicine.medical_specialty ,business.industry ,Environmental Exposure ,Critical Care and Intensive Care Medicine ,Asthma ,Extracellular Matrix ,Pulmonary Disease, Chronic Obstructive ,Text mining ,Lung disease ,medicine ,Cytokines ,Humans ,Intensive care medicine ,business ,Signal Transduction - Published
- 2003
10. Developmental Changes in Pleural Liquid Protein Concentration in Sheep
- Author
-
David P. Carlton, Broaddus Vc, Araya M, and Richard D. Bland
- Subjects
Pulmonary and Respiratory Medicine ,Aging ,Pathology ,medicine.medical_specialty ,Low protein ,Blood Pressure ,Systemic circulation ,Plasma ,Fetus ,medicine ,Animals ,Respiratory system ,Sheep ,Lung ,Chemistry ,Proteins ,Blood Proteins ,respiratory system ,Blood proteins ,Body Fluids ,respiratory tract diseases ,Adult life ,medicine.anatomical_structure ,Animals, Newborn ,Pleura ,Lymph ,Protein concentration - Abstract
The source of normal pleural liquid is thought to be the systemic circulation of the pleural membranes rather than the pulmonary circulation of the nearby lung. Evidence for a systemic origin comes from the low protein concentration of pleural liquid in adult sheep, which is consistent with protein sieving from a high-pressure circulation. During normal development from fetal to adult life, systemic vascular pressure increases. We therefore reasoned that if pleural liquid comes from the systemic circulation, pleural liquid protein concentration relative to plasma protein concentration should decrease during normal development. To test this hypothesis we did thoracotomies on 14 fetal, 9 newborn, and 15 adult sheep and collected pleural liquid and plasma for measurement of total protein and albumin concentrations. In separate experiments we measured steady-state systemic and pulmonary vascular pressures in age-matched chronically instrumented fetal, newborn, and adult sheep. The protein concentration in pleural liquid relative to that in plasma (pleural liquid/plasma) decreased progressively with age (fetuses, 0.50 +/- 0.15 [SD]; newborns, 0.27 +/- 0.08; adult, 0.15 +/- 0.05); the trend was similar for pleural liquid/plasma albumin ratios as a function of age. Systemic arterial pressure increased progressively during development, whereas pulmonary arterial pressure decreased from the fetus to the adult sheep. These observations support the hypothesis that normal pleural liquid originates from a systemic circulation.
- Published
- 1991
11. Asbestos, the Mesothelial Cell and Malignancy: A Matter of Life or Death
- Author
-
Broaddus Vc
- Subjects
Pulmonary and Respiratory Medicine ,DNA damage ,Clinical Biochemistry ,Cell Biology ,Cell cycle ,Biology ,Malignancy ,medicine.disease ,medicine.disease_cause ,Asbestos ,Mutation (genetic algorithm) ,Cancer research ,medicine ,Mesothelioma ,Molecular Biology ,Carcinogen ,Mesothelial Cell - Published
- 1997
12. Mechanisms of pleural liquid formation in pleural inflammation
- Author
-
Broaddus Vc and Marchi E
- Subjects
Pulmonary and Respiratory Medicine ,Pathology ,medicine.medical_specialty ,Pleural effusion ,Cell adhesion molecule ,business.industry ,Adenosine Deaminase ,Inflammation ,Tuberculosis, Pleural ,respiratory system ,medicine.disease ,respiratory tract diseases ,Pleural Effusion ,Cholesterol ,Inflammatory cell ,medicine ,Humans ,medicine.symptom ,Inflammation Mediators ,business - Abstract
Inflammatory processes are a major cause of pleural effusion. Besides being important clinically for diagnosis and treatment of patients with pleural effusions, studies of inflammatory pleural effusions shed light on the mechanisms of pleural liquid formation and also on general mechanisms of inflammation. In this current review, we have chosen papers within the past year that highlight aspects of clinical and research interest concerning inflammation and inflammatory pleural effusions. In some studies, investigators have investigated basic mechanisms of the roles of cytokines and adhesion molecules in inflammatory cell recruitment and leakage of liquid. In other studies, clinicians have attempted to measure inflammatory markers as a means of diagnosis. In light of these studies, we discuss the current understanding of inflammatory pleural effusions and suggest future avenues for exploration.
- Published
- 1997
13. [12] Neutralization of interleukin-8 in in vivo models of lung and pleural injury
- Author
-
Broaddus Vc and Hébert Ca
- Subjects
Lung ,medicine.anatomical_structure ,Text mining ,In vivo ,business.industry ,Cancer research ,medicine ,Interleukin 8 ,business ,Neutralization - Published
- 1997
14. Pleural mesothelial cells recognize and internalize serum-coated crocidolite asbestos via a vitronectin receptor, αvβ5
- Author
-
Boylan, AM, primary, Yang, L, additional, Sanan, DA, additional, Sheppard, D, additional, and Broaddus, VC, additional
- Published
- 1996
- Full Text
- View/download PDF
15. Erlotinib Activates Different Cell Death Pathways in EGFR-mutant Lung Cancer Cells Grown in 3D Versus 2D Culture Systems.
- Author
-
Lee HK, Noh MH, Hong SW, Kim SM, Kim SH, Kim YS, Broaddus VC, and Hur DY
- Subjects
- Apoptosis drug effects, Autophagy physiology, Caspase 8 metabolism, Cell Death drug effects, Cell Line, Tumor, ErbB Receptors antagonists & inhibitors, ErbB Receptors genetics, Erlotinib Hydrochloride therapeutic use, Humans, JNK Mitogen-Activated Protein Kinases physiology, Lung Neoplasms pathology, TNF-Related Apoptosis-Inducing Ligand physiology, Cell Culture Techniques methods, Erlotinib Hydrochloride pharmacology, Lung Neoplasms drug therapy, Mutation
- Abstract
Background/aim: Non-small cell lung cancer patients with epidermal growth factor receptor (EGFR) mutation have been shown to have a good response to erlotinib, a receptor tyrosine kinase inhibitor of EGFR. In this study, we found that the cell death pathways activated by erlotinib in 2D and 3D culture systems are different., Materials and Methods: The cell death pathways induced by erlotinib were evaluated by flow cytometry and immunoblotting in both 2D and 3D culture systems of EGFR mutant lung cancer cells., Results: Treatment with erlotinib induced caspase 8 activation and up-regulation of TNF-related apoptosis-inducing ligand (TRAIL) expression only in 3D cultures. Knockdown of TRAIL attenuated both erlotinib-induced activation of caspase-8 and apoptosis in 3D cultures. Erlotinib also increased LC3, an autophagy marker, expression and c-Jun N terminal kinase (JNK) activation. Both 3-MA as an autophagy inhibitor and SP600125 as a JNK inhibitor, significantly inhibited erlotinib-induced cell death., Conclusion: Erlotinib induces apoptotic cell death in 3D cultures through an autophagy-TRAIL-JNK pathway., (Copyright © 2021 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
16. Clearing the Air - A Conservative Option for Spontaneous Pneumothorax.
- Author
-
Broaddus VC
- Subjects
- Humans, Pleurodesis, Pneumothorax
- Published
- 2020
- Full Text
- View/download PDF
17. Autophagy facilitates the release of immunogenic signals following chemotherapy in 3D models of mesothelioma.
- Author
-
Follo C, Cheng Y, Richards WG, Bueno R, and Broaddus VC
- Subjects
- Adenosine Triphosphate genetics, Alarmins genetics, Antineoplastic Agents pharmacology, Autophagy drug effects, Autophagy-Related Protein 7 antagonists & inhibitors, Autophagy-Related Proteins genetics, Beclin-1 genetics, Calreticulin genetics, Cell Culture Techniques, Cell Line, Tumor, Gene Expression Regulation, Neoplastic drug effects, Humans, Immunity, Cellular genetics, Mesothelioma genetics, Mesothelioma pathology, RNA Interference, Spheroids, Cellular drug effects, Spheroids, Cellular pathology, Autophagy genetics, HMGB1 Protein genetics, Immunogenic Cell Death genetics, Mesothelioma drug therapy
- Abstract
We have previously shown that nearly half of mesothelioma patients have tumors with low autophagy and that these patients have a significantly worse outcome than those with high autophagy. We hypothesized that autophagy may be beneficial by facilitating immunogenic cell death (ICD) of tumor cells following chemotherapy. An important hallmark of ICD is that death of tumor cells is preceded or accompanied by the release of damage-associated molecular pattern molecules (DAMPs), which then can stimulate an antitumor immune response. Therefore, we measured how autophagy affected the release of three major DAMPs: high mobility group box 1 (HMGB1), ATP, and calreticulin following chemotherapy. We found that autophagy in three-dimensional (3D) models with low autophagy at baseline could be upregulated with the cell-permeant Tat-BECN1 peptide and confirmed that autophagy in 3D models with high autophagy at baseline could be inhibited with MRT 68921 or ATG7 RNAi, as we have previously shown. In in vitro 3D spheroids, we found that, when autophagy was high or upregulated, DAMPs were released following chemotherapy; however, when autophagy was low or inhibited, DAMPs release was significantly impaired. Similarly, in ex vivo tumors, when autophagy was high or upregulated, HMGB1 was released following chemotherapy but, when autophagy was low, HMGB1 release was not seen. We conclude that autophagy can be upregulated in at least some tumors with low autophagy and that upregulation of autophagy can restore the release of DAMPs following chemotherapy. Autophagy may be necessary for ICD in this tumor., (© 2019 Wiley Periodicals, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
18. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma.
- Author
-
Follo C, Cheng Y, Richards WG, Bueno R, and Broaddus VC
- Subjects
- Autophagy-Related Protein-1 Homolog metabolism, Humans, Intracellular Signaling Peptides and Proteins metabolism, Mesothelioma metabolism, Mesothelioma pathology, Protein Serine-Threonine Kinases antagonists & inhibitors, Protein Serine-Threonine Kinases metabolism, Spheroids, Cellular, Tumor Cells, Cultured, Antineoplastic Agents pharmacology, Autophagy drug effects, Autophagy-Related Protein-1 Homolog antagonists & inhibitors, Hydroxychloroquine pharmacology, Intracellular Signaling Peptides and Proteins antagonists & inhibitors, Mesothelioma drug therapy, Protein Kinase Inhibitors pharmacology
- Abstract
The benefits of inhibiting autophagy in cancer are still controversial, with differences in outcome based on the type of tumor, the context and the particular stage of inhibition. Here, we investigated the impact of inhibiting autophagy at different stages on chemosensitivity using 3-dimensional (3D) models of mesothelioma, including ex vivo human tumor fragment spheroids. As shown by LC3B accumulation, we successfully inhibited autophagy using either an early stage ULK1/2 inhibitor (MRT 68921) or a late stage inhibitor (hydroxychloroquine). We found that inhibition of autophagy at the early stage, but not at late stage, potentiated chemosensitivity. This effect was seen only in those spheroids with high autophagy and active initiation at steady state. Inhibition of autophagy alone, at either early or late stage, did not cause cell death, showing that the inhibitors were non-toxic and that mesothelioma did not depend on autophagy at baseline, at least over 24 h. Using ATG13 puncta analysis, we found that autophagy initiation identified tumors that are more chemosensitive at baseline and after autophagy inhibition. Our results highlight a potential role of autophagy initiation in supporting mesothelioma cells during chemotherapy. Our work also highlights the importance of testing the inhibition of different stages in order to uncover the role of autophagy and the potential of its modulation in the treatment of cancer., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
19. Autophagy initiation correlates with the autophagic flux in 3D models of mesothelioma and with patient outcome.
- Author
-
Follo C, Barbone D, Richards WG, Bueno R, and Broaddus VC
- Subjects
- Animals, Cell Culture Techniques, Cell Line, Formaldehyde, Humans, Treatment Outcome, Adaptor Proteins, Signal Transducing metabolism, Autophagy physiology, Autophagy-Related Proteins metabolism, Mesothelioma metabolism, Mesothelioma therapy
- Abstract
Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome. Autophagy was studied in mesothelioma cell lines, as 2-dimensional (2D) monolayers and 3-dimensional (3D) multicellular spheroids (MCS), and in tumor from 25 chemonaive patients, both as ex vivo 3D tumor fragment spheroids (TFS) and as formalin-fixed tissue. Autophagy was evaluated as autophagic flux by detection of the accumulation of LC3 after lysosomal inhibition and as autophagy initiation by detection of ATG13 puncta. We found that autophagic flux in 3D, but not in 2D, correlated with ATG13 positivity. In each TFS, ATG13 positivity was similar to that of the original tumor. When tested in tissue microarrays of 109 chemonaive patients, higher ATG13 positivity correlated with better prognosis and provided information independent of known prognostic factors. Our results show that ATG13 is a static marker of the autophagic flux in 3D models of mesothelioma and may also reflect autophagy levels in formalin-fixed tumor. If confirmed, this marker would represent a novel prognostic factor for mesothelioma, supporting the notion that autophagy plays an important role in this cancer.
- Published
- 2016
- Full Text
- View/download PDF
20. Analysis of Gene Expression in 3D Spheroids Highlights a Survival Role for ASS1 in Mesothelioma.
- Author
-
Barbone D, Van Dam L, Follo C, Jithesh PV, Zhang SD, Richards WG, Bueno R, Fennell DA, and Broaddus VC
- Subjects
- Annexin A4 metabolism, Cell Line, Tumor, Humans, Mesothelioma pathology, Vault Ribonucleoprotein Particles metabolism, Argininosuccinate Synthase metabolism, Cell Survival, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Mesothelioma genetics, Spheroids, Cellular
- Abstract
To investigate the underlying causes of chemoresistance in malignant pleural mesothelioma, we have studied mesothelioma cell lines as 3D spheroids, which acquire increased chemoresistance compared to 2D monolayers. We asked whether the gene expression of 3D spheroids would reveal mechanisms of resistance. To address this, we measured gene expression of three mesothelioma cell lines, M28, REN and VAMT, grown as 2D monolayers and 3D spheroids. A total of 209 genes were differentially expressed in common by the three cell lines in 3D (138 upregulated and 71 downregulated), although a clear resistance pathway was not apparent. We then compared the list of 3D genes with two publicly available datasets of gene expression of 56 pleural mesotheliomas compared to normal tissues. Interestingly, only three genes were increased in both 3D spheroids and human tumors: argininosuccinate synthase 1 (ASS1), annexin A4 (ANXA4) and major vault protein (MVP); of these, ASS1 was the only consistently upregulated of the three genes by qRT-PCR. To measure ASS1 protein expression, we stained 2 sets of tissue microarrays (TMA): one with 88 pleural mesothelioma samples and the other with additional 88 pleural mesotheliomas paired with matched normal tissues. Of the 176 tumors represented on the two TMAs, ASS1 was expressed in 87 (50%; staining greater than 1 up to 3+). For the paired samples, ASS1 expression in mesothelioma was significantly greater than in the normal tissues. Reduction of ASS1 expression by siRNA significantly sensitized mesothelioma spheroids to the pro-apoptotic effects of bortezomib and of cisplatin plus pemetrexed. Although mesothelioma is considered by many to be an ASS1-deficient tumor, our results show that ASS1 is elevated at the mRNA and protein levels in mesothelioma 3D spheroids and in human pleural mesotheliomas. We also have uncovered a survival role for ASS1, which may be amenable to targeting to undermine mesothelioma multicellular resistance.
- Published
- 2016
- Full Text
- View/download PDF
21. Inflammatory Cytokines Contribute to Asbestos-Induced Injury of Mesothelial Cells.
- Author
-
Acencio MM, Soares B, Marchi E, Silva CS, Teixeira LR, and Broaddus VC
- Subjects
- Animals, Apoptosis drug effects, Cell Survival drug effects, Cells, Cultured, Chemokine CXCL2 antagonists & inhibitors, Chemokine CXCL2 metabolism, Cytokines antagonists & inhibitors, Epithelial Cells drug effects, Interleukin-1beta antagonists & inhibitors, Interleukin-1beta metabolism, Interleukin-6 antagonists & inhibitors, Interleukin-6 metabolism, Mice, Necrosis chemically induced, Pleura cytology, Asbestos, Crocidolite toxicity, Asbestos, Serpentine toxicity, Cytokines metabolism, Epithelial Cells metabolism, Epithelial Cells pathology
- Abstract
Background: Several diseases have been related to asbestos exposure, including the pleural tumor mesothelioma. The mechanism of pleural injury by asbestos fibers is not yet fully understood. The inflammatory response with release of mediators leading to a dysregulation of apoptosis may play a pivotal role in the pathophysiology of asbestos-induced pleural disease., Objective: To determine whether pro-inflammatory cytokines produced by asbestos-exposed pleural mesothelial cells modify the injury induced by the asbestos., Methods: Mouse pleural mesothelial cells (PMC) were exposed to crocidolite or chrysotile asbestos fibers (3.0 μg/cm(2)) for 4, 24, or 48 h and assessed for viability, necrosis and apoptosis, and the production of cytokines IL-1β, IL-6 and macrophage inflammatory protein-2 (MIP-2). Cells exposed to fibers were also treated with antibodies anti-IL-1β, anti-IL-6, anti- IL-1β+anti-IL-6 or anti-MIP-2 or their irrelevant isotypes, and assessed for apoptosis and necrosis. Non-exposed cells and cells treated with wollastonite, an inert particle, were used as controls., Results: Mesothelial cells exposed to either crocidolite or chrysotile underwent both apoptosis and necrosis and released cytokines IL-1β, IL-6 and MIP-2. In the crocidolite group, apoptosis and the levels of all cytokines were higher than in the chrysotile group, at comparable concentrations. Neutralization of IL-1β andIL-6, but not MIP-2, inhibited apoptosis and necrosis, especially in the cells exposed to crocidolite fibers., Conclusions: Both crocidolite and chrysotile asbestos fibers induced apoptosis and produced an acute inflammatory response characterized by elevated levels of IL-1β, IL-6 and MIP-2 in cultured mouse PMC. IL-1β and IL-6, but not MIP-2, were shown to contribute to asbestos-induced injury, especially in the crocidolite group.
- Published
- 2015
- Full Text
- View/download PDF
22. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models.
- Author
-
Barbone D, Follo C, Echeverry N, Gerbaudo VH, Klabatsa A, Bueno R, Felley-Bosco E, and Broaddus VC
- Subjects
- Adaptor Proteins, Signal Transducing metabolism, Autophagy-Related Protein 7, Autophagy-Related Proteins, Biomarkers metabolism, Cell Line, Tumor, Humans, Lung Neoplasms metabolism, Mesothelioma metabolism, Mesothelioma, Malignant, Phosphatidylinositol 3-Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Signal Transduction drug effects, Spheroids, Cellular drug effects, Spheroids, Cellular metabolism, TOR Serine-Threonine Kinases metabolism, Ubiquitin-Activating Enzymes metabolism, Autophagy drug effects, Bridged Bicyclo Compounds, Heterocyclic pharmacology, Lung Neoplasms drug therapy, Mesothelioma drug therapy, Pyrimidines pharmacology
- Abstract
Malignant pleural mesothelioma is a highly chemoresistant solid tumor. We have studied this apoptotic resistance using in vitro and ex vivo three-dimensional models, which acquire a high level of chemoresistance that can be reduced by PI3K/mTOR inhibitors. Here, we investigate the activity of GDC-0980, a novel dual PI3K/mTOR inhibitor, which has been proposed to be effective in mesothelioma. In this work, we aimed to identify mechanisms and markers of efficacy for GDC-0980 by utilizing 3D models of mesothelioma, both in vitro multicellular spheroids and ex vivo tumor fragment spheroids grown from patient tumor samples. We found that a subset of mesothelioma spheroids is sensitive to GDC-0980 alone and to its combination with chemotherapy. Unexpectedly, this sensitivity did not correlate with the activation of the Akt/mTOR pathway. Instead, sensitivity to GDC-0980 correlated with the presence of constitutive ATG13 puncta, a feature of autophagy, a cellular program that supports cells under stress. In tumor fragment spheroids grown from 21 tumors, we also found a subset (n = 11) that was sensitive to GDC-0980, a sensitivity that also correlated with the presence of ATG13 puncta. Interference with autophagy by siRNA of ATG7, an essential autophagic protein, increased the response to chemotherapy, but only in the sensitive multicellular spheroids. In the spheroids resistant to GDC-0980, autophagy appeared to play no role. In summary, we show that GDC-0980 is effective in mesothelioma 3D models that display ATG13 puncta, and that blockade of autophagy increases their response to chemotherapy. For the first time, we show a role for autophagy in the response to chemotherapy of 3D models of mesothelioma and propose ATG13 as a potential biomarker of the therapeutic responsiveness of mesothelioma.
- Published
- 2015
- Full Text
- View/download PDF
23. Medical Subspecialty Textbooks in the 21st Century. Essential or Headed for Extinction?
- Author
-
Broaddus VC and Grippi MA
- Subjects
- History, 21st Century, Humans, Education, Medical, Continuing trends, Medical Writing standards, Textbooks as Topic history, Topography, Medical standards
- Abstract
In recent years, the role of medical subspecialty textbooks as sources of information for students, trainees, and practicing clinicians has been challenged. Although the structure of textbooks continues to evolve from standard, printed versions to digital formats, including e-books and online texts, we maintain that the authoritative compilation of clinical and scientific material by experts in the field (i.e., a modern-day textbook) remains central to the education, training, and practice of subspecialists. Regardless of format, an effective medical subspecialty textbook is authoritative, comprehensive, and integrated in its coverage of the subject. Textbook content represents a unique synthesis of clinical and scientific material of real educational and clinical value. Incorporation of illustrations, including figures, tables, videos, and audios, bolsters the presentation and further solidifies the reader's understanding of the subject. The textbook, both printed and digital, reinforces the many widely available online resources and serves as a platform from which to evaluate other sources of information and to launch additional scientific and clinical inquiry.
- Published
- 2015
- Full Text
- View/download PDF
24. Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors.
- Author
-
Echeverry N, Ziltener G, Barbone D, Weder W, Stahel RA, Broaddus VC, and Felley-Bosco E
- Subjects
- Autophagy drug effects, Cell Proliferation drug effects, Drug Synergism, Humans, Lung Neoplasms pathology, Mesothelioma pathology, Mesothelioma, Malignant, Phosphatidylinositol 3-Kinases metabolism, Phosphorylation, Pleural Neoplasms metabolism, Pleural Neoplasms pathology, Protein Kinase Inhibitors pharmacology, Signal Transduction, TOR Serine-Threonine Kinases metabolism, Bridged Bicyclo Compounds, Heterocyclic pharmacology, Imidazoles pharmacology, Lung Neoplasms drug therapy, Lung Neoplasms metabolism, Mesothelioma drug therapy, Mesothelioma metabolism, Phosphoinositide-3 Kinase Inhibitors, Pleural Neoplasms drug therapy, Pyrimidines pharmacology, Quinolines pharmacology, TOR Serine-Threonine Kinases antagonists & inhibitors
- Abstract
Malignant pleural mesothelioma (MPM) originates in most of the cases from chronic inflammation of the mesothelium due to exposure to asbestos fibers. Given the limited effect of chemotherapy, a big effort is being made to find new treatment options. The PI3K/mTOR pathway was reported to be upregulated in MPM. We tested the cell growth inhibition properties of two dual PI3K/mTOR inhibitors NVP-BEZ235 and GDC-0980 on 19 MPM cell lines. We could identify resistant and sensitive lines; however, there was no correlation to the downregulation of PI3K/mTOR activity markers. As a result of mTOR inhibition, both drugs efficiently induced long-term autophagy but not cell death. Autophagy blockade by chloroquine in combination with the dual PI3K/mTOR inhibitors significantly induced caspase-independent cell death involving RIP1 in the sensitive cell line SPC212. Cell death in the resistant cell line Mero-82 was less pronounced, and it was not induced via RIP1-dependent mechanism, suggesting the involvement of RIP1 downstream effectors. Cell death induction was confirmed in 3D systems. Based on these results, we identify autophagy as one of the main mechanisms of cell death resistance against dual PI3K/mTOR inhibitors in MPM. As PI3K/mTOR inhibitors are under investigation in clinical trials, these results may help interpreting their outcome and suggest ways for intervention.
- Published
- 2015
- Full Text
- View/download PDF
25. BAK and NOXA are critical determinants of mitochondrial apoptosis induced by bortezomib in mesothelioma.
- Author
-
Busacca S, Chacko AD, Klabatsa A, Arthur K, Sheaff M, Barbone D, Mutti L, Gunasekharan VK, Gorski JJ, El-Tanani M, Broaddus VC, Gaudino G, and Fennell DA
- Subjects
- Animals, Bortezomib, Cell Line, Tumor, Down-Regulation drug effects, Drug Resistance, Neoplasm drug effects, Embryo, Mammalian cytology, Fibroblasts drug effects, Fibroblasts metabolism, Gene Expression Regulation, Neoplastic drug effects, Immunohistochemistry, Mesothelioma genetics, Mice, Mitochondria drug effects, Proto-Oncogene Proteins c-bcl-2 genetics, Proto-Oncogene Proteins c-myc metabolism, Transcription, Genetic drug effects, bcl-2-Associated X Protein metabolism, Apoptosis drug effects, Boronic Acids pharmacology, Mesothelioma metabolism, Mesothelioma pathology, Mitochondria metabolism, Proto-Oncogene Proteins c-bcl-2 metabolism, Pyrazines pharmacology, bcl-2 Homologous Antagonist-Killer Protein metabolism
- Abstract
Based on promising preclinical efficacy associated with the 20S proteasome inhibitor bortezomib in malignant pleural mesothelioma (MPM), two phase II clinical trials have been initiated (EORTC 08052 and ICORG 05-10). However, the potential mechanisms underlying resistance to this targeted drug in MPM are still unknown. Functional genetic analyses were conducted to determine the key mitochondrial apoptotic regulators required for bortezomib sensitivity and to establish how their dysregulation may confer resistance. The multidomain proapoptotic protein BAK, but not its orthologue BAX, was found to be essential for bortezomib-induced apoptosis in MPM cell lines. Immunohistochemistry was performed on tissues from the ICORG-05 phase II trial and a TMA of archived mesotheliomas. Loss of BAK was found in 39% of specimens and loss of both BAX/BAK in 37% of samples. However, MPM tissues from patients who failed to respond to bortezomib and MPM cell lines selected for resistance to bortezomib conserved BAK expression. In contrast, c-Myc dependent transactivation of NOXA was abrogated in the resistant cell lines. In summary, the block of mitochondrial apoptosis is a limiting factor for achieving efficacy of bortezomib in MPM, and the observed loss of BAK expression or NOXA transactivation may be relevant mechanisms of resistance in the clinic.
- Published
- 2013
- Full Text
- View/download PDF
26. Ligation of CM1 enhances apoptosis of lung cancer cells through different mechanisms in conformity with EGFR mutation.
- Author
-
Lee HK, Park GB, Kim YS, Song H, Broaddus VC, and Hur DY
- Subjects
- Antibodies, Monoclonal pharmacology, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, ErbB Receptors metabolism, Germinal Center cytology, Germinal Center metabolism, Humans, Lung Neoplasms pathology, Mutation, Reactive Oxygen Species metabolism, Apoptosis genetics, Apoptosis Regulatory Proteins genetics, ErbB Receptors genetics, Lung Neoplasms genetics
- Abstract
Although remarkable developments in lung cancer treatments have been made, lung cancer remains the leading cause of cancer mortality worldwide. Epidermal growth factor receptor (EGFR) is occasionally mutated in non-small cell lung cancer and heterogeneity in treatment response results from different EGFR mutations. In the present study, we found that centrocyte/centroblast marker 1 (CM1), previously reported as a possible apoptosis inducer of B lymphoma cells, is expressed on both A549 with wild‑type EGFR and HCC827 with mutant EGFR lung cancer cells. Ligation of CM1 with anti-CM1 mAb enhanced apoptosis in both lung cancer cell lines through generation of reactive oxygen species (ROS) and disruption of mitochondrial membrane potential, however, the signaling mechanisms differed from each other. Further studies to investigate the signaling mechanisms identified that ligation of CM1‑induced apoptosis in A549 cell involved FasL expression, caspase-8, ERK1/2 and Akt kinase, whereas apoptosis of HCC827 cells was induced through caspase-9, JNK and c-jun‑dependent pathways. Taken together, we suggest that CM1 could be developed as a therapeutic target of lung cancer regardless of EGFR mutation status.
- Published
- 2013
- Full Text
- View/download PDF
27. Vorinostat/SAHA-induced apoptosis in malignant mesothelioma is FLIP/caspase 8-dependent and HR23B-independent.
- Author
-
Hurwitz JL, Stasik I, Kerr EM, Holohan C, Redmond KM, McLaughlin KM, Busacca S, Barbone D, Broaddus VC, Gray SG, O'Byrne KJ, Johnston PG, Fennell DA, and Longley DB
- Subjects
- Apoptosis drug effects, CASP8 and FADD-Like Apoptosis Regulating Protein genetics, Cell Line, Tumor, DNA Repair Enzymes metabolism, DNA-Binding Proteins metabolism, Histone Deacetylase Inhibitors metabolism, Humans, Male, Pleural Neoplasms metabolism, RNA Interference, Spheroids, Cellular, Vorinostat, Apoptosis Regulatory Proteins pharmacology, CASP8 and FADD-Like Apoptosis Regulating Protein metabolism, Caspase Inhibitors, Hydroxamic Acids pharmacology, Mesothelioma drug therapy, Mesothelioma metabolism, Pleural Neoplasms drug therapy
- Abstract
Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM., Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays., Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner., Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
28. Vorinostat eliminates multicellular resistance of mesothelioma 3D spheroids via restoration of Noxa expression.
- Author
-
Barbone D, Cheung P, Battula S, Busacca S, Gray SG, Longley DB, Bueno R, Sugarbaker DJ, Fennell DA, and Broaddus VC
- Subjects
- Apoptosis drug effects, Apoptosis Regulatory Proteins metabolism, Bcl-2-Like Protein 11, Boronic Acids pharmacology, Bortezomib, Cell Line, Tumor, Cisplatin pharmacology, Drug Synergism, Gene Expression Regulation, Neoplastic, Glutamates pharmacology, Guanine analogs & derivatives, Guanine pharmacology, Humans, Membrane Proteins metabolism, Mesothelioma, Myeloid Cell Leukemia Sequence 1 Protein, Pemetrexed, Proto-Oncogene Proteins metabolism, Proto-Oncogene Proteins c-bcl-2 metabolism, Pyrazines pharmacology, Spheroids, Cellular physiology, Up-Regulation, Vorinostat, Antineoplastic Agents pharmacology, Drug Resistance, Neoplasm, Gene Expression drug effects, Hydroxamic Acids pharmacology, Proto-Oncogene Proteins c-bcl-2 genetics, Spheroids, Cellular drug effects
- Abstract
When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies.
- Published
- 2012
- Full Text
- View/download PDF
29. Novel human single chain antibody fragments that are rapidly internalizing effectively target epithelioid and sarcomatoid mesotheliomas.
- Author
-
Iyer AK, Lan X, Zhu X, Su Y, Feng J, Zhang X, Gao D, Seo Y, Vanbrocklin HF, Broaddus VC, Liu B, and He J
- Subjects
- Animals, Fluorodeoxyglucose F18, Humans, Immunotoxins chemistry, Immunotoxins pharmacokinetics, Isotope Labeling, Male, Mesothelioma diagnostic imaging, Mesothelioma radiotherapy, Mice, Mice, Nude, Positron-Emission Tomography, Radiopharmaceuticals chemistry, Radiopharmaceuticals pharmacokinetics, Sarcoma diagnostic imaging, Sarcoma radiotherapy, Single-Chain Antibodies pharmacokinetics, Technetium administration & dosage, Technetium chemistry, Technetium pharmacokinetics, Tissue Distribution, Tomography, Emission-Computed, Single-Photon, Immunotoxins immunology, Mesothelioma immunology, Radiopharmaceuticals immunology, Sarcoma immunology, Single-Chain Antibodies immunology
- Abstract
Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with (⁹⁹m)Tc ((⁹⁹m)Tc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. (⁹⁹m)Tc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68% to 92% internalized within 1 hour. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT as early as 1 hour postinjection of (⁹⁹m)Tc-M40. Tumor uptake measured as percent of injected dose per gram tissue (%ID/g) at 3 hours was 4.38 and 5.84 for M28 and VAMT-1 tumors, respectively, significantly greater than all organs or tissues studied (liver, 2.62%ID/g; other organs or tissues <1.7%ID/g), except the kidneys (130.7%ID/g), giving tumor-to-blood ratios of 5:1 and 7:1 and tumor-to-muscle ratios of 45:1 and 60:1, for M28 and VAMT-1, respectively. The target-mediated uptake was confirmed by a nearly 70% reduction in tumor activity following administration of 10-fold excess of unlabeled scFv. Taken together, these results indicate that M40 can rapidly and specifically target epithelioid and sarcomatoid tumor cells, demonstrating the potential of this agent as a versatile targeting ligand for imaging and therapy of all subtypes of mesothelioma.
- Published
- 2011
- Full Text
- View/download PDF
30. The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy.
- Author
-
Xiang X, Phung Y, Feng M, Nagashima K, Zhang J, Broaddus VC, Hassan R, Fitzgerald D, and Ho M
- Subjects
- Antibodies therapeutic use, Cadherins analysis, Cadherins immunology, Cell Culture Techniques methods, Humans, Kinetics, Mesothelioma drug therapy, Microscopy, Electron, Tumor Cells, Cultured, Antibodies, Monoclonal therapeutic use, Immunotoxins therapeutic use, Mesothelioma pathology, Spheroids, Cellular pathology, Tumor Microenvironment immunology
- Abstract
Background: Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma., Methodology/principal Findings: Here, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D) spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226) and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro., Conclusion/significance: This work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. We believe that the methods developed here may apply to the studies of other tumor-targeting antibodies and immunoconjugates in vitro.
- Published
- 2011
- Full Text
- View/download PDF
31. Non-neoplastic and neoplastic pleural endpoints following fiber exposure.
- Author
-
Broaddus VC, Everitt JI, Black B, and Kane AB
- Subjects
- Animals, Asbestos administration & dosage, Asbestos pharmacokinetics, Biological Transport, Carcinogens, Environmental administration & dosage, Carcinogens, Environmental pharmacokinetics, Carcinogens, Environmental toxicity, Environmental Pollutants administration & dosage, Environmental Pollutants pharmacokinetics, Humans, Pleural Diseases metabolism, Pleural Neoplasms metabolism, Asbestos toxicity, Environmental Pollutants toxicity, Mineral Fibers toxicity, Pleural Diseases chemically induced, Pleural Neoplasms chemically induced
- Abstract
Exposure to asbestos fibers is associated with non-neoplastic pleural diseases including plaques, fibrosis, and benign effusions, as well as with diffuse malignant pleural mesothelioma. Translocation and retention of fibers are fundamental processes in understanding the interactions between the dose and dimensions of fibers retained at this anatomic site and the subsequent pathological reactions. The initial interaction of fibers with target cells in the pleura has been studied in cellular models in vitro and in experimental studies in vivo. The proposed biological mechanisms responsible for non-neoplastic and neoplastic pleural diseases and the physical and chemical properties of asbestos fibers relevant to these mechanisms are critically reviewed. Understanding mechanisms of asbestos fiber toxicity may help us anticipate the problems from future exposures both to asbestos and to novel fibrous materials such as nanotubes. Gaps in our understanding have been outlined as guides for future research.
- Published
- 2011
- Full Text
- View/download PDF
32. Rapid generation of in vitro multicellular spheroids for the study of monoclonal antibody therapy.
- Author
-
Phung YT, Barbone D, Broaddus VC, and Ho M
- Abstract
Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates and are difficult to study in vitro. Cells cultured as monolayers typically exhibit less resistance to therapy than those grown in vivo. Therefore, it is important to develop an alternative research model that better represents in vivo tumors. We have developed a protocol to produce multicellular spheroids, a simple and more relevant model of in vivo tumors that allows for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. The protocol is used to produce in vitro three-dimensional tumor spheroids from established human cancer cell lines and primary cancer cells isolated from patients without the use of any extracellular components. To study the ability of tumor-targeting immunoconjugates to penetrate these tumor spheroids in vitro, we have used an immunotoxin targeting mesothelin, a surface protein expressed in malignant mesotheliomas. This method for producing consistent, reproducible 3D spheroids may allow for improved testing of novel monoclonal antibodies and other agents for their ability to penetrate solid tumors for cancer therapy.
- Published
- 2011
- Full Text
- View/download PDF
33. Bcl-2 family proteins contribute to apoptotic resistance in lung cancer multicellular spheroids.
- Author
-
Yang TM, Barbone D, Fennell DA, and Broaddus VC
- Subjects
- Antineoplastic Combined Chemotherapy Protocols metabolism, Apoptosis genetics, Biphenyl Compounds pharmacology, Boronic Acids pharmacology, Bortezomib, CASP8 and FADD-Like Apoptosis Regulating Protein metabolism, Cell Communication drug effects, Cell Line, Tumor, Diffusion, Humans, Lung Neoplasms genetics, Lung Neoplasms metabolism, Myeloid Cell Leukemia Sequence 1 Protein, NF-kappa B metabolism, Nitrophenols pharmacology, Phosphatidylinositol 3-Kinases metabolism, Piperazines pharmacology, Protease Inhibitors pharmacology, Proteasome Endopeptidase Complex metabolism, Proteasome Inhibitors, Protein Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Proto-Oncogene Proteins c-bcl-2 antagonists & inhibitors, Proto-Oncogene Proteins c-bcl-2 genetics, Pyrazines pharmacology, Recombinant Proteins pharmacology, Signal Transduction drug effects, Spheroids, Cellular, Sulfonamides pharmacology, TNF-Related Apoptosis-Inducing Ligand pharmacology, TOR Serine-Threonine Kinases, Time Factors, Antineoplastic Combined Chemotherapy Protocols pharmacology, Apoptosis drug effects, Drug Resistance, Neoplasm, Lung Neoplasms pathology, Proto-Oncogene Proteins c-bcl-2 metabolism
- Abstract
Combinatorial therapies using the proteasome inhibitor, bortezomib, have been found to induce synergistic apoptosis in cancer cells grown as monolayers; however, three-dimensional spheroid culture may be a better model for the multicellular resistance found in solid tumors, such as lung cancer. We tested the combinatorial apoptotic strategy of using bortezomib together with TNF-related apoptosis-inducing ligand (TRAIL), both in monolayers and in spheroids of A549 lung cancer cells. Indeed, bortezomib plus TRAIL induced synergistic apoptosis in A549 cells grown as monolayers, but had little effect on A549 cells grown as three-dimensional multicellular spheroids. The acquired resistance of spheroids was not due to a limitation of diffusion, to survival pathways, such as NF-kappaB or PI3K/Akt/mTOR, or to the up-regulation of FLIP(S) (Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein, short). We then investigated a role for the Bcl-2 family of anti- and proapoptotic proteins. When cells formed spheroids, antiapoptotic Bcl-2 increased, whereas antiapoptotic Mcl-1 decreased. ABT-737, a small molecule that inhibits Bcl-2, but not Mcl-1, abolished the multicellular resistance of A549 spheroids to bortezomib plus TRAIL. In another lung cancer cell line, H1299, acquisition of multicellular resistance in spheroids was also accompanied by an increase in Bcl-2 and decrease in Mcl-1. In H1299 spheroids compared with those of A549, however, Mcl-1 remained higher, and Mcl-1 knockdown was more effective than ABT-737 in removing multicellular resistance. Our study suggests that the balance of Bcl-2 family proteins contributes to the acquired multicellular resistance of spheroids, and suggests a possible target for improving the response of lung cancer to bortezomib therapies.
- Published
- 2009
- Full Text
- View/download PDF
34. Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma.
- Author
-
Bidlingmaier S, He J, Wang Y, An F, Feng J, Barbone D, Gao D, Franc B, Broaddus VC, and Liu B
- Subjects
- Animals, Antigens, CD immunology, CD146 Antigen genetics, CD146 Antigen immunology, Cell Line, Tumor, Cytomegalovirus genetics, Epitopes analysis, Gene Library, Humans, Mammals, Mesothelioma classification, Mesothelioma genetics, Oligonucleotide Array Sequence Analysis, Promoter Regions, Genetic, Tomography, X-Ray Computed, Transplantation, Heterologous immunology, Antibodies, Monoclonal immunology, Antigens, Neoplasm immunology, Mesothelioma immunology
- Abstract
The prognosis for patients diagnosed with mesothelioma is generally poor, and currently available treatments are usually ineffective. Therapies that specifically target tumor cells hold much promise for the treatment of cancers that are resistant to current approaches. We have previously selected phage antibody display libraries on mesothelioma cell lines to identify a panel of internalizing human single chain (scFv) antibodies that target mesothelioma-associated, clinically represented cell surface antigens and further exploited the internalizing function of these scFvs to specifically deliver lethal doses of liposome-encapsulated small molecule drugs to both epithelioid and sarcomatous subtypes of mesothelioma cells. Here, we report the identification of MCAM/MUC18/CD146 as the surface antigen bound by one of the mesothelioma-targeting scFvs using a novel cloning strategy based on yeast surface human proteome display. Immunohistochemical analysis of mesothelioma tissue microarrays confirmed that MCAM is widely expressed by both epithelioid and sarcomatous types of mesothelioma tumor cells in situ but not by normal mesothelial cells. In addition, quantum dot-labeled anti-MCAM scFv targets primary meosthelioma cells in tumor fragment spheroids cultured ex vivo. As the first step in evaluating the therapeutic potential of MCAM-targeting antibodies, we performed single-photon emission computed tomography studies using the anti-MCAM scFv and found that it recognizes mesothelioma organotypic xenografts in vivo. The combination of phage antibody library selection on tumor cells and rapid target antigen identification by screening the yeast surface-displayed human proteome could be a powerful method for mapping the targetable tumor cell surface epitope space.
- Published
- 2009
- Full Text
- View/download PDF
35. mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids.
- Author
-
Wilson SM, Barbone D, Yang TM, Jablons DM, Bueno R, Sugarbaker DJ, Nishimura SL, Gordon GJ, and Broaddus VC
- Subjects
- Cell Line, Tumor, Cell Survival drug effects, Chromones pharmacology, Cycloheximide pharmacology, Deoxycytidine analogs & derivatives, Deoxycytidine pharmacology, Drug Resistance, Multiple drug effects, Drug Resistance, Neoplasm drug effects, Humans, Mesothelioma genetics, Morpholines pharmacology, Phosphorylation drug effects, Proto-Oncogene Proteins c-akt metabolism, RNA, Small Interfering genetics, Ribosomal Protein S6 Kinases genetics, Ribosomal Protein S6 Kinases metabolism, Sirolimus pharmacology, Spheroids, Cellular, TNF-Related Apoptosis-Inducing Ligand pharmacology, TOR Serine-Threonine Kinases, Gemcitabine, Mesothelioma metabolism, Mesothelioma pathology, Protein Kinases metabolism, Signal Transduction drug effects
- Abstract
Solid tumors such as mesothelioma exhibit a stubborn resistance to apoptosis that may derive from survival pathways, such as PI3K/Akt/mTOR, that are activated in many tumors, including mesothelioma. To address the role of PI3K/Akt/mTOR, we used a novel approach to study mesothelioma ex vivo as tumor fragment spheroids. Freshly resected mesothelioma tissue from 15 different patients was grown in vitro as 1- to 2-mm-diameter fragments, exposed to apoptotic agents for 48 hours with or without PI3K/Akt/mTOR inhibitors, and doubly stained for cytokeratin and cleaved caspase 3 to identify apoptotic mesothelioma cells. Mesothelioma cells within the tumor spheroids exhibited striking resistance to apoptotic agents such as TRAIL plus gemcitabine that were highly effective against monolayers. In a majority of tumors (67%; 10 of 15), apoptotic resistance could be reduced by more than 50% by rapamycin, an mTOR inhibitor, but not by LY294002, a PI3K inhibitor. Responsiveness to rapamycin correlated with staining for the mTOR target, p-S6K, in the original tumor, but not for p-Akt. As confirmation of the role of mTOR, siRNA knockdown of S6K reproduced the effect of rapamycin in three rapamycin-responsive tumors. Finally, in 37 mesotheliomas on tissue microarray, p-S6K correlated only weakly with p-Akt, suggesting the existence of Akt-independent regulation of mTOR. We propose that mTOR mediates survival signals in many mesothelioma tumors. Inhibition of mTOR may provide a nontoxic adjunct to therapy directed against malignant mesothelioma, especially in those with high baseline expression of p-S6K.
- Published
- 2008
- Full Text
- View/download PDF
36. Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids.
- Author
-
Barbone D, Yang TM, Morgan JR, Gaudino G, and Broaddus VC
- Subjects
- CASP8 and FADD-Like Apoptosis Regulating Protein metabolism, Cell Line, Tumor, Down-Regulation, Humans, Mitochondria metabolism, Phosphatidylinositol 3-Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Proto-Oncogene Proteins c-bcl-2 metabolism, Ribosomal Protein S6 Kinases metabolism, Sirolimus pharmacology, TOR Serine-Threonine Kinases, Time Factors, Up-Regulation drug effects, Apoptosis, Mesothelioma metabolism, Mesothelioma pathology, Protein Kinases metabolism, Spheroids, Cellular metabolism, Spheroids, Cellular pathology
- Abstract
When grown as three-dimensional structures, tumor cells can acquire an additional multicellular resistance to apoptosis that may mimic the chemoresistance found in solid tumors. We developed a multicellular spheroid model of malignant mesothelioma to investigate molecular mechanisms of acquired apoptotic resistance. We found that mesothelioma cell lines, when grown as multicellular spheroids, acquired resistance to a variety of apoptotic stimuli, including combinations of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), ribotoxic stressors, histone deacetylase, and proteasome inhibitors, that were highly effective against mesothelioma cells when grown as monolayers. Inhibitors of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, particularly rapamycin, blocked much of the acquired resistance of the spheroids, suggesting a key role for mTOR. Knockdown by small interference RNA of S6K, a major downstream target of mTOR, reproduced the effect of rapamycin, thereby confirming the role of mTOR and of S6K in the acquired resistance of three dimensional spheroids. Rapamycin or S6K knockdown increased TRAIL-induced caspase-8 cleavage in spheroids, suggesting initially that mTOR inhibited apoptosis by actions at the death receptor pathway; however, isolation of the apoptotic pathways by means of Bid knockdown ablated this effect showing that mTOR actually controls a step distal to Bid, probably at the level of the mitochondria. In sum, mTOR and S6K contribute to the apoptotic resistance of mesothelioma cells in three-dimensional, not in two-dimensional, cultures. The three-dimensional model may reflect a more clinically relevant in vitro setting in which mTOR exhibits anti-apoptotic properties.
- Published
- 2008
- Full Text
- View/download PDF
37. Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies.
- Author
-
An F, Drummond DC, Wilson S, Kirpotin DB, Nishimura SL, Broaddus VC, and Liu B
- Subjects
- Antineoplastic Agents administration & dosage, Cell Line, Tumor, Humans, Mesothelioma immunology, Antibodies immunology, Antineoplastic Agents therapeutic use, Immunoglobulin Fragments immunology, Mesothelioma drug therapy
- Abstract
Mesothelioma is a malignancy of the mesothelium and current treatments are generally ineffective. One promising area of anticancer drug development is to explore tumor susceptibility to targeted therapy. To achieve efficient, targeted intracellular delivery of therapeutic agents to mesothelioma cells, we selected a naive human single-chain (scFv) phage antibody display library directly on the surface of live mesothelioma cells to identify internalizing antibodies that target mesothelioma-associated cell surface antigens. We have identified a panel of internalizing scFvs that bind to mesothelioma cell lines derived from both epithelioid (M28) and sarcomatous (VAMT-1) types of this disease. Most importantly, these antibodies stain mesothelioma cells in situ and therefore define a panel of clinically represented tumor antigens. We have further exploited the internalizing function of these scFvs to achieve targeted intracellular drug delivery to mesothelioma cells. We showed that scFv-targeted immunoliposomes were efficiently and specifically taken up by both epithelioid and sarcomatous mesothelioma cells, but not control cells, and immunoliposomes encapsulating the small-molecule drug topotecan caused targeted killing of both types of mesothelioma cells in vitro.
- Published
- 2008
- Full Text
- View/download PDF
38. Pleural mesothelial cells mediate inflammatory and profibrotic responses in talc-induced pleurodesis.
- Author
-
Acencio MM, Vargas FS, Marchi E, Carnevale GG, Teixeira LR, Antonangelo L, and Broaddus VC
- Subjects
- Animals, Antiperspirants toxicity, Apoptosis, Cells, Cultured, Disease Models, Animal, Enzyme-Linked Immunosorbent Assay, Epithelium drug effects, Epithelium metabolism, Immunohistochemistry, Interleukin-8 metabolism, Pleura drug effects, Pleura metabolism, Pleurisy chemically induced, Pleurisy metabolism, Pleurodesis methods, Rabbits, Talc administration & dosage, Transforming Growth Factor alpha metabolism, Vascular Endothelial Growth Factor A metabolism, Epithelium pathology, Pleura pathology, Pleurisy pathology, Pleurodesis adverse effects, Talc toxicity
- Abstract
Intrapleural talc is used to produce pleurodesis in malignant pleural effusions. Prior in vivo studies have documented an acute inflammatory response to talc in the pleural space but the cellular source of cytokines has not been identified. The aim of this study was to investigate the acute response of rabbit pleural mesothelial cells challenged with talc used for pleurodesis and compare it to prior studies of the response to talc in the rabbit pleural space. Cultured rabbit pleural mesothelial cells (PMC) were exposed to talc (25 mug/cm(2)) for 6, 24, or 48 h and assessed for viability, necrosis, and apoptosis by flow cytometry, Trypan Blue exclusion, and immunocytochemistry, and for the production of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and transforming growth factor-beta(1) (TGF-beta(1)) by ELISA. More than 50% of the PMC remained viable 48 h after talc stimulation. The PMC that were nonviable were identified as either apoptotic or necrotic, with roughly 20% in each category over the 48 h. At 6 h, the IL-8, VEGF, and TGF-beta(1) levels produced by talc-exposed PMC increased significantly and remained elevated for up to 48 h. These cytokine levels rose at similar times and at the same or higher levels than have been measured in the rabbit pleural space in prior studies. We report that viable, talc-exposed, pleural mesothelial cells may actively mediate the primary inflammatory pleural response in talc-induced pleurodesis.
- Published
- 2007
- Full Text
- View/download PDF
39. Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts.
- Author
-
Hassan R, Broaddus VC, Wilson S, Liewehr DJ, and Zhang J
- Subjects
- Animals, Antibodies, Monoclonal administration & dosage, Cell Line, Tumor, Deoxycytidine administration & dosage, Deoxycytidine pharmacology, Drug Synergism, Female, GPI-Linked Proteins, Humans, Membrane Glycoproteins biosynthesis, Membrane Glycoproteins immunology, Mesothelin, Mice, Mice, Nude, Neoplasms immunology, Remission Induction, Xenograft Model Antitumor Assays, Gemcitabine, Antibodies, Monoclonal pharmacology, Antineoplastic Combined Chemotherapy Protocols pharmacology, Deoxycytidine analogs & derivatives, Neoplasms drug therapy
- Abstract
Purpose: To determine the antitumor activity of the anti-mesothelin immunotoxin SS1P in combination with gemcitabine against mesothelin-expressing tumor xenografts., Experimental Design: The in vitro activity of SS1P in combination with gemcitabine against the mesothelin-expressing cell line A431/K5 was evaluated using cytotoxicity and apoptosis assays. The antitumor activity of this combination was evaluated in nude mice bearing A431/K5 tumor xenografts. Tumor-bearing mice were treated with different doses and schedules of gemcitabine alone, SS1P alone (0.2 mg/kg i.v. every other day x three doses), or with both agents together, and tumor volumes were measured over time., Results: In vitro studies failed to show the synergy of SS1P plus gemcitabine against the mesothelin-expressing A431/K5 cells. In contrast, in the in vivo setting, there was a marked synergy when SS1P was combined with gemcitabine for the treatment of mesothelin-expressing tumor xenografts. This synergy was present using different doses and schedules of gemcitabine administration. In mice treated with fractionated doses of gemcitabine in combination with SS1P, complete tumor regression was observed in all mice and was long-lasting in 60% of the animals. Also, this antitumor activity was specific to SS1P because HA22, an immunotoxin targeting CD22 not expressed on A431/K5 cells, did not increase the efficacy of gemcitabine., Conclusions: SS1P in combination with gemcitabine results in marked antitumor activity against mesothelin-expressing tumors. This combination could be potentially useful for the treatment of human cancers that express mesothelin and are responsive to gemcitabine therapy.
- Published
- 2007
- Full Text
- View/download PDF
40. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients.
- Author
-
Araya J, Cambier S, Markovics JA, Wolters P, Jablons D, Hill A, Finkbeiner W, Jones K, Broaddus VC, Sheppard D, Barzcak A, Xiao Y, Erle DJ, and Nishimura SL
- Subjects
- Animals, Cell Communication physiology, Cells, Cultured, Coculture Techniques, Epithelial Cells pathology, Fibroblasts cytology, Fibroblasts metabolism, Gene Expression Profiling, Humans, Integrins genetics, Integrins metabolism, Interleukin-1 genetics, Interleukin-1 metabolism, Matrix Metalloproteinase 14 metabolism, Mesoderm, Metaplasia metabolism, Mice, Transforming Growth Factor beta metabolism, Epithelial Cells metabolism, Epithelium metabolism, Epithelium pathology, Metaplasia pathology, Pulmonary Disease, Chronic Obstructive metabolism, Pulmonary Disease, Chronic Obstructive pathology, Respiratory Mucosa cytology, Respiratory Mucosa pathology
- Abstract
Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1beta, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-beta activation in amplifying SM and driving IL-1beta-dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin alpha(v)beta(8), which is the major mediator of airway fibroblast TGF-beta activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-beta as a potential therapeutic target for COPD.
- Published
- 2007
- Full Text
- View/download PDF
41. Eighth international mesothelioma interest group.
- Author
-
Carbone M, Albelda SM, Broaddus VC, Flores RM, Hillerdal G, Jaurand MC, Kjaerheim K, Pass HI, Robinson B, and Tsao A
- Subjects
- Humans, Mesothelioma etiology, Mesothelioma pathology, Pleural Neoplasms etiology, Pleural Neoplasms pathology
- Abstract
The eighth International Mesothelioma Interest Group (IMIG) meeting was held in Chicago, IL, United States, in 19-22 October 2006 to discuss mesothelioma - the cancer often linked to asbestos exposure. It is a very aggressive malignancy with a median survival of less than 1 year from diagnosis. Millions of people have been exposed worldwide to asbestos, especially during the second half of the twentieth century when asbestos use increased significantly. The tons of asbestos utilized in the past remain a health hazard for current and future generations because asbestos is difficult to be disposed off. This makes asbestos and mesothelioma research a public health issue in addition to a medical problem. Moreover, the very high costs of asbestos litigation have a significant impact on the whole economy. In the United States, up until 2001, defendant companies had paid 54 billion dollars in claims and estimated future liabilities ranged from 145 to 210 billion. Therefore, asbestos research is of great interest to a large audience that includes patients, millions of asbestos-exposed individuals, scientists, physicians, public health officials, politicians, unions of asbestos workers, lawyers and the public at large. During the past few years, there has been significant progress in understanding the process of mineral fiber carcinogenesis and mesothelioma pathogenesis. With improved understanding of the pathogenesis of mesothelioma, new diagnostic, preventive and therapeutic options are being developed. A total of 247 papers were presented at the IMIG: the abstracts of these presentations were published in Lung Cancer, Supplement 1, October 2006. Here, experts in different disciplines critically review some of the most exciting presentations of the IMIG meeting. The result is a comprehensive review of the research field of asbestos carcinogenesis and mesothelioma, and of the progress that has been made in recent years in both basic and clinical sciences.
- Published
- 2007
- Full Text
- View/download PDF
42. Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim.
- Author
-
Abayasiriwardana KS, Barbone D, Kim KU, Vivo C, Lee KK, Dansen TB, Hunt AE, Evan GI, and Broaddus VC
- Subjects
- Annexin A5 metabolism, Antineoplastic Agents, Phytogenic pharmacology, Apoptosis physiology, Apoptosis Regulatory Proteins antagonists & inhibitors, Apoptosis Regulatory Proteins genetics, Bcl-2-Like Protein 11, Combined Modality Therapy, Cycloheximide pharmacology, Drug Synergism, Electrophoresis, Gel, Two-Dimensional, Etoposide pharmacology, Humans, Immunoblotting, JNK Mitogen-Activated Protein Kinases metabolism, Ligands, Membrane Proteins antagonists & inhibitors, Membrane Proteins genetics, Mesothelioma metabolism, Mesothelioma pathology, Phosphorylation drug effects, Proto-Oncogene Proteins antagonists & inhibitors, Proto-Oncogene Proteins genetics, RNA, Small Interfering pharmacology, Tumor Cells, Cultured drug effects, Anisomycin pharmacology, Apoptosis drug effects, Apoptosis Regulatory Proteins metabolism, Membrane Proteins metabolism, Mesothelioma drug therapy, Protein Synthesis Inhibitors pharmacology, Proto-Oncogene Proteins metabolism, TNF-Related Apoptosis-Inducing Ligand pharmacology
- Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) holds promise for the treatment of tumors; however, many tumors are resistant to TRAIL alone. We previously showed that resistant malignant mesothelioma cells are sensitized to TRAIL-induced apoptosis by diverse toxic insults including chemotherapy, irradiation, or protein translation inhibitors such as cycloheximide. In seeking nontoxic sensitizers for TRAIL, we tested the protein translation inhibitor anisomycin at subtoxic concentrations 10- to 100-fold below those reported to inhibit protein translation. At these low concentrations (25 ng/mL), anisomycin potently and rapidly sensitized mesothelioma cells to TRAIL-induced apoptosis. Moreover, such sensitization occurred in malignant but not in nonmalignant mesothelial cells. Sensitization by anisomycin was dependent on Bid, indicating a role for mitochondrial amplification in the apoptotic synergy with TRAIL signaling. Consistent with this, we found that anisomycin induces rapid accumulation of the BH3-only protein Bim; moreover, small interfering RNA knockdown of Bim inhibits anisomycin-induced sensitization. Bim accumulation seems not to be transcriptional; instead, it is associated with Bim phosphorylation and increased stability, both consistent with the activation of c-jun NH2-terminal kinase signals by anisomycin. Overall, our data indicate that the rapid and selective sensitization by anisomycin in mesothelioma cells is mediated by posttranslational potentiation of Bim, which primes the cells for apoptosis via the death receptor pathway. Such subtoxic approaches to sensitization may enhance the value of TRAIL in cancer therapy.
- Published
- 2007
- Full Text
- View/download PDF
43. Sensitization of mesothelioma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by heat stress via the inhibition of the 3-phosphoinositide-dependent kinase 1/Akt pathway.
- Author
-
Pespeni MH, Hodnett M, Abayasiriwardana KS, Roux J, Howard M, Broaddus VC, and Pittet JF
- Subjects
- 3-Phosphoinositide-Dependent Protein Kinases, Apoptosis physiology, BH3 Interacting Domain Death Agonist Protein metabolism, Caspase 8 metabolism, Cell Line, Tumor, Etoposide pharmacology, HSP90 Heat-Shock Proteins metabolism, Hot Temperature, Humans, Mesothelioma enzymology, Mesothelioma metabolism, Mesothelioma pathology, Mitochondria physiology, Phosphorylation, Protein Serine-Threonine Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Recombinant Proteins pharmacology, Apoptosis drug effects, Mesothelioma drug therapy, Protein Serine-Threonine Kinases antagonists & inhibitors, Proto-Oncogene Proteins c-akt antagonists & inhibitors, TNF-Related Apoptosis-Inducing Ligand pharmacology
- Abstract
Heat stress may enhance the effect of apoptosis-inducing agents in resistant tumor cells. One such agent is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which has attracted intense interest for its ability to induce apoptosis in tumors without affecting nonmalignant cells. We therefore tested whether heat stress potentiates TRAIL-induced apoptosis in mesothelioma cells, its cell type being resistant to TRAIL alone. We found that heat stress enhanced the apoptosis caused by TRAIL but not by chemotherapy. To explain this potentiation, we found that heat stress decreased Akt phosphorylation via the dissociation of heat shock protein 90 (Hsp90) from its client protein 3-phosphoinositide-dependent kinase 1 (PDK-1), a major Akt kinase. The role of Hsp90 and the Akt pathway was confirmed by showing that inhibitors of Hsp90 and the phosphatidyilinositol-3 kinase/Akt pathway reproduced the effect of heat stress on TRAIL-induced apoptosis and that the effect of inhibiting Hsp90 on TRAIL-induced apoptosis could be overcome by activating the Akt pathway with a constitutively active construct of the Akt kinase PDK-1. The effect of heat stress involved multiple steps of the apoptotic machinery. Heat stress potentiated the death receptor pathway, as shown by an increase in TRAIL-induced caspase 8 cleavage. Nonetheless, knockdown of Bid, the main intermediary molecule from the death receptor pathway to the mitochondria, inhibited the effect of heat stress, showing that mitochondrial amplification was required for potentiation by heat stress. In summary, these results support the novel concept that heat stress inhibits the Akt pathway by dissociating PDK-1 from its chaperone Hsp90, leading to potentiation of TRAIL-induced apoptosis in resistant malignant cells.
- Published
- 2007
- Full Text
- View/download PDF
44. A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance.
- Author
-
Kim KU, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z, Jablons DM, Nishimura SL, and Broaddus VC
- Subjects
- Apoptosis Regulatory Proteins metabolism, Biomarkers, Tumor metabolism, Chromones pharmacology, Class I Phosphatidylinositol 3-Kinases, Collagen metabolism, Cycloheximide pharmacology, Humans, In Vitro Techniques, Macrophages cytology, Macrophages metabolism, Macrophages pathology, Membrane Glycoproteins metabolism, Mesothelioma metabolism, Morpholines pharmacology, Phosphatidylinositol 3-Kinases metabolism, Protein Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Receptors, TNF-Related Apoptosis-Inducing Ligand, Signal Transduction, Spheroids, Cellular metabolism, Stromal Cells metabolism, Stromal Cells pathology, TNF-Related Apoptosis-Inducing Ligand, TOR Serine-Threonine Kinases, Tumor Cells, Cultured, Tumor Necrosis Factor-alpha metabolism, Apoptosis, Mesothelioma pathology, Models, Biological, Receptors, Tumor Necrosis Factor metabolism, Spheroids, Cellular pathology
- Abstract
Like many tumors, malignant mesothelioma exhibits significant chemoresistance and resistance to apoptosis in vivo that is not seen in current in vitro models. To study the mechanisms of this multicellular resistance, biologically relevant in vitro models are necessary. Therefore, we characterized and tested human mesothelioma tissue grown in vitro as tumor fragment spheroids. After 5-10 d in culture, fragments from each of 15 human mesothelioma tumors rounded into spheroids. The tumor fragment spheroids maintained multiple characteristics of the original tumors for up to 3 mo including the presence of viable mesothelioma cells, macrophages, and a collagen-rich stroma. In 14-d-old spheroids, mesothelioma cells showed the same proliferation rate and expression of a death receptor, DR5, as in the original tumor. To determine responses to treatment, we treated tumor fragment spheroids grown from three separate tumors with agents, TNF-related apoptosis-inducing ligand (TRAIL) plus cycloheximide, that induced near total apoptosis in three human mesothelioma cell lines (M28, REN, MS-1) grown as monolayers (94 +/- 6% apoptosis; mean +/- SEM). Compared with mesothelioma cells in monolayers, mesothelioma cells in the spheroids were resistant to TRAIL plus cycloheximide (32 +/- 4% apoptosis; mean +/- SEM). Apoptotic resistance of mesothelioma cells was significantly reduced by inhibiting either the PI3K/Akt pathway with LY294002 (47 +/- 6% apoptosis) or the mTOR pathway with rapamycin (50 +/- 17% apoptosis). We conclude that human mesothelioma can be maintained in vitro in a biologically relevant model that exhibits apoptotic resistance, thereby permitting study of its tumor biology and of novel approaches to therapy.
- Published
- 2005
- Full Text
- View/download PDF
45. Bid mediates apoptotic synergy between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and DNA damage.
- Author
-
Broaddus VC, Dansen TB, Abayasiriwardana KS, Wilson SM, Finch AJ, Swigart LB, Hunt AE, and Evan GI
- Subjects
- Apoptosis Regulatory Proteins, BH3 Interacting Domain Death Agonist Protein, Carrier Proteins metabolism, Caspase 8, Caspases metabolism, Cell Line, Tumor, Cytoplasm metabolism, DNA, Complementary metabolism, Etoposide pharmacology, Humans, Immunoblotting, Microscopy, Fluorescence, Microscopy, Phase-Contrast, Models, Biological, Protein Structure, Tertiary, Proto-Oncogene Proteins c-bcl-2 metabolism, RNA Interference, RNA, Small Interfering metabolism, Recombinant Proteins chemistry, TNF-Related Apoptosis-Inducing Ligand, Time Factors, Apoptosis, Carrier Proteins physiology, DNA Damage, Membrane Glycoproteins metabolism, Tumor Necrosis Factor-alpha metabolism
- Abstract
The death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), has shown great promise for inducing apoptosis selectively in tumors. Although many tumor cells are resistant to TRAIL-induced apoptosis alone, they can often be sensitized by co-treatment with DNA-damaging agents such as etoposide. However, the molecular mechanism underlying this therapeutically important synergy is unknown. We explored the mechanism mediating TRAIL-DNA damage apoptotic synergy in human mesothelioma cells, a tumor type particularly refractory to existing therapies. We show that Bid, a cytoplasmic Bcl-2 homology domain 3-containing protein activated by caspase 8 in response to TRAIL ligation, is essential for TRAIL-etoposide apo-ptotic synergy and, furthermore, that exposure to DNA damage primes cells to induction of apoptosis by otherwise sublethal levels of activated Bid. Finally, we show that the extensive caspase 8 cleavage seen during TRAIL-etoposide synergy is a consequence and not a cause of the apoptotic cascade activated downstream of Bid. These data indicate that TRAIL-etoposide apoptotic synergy arises because DNA damage increases the inherent sensitivity of cells to levels of TRAIL-activated Bid that would otherwise be insufficient for apoptosis. Such studies indicate how the adroit combination of differing proapoptotic and sublethal signals can provide an effective strategy for treating refractory tumors.
- Published
- 2005
- Full Text
- View/download PDF
46. Malignant mesothelioma as both a challenge and an opportunity.
- Author
-
Mutti L and Broaddus VC
- Subjects
- Carcinogens toxicity, Genetic Predisposition to Disease, Genomics, Humans, Immunohistochemistry, Mesothelioma
- Abstract
The International Mesothelioma Interest Group sponsored its 7th international meeting in Brescia, Italy from June 24-26, 2004. The meeting, entitled 'How advanced technology and new drugs are changing the perspectives of patients with malignant mesothelioma', was organized by Luciano Mutti (Vercelli, Italy) and GF Tassi (Brescia, Italy) and was attended by 350 participants. The general tone of the meeting was that real progress is now coming in the understanding of mesothelioma biology, progress that may soon translate into improved treatment options. The investigators and clinicians agreed on the importance of referring patients with mesothelioma to centers with expertise where patients can receive the best available treatments and can be offered entry into clinical trials of new and promising agents.
- Published
- 2004
- Full Text
- View/download PDF
47. Mesothelial cell proliferation and apoptosis.
- Author
-
Leard LE and Broaddus VC
- Subjects
- Animals, Cell Line, Tumor, Cell Proliferation, Combined Modality Therapy, DNA Damage physiology, Humans, Ligands, Mesothelioma physiopathology, Mesothelioma therapy, Proto-Oncogene Proteins c-bcl-2 physiology, Signal Transduction physiology, bcl-X Protein, Apoptosis physiology, Epithelial Cells physiology
- Abstract
Mesothelial cells line the pleural and peritoneal surfaces, where under normal conditions they proliferate and undergo cell death at a slow rate, thereby maintaining a constant number of cells. These tightly regulated processes are disrupted in malignancy. By developing a better understanding of the mechanisms that regulate cell proliferation and apoptosis in mesothelial and mesothelioma cells, we may be able to develop more effective therapeutic agents that target specific steps in these pathways to induce apoptosis more efficiently. This paper reviews our current knowledge of the signaling pathways involved in the regulation of mesothelial cell proliferation and apoptosis. The latest advancements in identifying proteins that play key roles in the resistance to apoptosis are highlighted.
- Published
- 2004
- Full Text
- View/download PDF
48. H(2)O(2) inhibits alveolar epithelial wound repair in vitro by induction of apoptosis.
- Author
-
Geiser T, Ishigaki M, van Leer C, Matthay MA, and Broaddus VC
- Subjects
- Amino Acid Chloromethyl Ketones pharmacology, Caspase Inhibitors, Cell Line, Cell Movement drug effects, Cysteine Proteinase Inhibitors pharmacology, Humans, In Vitro Techniques, Pulmonary Alveoli drug effects, Respiratory Mucosa drug effects, Apoptosis drug effects, Hydrogen Peroxide pharmacology, Oxidants pharmacology, Pulmonary Alveoli cytology, Respiratory Mucosa cytology, Wound Healing drug effects
- Abstract
Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H(2)O(2) inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H(2)O(2) also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H(2)O(2)-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H(2)O(2), zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H(2)O(2)-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H(2)O(2) inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.
- Published
- 2004
- Full Text
- View/download PDF
49. Integrin alphavbeta8-mediated activation of transforming growth factor-beta inhibits human airway epithelial proliferation in intact bronchial tissue.
- Author
-
Fjellbirkeland L, Cambier S, Broaddus VC, Hill A, Brunetta P, Dolganov G, Jablons D, and Nishimura SL
- Subjects
- Aged, Aged, 80 and over, Bronchi cytology, Culture Techniques, Female, Gene Expression Profiling, Homeostasis, Humans, Keratins metabolism, Ki-67 Antigen metabolism, Male, Middle Aged, Respiratory Mucosa cytology, Bronchi metabolism, Cell Division physiology, Integrins metabolism, Respiratory Mucosa metabolism, Transforming Growth Factor beta metabolism
- Abstract
Transforming growth factor (TGF)-beta is a potent multifunctional cytokine that is an essential regulator of epithelial proliferation. Because TGF-beta is expressed almost entirely in a latent state in vivo, a major source of regulation of TGF-beta function is its activation. A subset of integrins, alphavbeta8 and alphavbeta6, which are expressed in the human airway, has recently been shown to activate latent TGF-beta in vitro, suggesting a regulatory role for integrins in TGF-beta function in vivo. Here we have developed a novel, biologically relevant experimental model of human airway epithelium using intact human bronchial tissue. We have used this model to determine the function of integrin-mediated activation of TGF-beta in the airway. In human bronchial fragments cultured in vitro, authentic epithelial-stromal interactions were maintained and integrin and TGF-beta expression profiles correlated with profiles found in normal lung. In addition, in this model, we found that either the integrin alphavbeta8 or TGF-beta could inhibit airway epithelial cell proliferation. Furthermore, we found that one mechanism of integrin-alphavbeta8-dependent inhibition of cell proliferation was through activation of TGF-beta because anti-beta8 antibody blocked the majority (76%) of active TGF-beta released from bronchial fragments. These data provide compelling evidence for a functional role for integrin-mediated activation of TGF-beta in control of human airway epithelial proliferation in vivo.
- Published
- 2003
- Full Text
- View/download PDF
50. Workshop on lung disease and the environment: where do we go from here?
- Author
-
Crapo JD, Broaddus VC, Brody AR, Malindzak G, Samet J, and Wright JR
- Subjects
- Asthma epidemiology, Cytokines, Extracellular Matrix metabolism, Humans, Pulmonary Disease, Chronic Obstructive epidemiology, Signal Transduction, Environmental Exposure, Lung Diseases epidemiology, Lung Diseases etiology
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.