1. Automatic Correction of Abnormal Ground Penetrating Radar Data for Concrete Bridge Deck Corrosion Assessment.
- Author
-
Zhang, Yu-Chen, Du, Yan-Liang, Yi, Ting-Hua, and Zhang, Song-Han
- Subjects
- *
GROUND penetrating radar , *BRIDGE floors , *ELECTRONIC data processing , *CONCRETE corrosion , *CONCRETE bridges - Abstract
Ground penetrating radar (GPR) is a widely utilized nondestructive testing technique for the detection and assessment of internal corrosion in concrete bridge decks. However, abnormal data generated during the practical application of this technology can reduce the accuracy of concrete bridge deck corrosion assessment. Aiming at this problem, this paper analyzes some common abnormal data from actual bridges GPR data and proposes corresponding automatic algorithms for anomaly correction to enhance assessment accuracy. The automatic algorithm focuses on two main aspects: correcting anomalies in direct coupling wave amplitudes based on data statistics and mitigating the impact of abnormal data due to incorrectly picked rebar on depth correction using density clustering. The specific process of the automatic method can be divided into four steps. First, automatic rebar picking is performed based on the preprocessed GPR data. Next, data statistics analysis is implemented on the extracted rebar data to identify and correct abnormal amplitude data. Then, the true rebar data are identified for depth correction based on density clustering. Finally, the bridge deck corrosion map is generated based on the corrected rebar reflection amplitudes and rebar positions. The feasibility of this method was verified through a case study with GPR data from two in-service bridges. The results show that this method can effectively and automatically identify and correct abnormal data. Moreover, the bridge deck corrosion map obtained by the proposed method is also more accurate. It can be concluded that the proposed algorithms can be used in bridge deck corrosion detection and assessment with GPR. Practical Applications: Ground penetrating radar (GPR) is a widely utilized nondestructive testing technique for concrete bridge deck corrosion detection and assessment. However, abnormal data generated during the practical application of this technology can reduce the accuracy of concrete bridge deck corrosion assessment. Aiming at this problem, this paper proposes a set of automatic data processing procedures for anomaly correction to improve the corrosion assessment accuracy. The feasibility of the proposed algorithms was validated through a case study with GPR data from two in-service bridges. The results show that these algorithms can effectively automatically identify and correct abnormal data. Moreover, the bridge deck corrosion map obtained by these algorithms is also more accurate. It can be concluded that the proposed algorithms can be used in bridge deck corrosion detection and assessment with GPR. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF