1. Identification, structural modeling, gene expression analysis and RNAi effect of putative phospholipase A2 in the lone star tick Amblyomma americanum
- Author
-
Bo Lyu, Jingjing Li, Brigid Niemeyer, Deborah Anderson, Brenda Beerntsen, and Qisheng Song
- Subjects
Amblyomma americanum ,Tick ,Phospholipase A2 ,Gene expression profiles ,Infectious and parasitic diseases ,RC109-216 - Abstract
Amblyomma americanum, also known as the lone star tick, is a small arachnid that feeds on blood and can spread disease to humans and other animals. Despite the overlapped ecological niche, geographic distribution, and host selection, there is no proof that A. americanum transmits the pathogen Borrelia burgdorferi that causes Lyme disease. Studies have shown that phospholipase A2 (PLA2) may act as a tool to eliminate B. burgdorferi, but particular PLA2 genes in A. americanum have not been identified and functionally characterized. Using the de novo sequencing method, we identified 42 putative A. americanum PLA2 (pAaPLA2) homologs in the present study, of which three pAaPLA2 had calcium binding sites and canonical histidine catalytic sites. Then, we determined phylogenetic relationships, sequence alignments, and conserved protein motifs of these pAaPLA2s. Protein structural analysis demonstrated that pAaPLA2s primarily consisted of α-helices, β-sheets, and random coils. These genes were predicted to be engaged in the phospholipid metabolic process, arachidonic acid secretion, and PLA2 activity by functional annotation analysis. A transcriptional factor (Bgb) was discovered that interacted with pAaPLA2 proteins that may have unrecognized roles in regulating neuronal development. Based on the RNA-seq data, we surveyed expression profiles of key pAaPLA2-related genes to reveal putative modulatory networks of these genes. RNAi knockdown of pAaPLA2_1, a dominant isoform in A. americanum, led to decreased bacterial inhibition ability, suggesting pAaPLA2 may play an important role in mediating immune responses. Collectively, this study provides essential evidence of the identification, gene structure, phylogeny, and expression analysis of pAaPLA2 genes in A. americanum, and offers a deeper understanding of the putative borreliacidal roles in the lone star tick.
- Published
- 2024
- Full Text
- View/download PDF