24 results on '"Brazeau MD"'
Search Results
2. Palaeontology: A jaw-dropping fossil fish
- Author
-
Friedman, M and Brazeau, MD
- Published
- 2016
- Full Text
- View/download PDF
3. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?
- Author
-
Friedman, M and Brazeau, MD
- Subjects
Provenance ,Earth history ,Fossil Record ,General Immunology and Microbiology ,Fossils ,Range (biology) ,Paleontology ,General Medicine ,Biology ,Biological Evolution ,General Biochemistry, Genetics and Molecular Biology ,Devonian ,Amphibians ,Tetrapod (structure) ,Animals ,Late Devonian extinction ,Poland ,Stratigraphy (archaeology) ,General Agricultural and Biological Sciences ,Phylogeny ,Research Articles ,General Environmental Science - Abstract
Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.
- Published
- 2010
- Full Text
- View/download PDF
4. Evolutionary trends in the elasmobranch neurocranium.
- Author
-
Gayford JH, Brazeau MD, and Naylor GJP
- Subjects
- Animals, Fossils, Phylogeny, Skull anatomy & histology, Biological Evolution, Elasmobranchii anatomy & histology, Elasmobranchii classification
- Abstract
The neurocranium (braincase) is one of the defining vertebrate characters. Housing the brain and other key sensory organs, articulating with the jaws and contributing to the shape of the anteriormost portion of the body, the braincase is undoubtedly of great functional importance. Through studying relationships between braincase shape and ecology we can gain an improved understanding of form-function relationships in extant and fossil taxa. Elasmobranchii (sharks and rays) represent an important case study of vertebrate braincase diversity as their neurocranium is simplified and somewhat decoupled from other components of the cranium relative to other vertebrates. Little is known about the associations between ecology and braincase shape in this clade. In this study we report patterns of mosaic cranial evolution in Elasmobranchii that differ significantly from those present in other clades. The degree of evolutionary modularity also differs between Selachii and Batoidea. In both cases innovation in the jaw suspension appears to have driven shifts in patterns of integration and modularity, subsequently facilitating ecological diversification. Our results confirm the importance of water depth and biogeography as drivers of elasmobranch cranial diversity and indicate that skeletal articulation between the neurocranium and jaws represents a major constraint upon the evolution of braincase shape in vertebrates., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Fossil evidence for a pharyngeal origin of the vertebrate pectoral girdle.
- Author
-
Brazeau MD, Castiello M, El Fassi El Fehri A, Hamilton L, Ivanov AO, Johanson Z, and Friedman M
- Subjects
- Animals, Paleontology, Tomography, X-Ray Computed, Siberia, Animal Fins anatomy & histology, Biological Evolution, Fishes anatomy & histology, Fossils, Vertebrates anatomy & histology
- Abstract
The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty
1-7 . Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5 : the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8 . The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13 , it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14 , an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15 . The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
6. Shark mandible evolution reveals patterns of trophic and habitat-mediated diversification.
- Author
-
López-Romero FA, Stumpf S, Kamminga P, Böhmer C, Pradel A, Brazeau MD, and Kriwet J
- Subjects
- Animals, Phylogeny, Ecosystem, Mandible, Water, Sharks genetics
- Abstract
Environmental controls of species diversity represent a central research focus in evolutionary biology. In the marine realm, sharks are widely distributed, occupying mainly higher trophic levels and varied dietary preferences, mirrored by several morphological traits and behaviours. Recent comparative phylogenetic studies revealed that sharks present a fairly uneven diversification across habitats, from reefs to deep-water. We show preliminary evidence that morphological diversification (disparity) in the feeding system (mandibles) follows these patterns, and we tested hypotheses linking these patterns to morphological specialisation. We conducted a 3D geometric morphometric analysis and phylogenetic comparative methods on 145 specimens representing 90 extant shark species using computed tomography models. We explored how rates of morphological evolution in the jaw correlate with habitat, size, diet, trophic level, and taxonomic order. Our findings show a relationship between disparity and environment, with higher rates of morphological evolution in reef and deep-water habitats. Deep-water species display highly divergent morphologies compared to other sharks. Strikingly, evolutionary rates of jaw disparity are associated with diversification in deep water, but not in reefs. The environmental heterogeneity of the offshore water column exposes the importance of this parameter as a driver of diversification at least in the early part of clade history., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
7. A well-preserved 'placoderm' (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution.
- Author
-
Brazeau MD, Yuan H, Giles S, Jerve AL, Zorig E, Ariunchimeg Y, Sansom RS, and Atwood RC
- Abstract
The origin of jaws and teeth remains contentious in vertebrate evolution. 'Placoderms' (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. 'Acanthothoracids' are generally considered the most primitive 'placoderms'. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws-particularly the jaw hinge-is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete 'acanthothoracid' upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known 'placoderm' groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of 'placoderms', regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that 'acanthothoracid' dentitions were fundamentally similar in location to that of arthrodire 'placoderms', rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for 'placoderms' as a whole, and as such, ancestral morphology of known jawed vertebrates., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
8. Endochondral bone in an Early Devonian 'placoderm' from Mongolia.
- Author
-
Brazeau MD, Giles S, Dearden RP, Jerve A, Ariunchimeg Y, Zorig E, Sansom R, Guillerme T, and Castiello M
- Subjects
- Animals, Mongolia, Phylogeny, Skull anatomy & histology, Skull diagnostic imaging, Fossils, Jaw anatomy & histology
- Abstract
Endochondral bone is the main internal skeletal tissue of nearly all osteichthyans-the group comprising more than 60,000 living species of bony fishes and tetrapods. Chondrichthyans (sharks and their kin) are the living sister group of osteichthyans and have primarily cartilaginous endoskeletons, long considered the ancestral condition for all jawed vertebrates (gnathostomes). The absence of bone in modern jawless fishes and the absence of endochondral ossification in early fossil gnathostomes appear to lend support to this conclusion. Here we report the discovery of extensive endochondral bone in Minjinia turgenensis, a new genus and species of 'placoderm'-like fish from the Early Devonian (Pragian) of western Mongolia described using X-ray computed microtomography. The fossil consists of a partial skull roof and braincase with anatomical details providing strong evidence of placement in the gnathostome stem group. However, its endochondral space is filled with an extensive network of fine trabeculae resembling the endochondral bone of osteichthyans. Phylogenetic analyses place this new taxon as a proximate sister group of the gnathostome crown. These results provide direct support for theories of generalized bone loss in chondrichthyans. Furthermore, they revive theories of a phylogenetically deeper origin of endochondral bone and its absence in chondrichthyans as a secondary condition.
- Published
- 2020
- Full Text
- View/download PDF
9. An algorithm for Morphological Phylogenetic Analysis with Inapplicable Data.
- Author
-
Brazeau MD, Guillerme T, and Smith MR
- Subjects
- Fossils, Algorithms, Classification methods, Phylogeny
- Abstract
Morphological data play a key role in the inference of biological relationships and evolutionary history and are essential for the interpretation of the fossil record. The hierarchical interdependence of many morphological characters, however, complicates phylogenetic analysis. In particular, many characters only apply to a subset of terminal taxa. The widely used "reductive coding" approach treats taxa in which a character is inapplicable as though the character's state is simply missing (unknown). This approach has long been known to create spurious tree length estimates on certain topologies, potentially leading to erroneous results in phylogenetic searches-but pratical solutions have yet to be proposed and implemented. Here, we present a single-character algorithm for reconstructing ancestral states in reductively coded data sets, following the theoretical guideline of minimizing homoplasy over all characters. Our algorithm uses up to three traversals to score a tree, and a fourth to fully resolve final states at each node within the tree. We use explicit criteria to resolve ambiguity in applicable/inapplicable dichotomies, and to optimize missing data. So that it can be applied to single characters, the algorithm employs local optimization; as such, the method provides a fast but approximate inference of ancestral states and tree score. The application of our method to published morphological data sets indicates that, compared to traditional methods, it identifies different trees as "optimal." As such, the use of our algorithm to handle inapplicable data may significantly alter the outcome of tree searches, modifying the inferred placement of living and fossil taxa and potentially leading to major differences in reconstructions of evolutionary history., (© The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.)
- Published
- 2019
- Full Text
- View/download PDF
10. The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton.
- Author
-
Dearden RP, Stockey C, and Brazeau MD
- Subjects
- Animals, Paleontology, Pharynx diagnostic imaging, Phylogeny, Sharks physiology, Skeleton diagnostic imaging, X-Ray Microtomography, Biological Evolution, Fossils diagnostic imaging, Gills physiology, Pharynx anatomy & histology, Sharks anatomy & histology
- Abstract
The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appendages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre-supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus, a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal patterning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx conformed to a morphologically complete ancestral type.
- Published
- 2019
- Full Text
- View/download PDF
11. Neurocranial anatomy of the petalichthyid placoderm Shearsbyaspis oepiki Young revealed by X-ray computed microtomography.
- Author
-
Castiello M and Brazeau MD
- Abstract
Stem-group gnathostomes reveal the sequence of character acquisition in the origin of modern jawed vertebrates. The petalichthyids are placoderm-grade stem-group gnathostomes known from both isolated skeletal material and rarer articulated specimens of one genus. They are of particular interest because of anatomical resemblances with osteostracans, the jawless sister group of jawed vertebrates. Because of this, they have become central to debates on the relationships of placoderms and the primitive cranial architecture of gnathostomes. However, among petalichthyids, only the braincase of Macropetalichthys has been studied in detail, and the diversity of neurocranial morphology in this group remains poorly documented. Using X-ray computed microtomography, we investigated the endocranial morphology of Shearsbyaspis oepiki Young, a three-dimensionally preserved petalichthyid from the Early Devonian of Taemas-Wee Jasper, Australia. We generated virtual reconstructions of the external endocranial surfaces, orbital walls and cranial endocavity, including canals for major nerves and blood vessels. The neurocranium of Shearsbyaspis resembles that of Macropetalichthys , particularly in the morphology of the brain cavity, nerves and blood vessels. Many characters, including the morphology of the pituitary vein canal and the course of the trigeminal nerve, recall the morphology of osteostracans. Additionally, the presence of a parasphenoid in Shearsbyaspis (previously not known with confidence outside of arthrodires and osteichthyans) raises some questions about current proposals of placoderm paraphyly. Our detailed description of this specimen adds to the known morphological diversity of petalichthyids, and invites critical reappraisal of the phylogenetic relationships of placoderms.
- Published
- 2018
- Full Text
- View/download PDF
12. A three-dimensional placoderm (stem-group gnathostome) pharyngeal skeleton and its implications for primitive gnathostome pharyngeal architecture.
- Author
-
Brazeau MD, Friedman M, Jerve A, and Atwood RC
- Subjects
- Animals, Branchial Region anatomy & histology, Fishes classification, Hyoid Bone anatomy & histology, Phylogeny, Bone and Bones anatomy & histology, Fishes anatomy & histology, Jaw anatomy & histology, Pharynx anatomy & histology
- Abstract
The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well-preserved examples of pharyngeal skeletons from stem-group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Early Devonian placoderm fish, Paraplesiobatis heinrichsi Broili, from Hunsrück Slate of Germany. Using synchrotron light tomography, we resolve and reconstruct the three-dimensional gill arch architecture of Paraplesiobatis and compare it with other gnathostomes. The preserved pharyngeal skeleton comprises elements of the hyoid arch (probable ceratohyal) and a series of branchial arches. Limited resolution in the tomography scan causes some uncertainty in interpreting the exact number of arches preserved. However, at least four branchial arches are present. The final and penultimate arches are connected as in osteichthyans. A single median basihyal is present as in chondrichthyans. No dorsal (epibranchial or pharyngobranchial) elements are observed. The structure of the pharyngeal skeleton of Paraplesiobatis agrees well with Pseudopetalichthys from the same deposit, allowing an alternative interpretation of the latter taxon. The phylogenetic significance of Paraplesiobatis is considered. A median basihyal is likely an ancestral gnathostome character, probably with some connection to both the hyoid and the first branchial arch pair. Unpaired basibranchial bones may be independently derived in chondrichthyans and osteichthyans., (© 2017 The Authors Journal of Morphology Published by Wiley Periodicals, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
13. X-ray computed tomography library of shark anatomy and lower jaw surface models.
- Author
-
Kamminga P, De Bruin PW, Geleijns J, and Brazeau MD
- Subjects
- Animals, Biological Evolution, Feeding Behavior, Tomography, X-Ray Computed, Adaptation, Biological, Jaw, Sharks anatomy & histology
- Abstract
The cranial diversity of sharks reflects disparate biomechanical adaptations to feeding. In order to be able to investigate and better understand the ecomorphology of extant shark feeding systems, we created a x-ray computed tomography (CT) library of shark cranial anatomy with three-dimensional (3D) lower jaw reconstructions. This is used to examine and quantify lower jaw disparity in extant shark species in a separate study. The library is divided in a dataset comprised of medical CT scans of 122 sharks (Selachimorpha, Chondrichthyes) representing 73 extant species, including digitized morphology of entire shark specimens. This CT dataset and additional data provided by other researchers was used to reconstruct a second dataset containing 3D models of the left lower jaw for 153 individuals representing 94 extant shark species. These datasets form an extensive anatomical record of shark skeletal anatomy, necessary for comparative morphological, biomechanical, ecological and phylogenetic studies.
- Published
- 2017
- Full Text
- View/download PDF
14. The hyoid arch and braincase anatomy of Acanthodes support chondrichthyan affinity of 'acanthodians'.
- Author
-
Brazeau MD and de Winter V
- Subjects
- Animals, Fishes classification, Jaw anatomy & histology, Phylogeny, Branchial Region anatomy & histology, Fishes anatomy & histology, Fossils, Skull anatomy & histology
- Abstract
Solving the evolutionary relationships of the acanthodians is one of the key problems in reconstructing ancestral anatomical conditions for the jawed vertebrates (gnathostomes). Current debate concerns whether acanthodians are an assemblage of stem chondrichthyans, or a more generalized grade encompassing some early stem osteichthyans. The skull anatomy of Acanthodes bronni has been pivotal in these debates, owing to tension between chondrichthyan- and osteichthyan-like models of reconstruction. We use computed tomography scanning and traditional palaeontological techniques to resolve the long-standing debate about the anatomy of the jaw suspension. We establish the correct length of the hyomandibula and show that it attaches to a process on the ventrolateral angle of the braincase below the jugular vein groove. This condition corresponds precisely to that in chondrichthyans. This character represents an unambiguously optimized synapomorphy with chondrichthyans given current gnathostome phylogenies, corroborating the growing consensus of the chondrichthyan affinity of acanthodians., (© 2015 The Authors.)
- Published
- 2015
- Full Text
- View/download PDF
15. Endoskeletal structure in Cheirolepis (Osteichthyes, Actinopterygii), An early ray-finned fish.
- Author
-
Giles S, Coates MI, Garwood RJ, Brazeau MD, Atwood R, Johanson Z, and Friedman M
- Abstract
As the sister lineage of all other actinopterygians, the Middle to Late Devonian (Eifelian-Frasnian) Cheirolepis occupies a pivotal position in vertebrate phylogeny. Although the dermal skeleton of this taxon has been exhaustively described, very little of its endoskeleton is known, leaving questions of neurocranial and fin evolution in early ray-finned fishes unresolved. The model for early actinopterygian anatomy has instead been based largely on the Late Devonian (Frasnian) Mimipiscis , preserved in stunning detail from the Gogo Formation of Australia. Here, we present re-examinations of existing museum specimens through the use of high-resolution laboratory- and synchrotron-based computed tomography scanning, revealing new details of the neuro-cranium, hyomandibula and pectoral fin endoskeleton for the Eifelian Cheirolepis trailli . These new data highlight traits considered uncharacteristic of early actinopterygians, including an uninvested dorsal aorta and imperforate propterygium, and corroborate the early divergence of Cheirolepis within actinopterygian phylogeny. These traits represent conspicuous differences between the endoskeletal structure of Cheirolepis and Mimipiscis . Additionally, we describe new aspects of the parasphenoid, vomer and scales, most notably that the scales display peg-and-socket articulation and a distinct neck. Collectively, these new data help clarify primitive conditions within ray-finned fishes, which in turn have important implications for understanding features likely present in the last common ancestor of living osteichthyans.
- Published
- 2015
- Full Text
- View/download PDF
16. The origin and early phylogenetic history of jawed vertebrates.
- Author
-
Brazeau MD and Friedman M
- Subjects
- Animals, Jaw anatomy & histology, Vertebrates embryology, Fossils, Phylogeny, Vertebrates anatomy & histology
- Abstract
Fossils of early gnathostomes (or jawed vertebrates) have been the focus of study for nearly two centuries. They yield key clues about the evolutionary assembly of the group's common body plan, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony vertebrates. A series of remarkable new palaeontological discoveries, analytical advances and innovative reinterpretations of existing fossil archives have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes, delivering a new evolutionary framework for exploring major questions that remain unanswered, including the origin of jaws.
- Published
- 2015
- Full Text
- View/download PDF
17. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome.
- Author
-
Giles S, Friedman M, and Brazeau MD
- Subjects
- Anatomy, Comparative, Animals, Siberia, X-Ray Microtomography, Fishes anatomy & histology, Fishes classification, Fossils, Phylogeny, Skull anatomy & histology
- Abstract
The phylogeny of Silurian and Devonian (443-358 million years (Myr) ago) fishes remains the foremost problem in the study of the origin of modern gnathostomes (jawed vertebrates). A central question concerns the morphology of the last common ancestor of living jawed vertebrates, with competing hypotheses advancing either a chondrichthyan- or osteichthyan-like model. Here we present Janusiscus schultzei gen. et sp. nov., an Early Devonian (approximately 415 Myr ago) gnathostome from Siberia previously interpreted as a ray-finned fish, which provides important new information about cranial anatomy near the last common ancestor of chondrichthyans and osteichthyans. The skull roof of Janusiscus resembles that of early osteichthyans, with large plates bearing vermiform ridges and partially enclosed sensory canals. High-resolution computed tomography (CT) reveals a braincase bearing characters typically associated with either chondrichthyans (large hypophyseal opening accommodating the internal carotid arteries) or osteichthyans (facial nerve exiting through jugular canal, endolymphatic ducts exiting posterior to the skull roof) but lacking a ventral cranial fissure, the presence of which is considered a derived feature of crown gnathostomes. A conjunction of well-developed cranial processes in Janusiscus helps unify the comparative anatomy of early jawed vertebrate neurocrania, clarifying primary homologies in 'placoderms', osteichthyans and chondrichthyans. Phylogenetic analysis further supports the chondrichthyan affinities of 'acanthodians', and places Janusiscus and the enigmatic Ramirosuarezia in a polytomy with crown gnathostomes. The close correspondence between the skull roof of Janusiscus and that of osteichthyans suggests that an extensive dermal skeleton was present in the last common ancestor of jawed vertebrates, but ambiguities arise from uncertainties in the anatomy of Ramirosuarezia. The unexpected contrast between endoskeletal structure in Janusiscus and its superficially osteichthyan-like dermal skeleton highlights the potential importance of other incompletely known Siluro-Devonian 'bony fishes' for reconstructing patterns of trait evolution near the origin of modern gnathostomes.
- Published
- 2015
- Full Text
- View/download PDF
18. The characters of Palaeozoic jawed vertebrates.
- Author
-
Brazeau MD and Friedman M
- Abstract
Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems.
- Published
- 2014
- Full Text
- View/download PDF
19. Palaeontology: A jaw-dropping fossil fish.
- Author
-
Friedman M and Brazeau MD
- Subjects
- Animals, Fishes anatomy & histology, Fishes classification, Fossils, Jaw anatomy & histology, Phylogeny
- Published
- 2013
- Full Text
- View/download PDF
20. Initial radiation of jaws demonstrated stability despite faunal and environmental change.
- Author
-
Anderson PS, Friedman M, Brazeau MD, and Rayfield EJ
- Subjects
- Animals, Biodiversity, Fishes anatomy & histology, Fishes classification, Fishes physiology, Fossils, History, Ancient, Jaw physiology, Sample Size, Vertebrates physiology, Biological Evolution, Jaw anatomy & histology, Vertebrates anatomy & histology, Vertebrates classification
- Abstract
More than 99 per cent of the roughly 58,000 living vertebrate species have jaws. This major clade, whose members are collectively known as gnathostomes ('jawed mouths'), made its earliest definitive appearance in the Silurian period, 444-416 million years (Myr) ago, with both the origin of the modern (crown-group) radiation and the presumptive invasion of land occurring by the end of the Devonian period (359 Myr ago). These events coincided with a major faunal shift that remains apparent today: the transition from Silurian ecosystems dominated by jawless fishes (agnathans) to younger assemblages composed almost exclusively of gnathostomes. This pattern has inspired several qualitative descriptions of the trophic radiation and ecological ascendance of the earliest jawed vertebrates. Here we present a quantitative analysis of functional variation in early gnathostome mandibular elements, placing constraints on our understanding of evolutionary patterns during this critical interval. We document an initial increase in functional disparity in the Silurian that stabilized by the first stage of the Devonian, before the occurrence of an Emsian (∼400 Myr ago) oxygenation event implicated in the trophic radiation of vertebrates. Subsequent taxonomic diversification during the Devonian did not result in increased functional variation; instead, new taxa revisited and elaborated on established mandibular designs. Devonian functional space is dominated by lobe-finned fishes and 'placoderms'; high disparity within the latter implies considerable trophic innovation among jaw-bearing stem gnathostomes. By contrast, the major groups of living vertebrates--ray-finned fishes and tetrapods--show surprisingly conservative mandibular morphologies with little indication of functional diversification or innovation. Devonian gnathostomes reached a point where they ceased to accrue further mandibular functional disparity before becoming taxonomic dominants relative to 'ostracoderm'-grade jawless fishes, providing a new perspective on classic adaptive hypotheses concerning this fundamental shift in vertebrate biodiversity.
- Published
- 2011
- Full Text
- View/download PDF
21. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?
- Author
-
Friedman M and Brazeau MD
- Subjects
- Animals, Paleontology methods, Phylogeny, Poland, Amphibians, Biological Evolution, Fossils
- Abstract
Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.
- Published
- 2011
- Full Text
- View/download PDF
22. The braincase and jaws of a Devonian 'acanthodian' and modern gnathostome origins.
- Author
-
Brazeau MD
- Subjects
- Animals, History, Ancient, Phylogeny, Fishes anatomy & histology, Fishes classification, Fossils, Jaw anatomy & histology, Skull anatomy & histology
- Abstract
Modern gnathostomes (jawed vertebrates) emerged in the early Palaeozoic era, but this event remains unclear owing to a scant early fossil record. The exclusively Palaeozoic 'acanthodians' are possibly the earliest gnathostome group and exhibit a mosaic of shark- and bony fish-like characters that has long given them prominence in discussions of early gnathostome evolution. Their relationships with modern gnathostomes have remained mysterious, partly because their un-mineralized endoskeletons rarely fossilized. Here I present the first-known braincase of an Early Devonian (approximately 418-412 Myr bp) acanthodian, Ptomacanthus anglicus, and re-evaluate the interrelationships of basal gnathostomes. Acanthodian braincases have previously been represented by a single genus, Acanthodes, which occurs more than 100 million years later in the fossil record. The braincase of Ptomacanthus differs radically from the osteichthyan-like braincase of Acanthodes in exhibiting several plesiomorphic features shared with placoderms and some early chondrichthyans. Most striking is its extremely short sphenoid region and its jaw suspension, which displays features intermediate between some Palaeozoic chondrichthyans and osteichthyans. Phylogenetic analysis resolves Ptomacanthus as either the most basal chondrichthyan or as the sister group of all living gnathostomes. These new data alter earlier conceptions of basal gnathostome phylogeny and thus help to provide a more detailed picture of the acquisition of early gnathostome characters.
- Published
- 2009
- Full Text
- View/download PDF
23. The hyomandibulae of rhizodontids (Sarcopterygii, stem-tetrapoda).
- Author
-
Brazeau MD and Jeffery JE
- Subjects
- Animals, Phylogeny, Biological Evolution, Fossils, Stapes anatomy & histology, Vertebrates anatomy & histology
- Abstract
Despite its important role in the study of the evolution of tetrapods, the hyomandibular bone (the homologue of the stapes in crown-group tetrapods) is known for only a few of the fish-like members of the tetrapod stem-group. The best-known example, that of the tristichopterid Eusthenopteron, has been used as an exemplar of fish-like stem-tetrapod hyomandibula morphology, but in truth the conditions at the base of the tetrapod radiation remain obscure. We report, here, four hyomandibulae, from three separate localities, which are referable to the Rhizodontida, the most basal clade of stem-tetrapods. These specimens share a number of characteristics, and are appreciably different from the small number of hyomandibulae reported for other fish-like stem-tetrapods. While it is unclear if these characteristics represent synapomorphies or symplesiomorphies, they highlight the morphological diversity of hyomandibulae within the early evolution of the tetrapod total-group. Well-preserved muscle scarring on some of these hyomandibulae permit more robust inferences of hyoid arch musculature in stem-tetrapods., (2008 Wiley-Liss, Inc)
- Published
- 2008
- Full Text
- View/download PDF
24. Tetrapod-like middle ear architecture in a Devonian fish.
- Author
-
Brazeau MD and Ahlberg PE
- Subjects
- Animals, Ear, Middle physiology, Fishes physiology, Gait physiology, History, Ancient, Respiration, Biological Evolution, Ear, Middle anatomy & histology, Extremities physiology, Fishes anatomy & histology, Fossils
- Abstract
Few fossils show the incipient stages of complex morphological transformations. For example, the earliest stages in the remodelling of the spiracular tract and suspensorium (jaw suspension) of osteolepiform fishes into the middle ear of tetrapods have remained elusive. The most primitive known tetrapods show a middle ear architecture that is very different from osteolepiforms such as Eusthenopteron, with little indication of how this transformation took place. Here we present an analysis of tetrapod middle ear origins that is based on a detailed study of Panderichthys, the immediate sister taxon of tetrapods. We show that the spiracular region is radically transformed from osteolepiforms and represents the earliest stages in the origin of the tetrapod middle ear architecture. The posterior palatoquadrate of Panderichthys is completely tetrapod-like and defines a similarly tetrapod-like spiracular tract. The hyomandibula has lost its distal portion, representing a previously unrecognized advance towards a stapes-like morphology. This spiracular specialization suggests that the middle ear of early tetrapods evolved initially as part of a spiracular breathing apparatus.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.