1. Dicke.
- Author
-
Gondhalekar, Prabhakar
- Abstract
Einstein was motivated by a deep philosophical need, the quest for simplicity and unity in nature, to formulate and develop the theory of general relativity. He was not guided by a desire to confirm or interpret any particular experimental result(s) although he was aware of the need for experimental confirmation. Experiments are fundamental to modern physics: progress in physics is driven by experimental verification and no assumption can be taken seriously unless it can be tested experimentally. This is the only way to distinguish physics from metaphysics. Galileo repeatedly stressed this and his experiments in the sixteenth century were able to overthrow the 2000-year reign of the speculative laws of nature proposed by Aristotle. Today a theory without experimental verification has no value. Unfortunately general relativity, unlike its contemporary, quantum theory, does not have a secure experimental foundation. Einstein had shown that the perihelion shift of Mercury could be explained by general relativity with remarkable accuracy. He also proposed the gravitational redshift and the bending of light rays as two further tests of general relativity. Gravitational redshift was too small to be observed with the technology of the first half of the twentieth century. Also, as will be discussed later, this is really a test of the equivalence principle and not of the full theory of general relativity. The bending of light was measured in 1919 but the accuracy of the data was low and not sufficient to discriminate between general relativity and the alternative theories of gravity proposed in the 1960s. Similarly, there was considerable uncertainty, until recently, about the oblateness of the Sun which affects the perihelion shift of Mercury. Remarkably only one new test of general relativity has been proposed since the formulation of the theory by Einstein. [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF