77 results on '"Brain RA"'
Search Results
2. Comparing freshwater mussel responses to stress using life-history and Dynamic Energy Budget theory.
- Author
-
Haberle I, Moore AP, Forbes VE, Brain RA, Hornbach DJ, Galic N, and Vaugeois M
- Subjects
- Animals, Life History Traits, Reproduction, Life Cycle Stages physiology, Energy Metabolism, Stress, Physiological, Fresh Water, Bivalvia physiology
- Abstract
Freshwater mussels are experiencing severe population declines, affecting their critical role in freshwater ecosystems. A thorough assessment of threats posed by various stressors is needed; however, the large number of species to be considered and significant data gaps, especially for listed species, hinder the process. We combined a traits-based approach to represent multiple species grouped into three life-history categories - Equilibrium, Opportunistic, and Periodic - with the Dynamic Energy Budget modeling principles to capture the physiological mechanisms driving individual-level responses. We used the DEB model to simulate individual life cycles and explore relationships between underlying energetics and emerging individual traits of 47 freshwater mussel species and the common toxicity test surrogate, the Eastern oyster (Crassostrea virginica), under control and stressed conditions. Stress was introduced via physiological modes of action related to four key metabolic pathways: energy assimilation, maintenance, growth, and reproduction. We recorded maximum length, age at maturity, and fecundity and compared these endpoints and their stress-induced changes among life-history categories. The life-history differences among freshwater mussels directly emerged from underlying energetics, with high assimilation and maintenance supporting opportunistic traits. Stress imposed on energy assimilation had the strongest effect on all life-history traits, and a 25 % reduction in assimilation rate resulted in an average 25 % and 60 % decrease in maximum length and fecundity, respectively, and a 24 % increase in age at maturity. Equilibrium species suffered the greatest negative effects overall, indicating that this life-history strategy might be the most susceptible to stressors. The Eastern oyster displayed extreme opportunism in its life-history traits, but its responses to stress were generally within the range observed for freshwater mussels. The study provides a much-needed general understanding of stress responses across freshwater mussel life-history categories and contributes to the foundation for developing life-history-driven population models., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Richard A. Brain, Nika Galic, and Maxime Vaugeois are employees of Syngenta Crop Protection, which co-funded this work. Other authors declare no conflict of interests that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
3. Where have all the flowers gone? A systematic evaluation of factors driving native terrestrial plant decline in North America.
- Author
-
Prosser RS and Brain RA
- Subjects
- North America, Agriculture, Plants, Conservation of Natural Resources, Introduced Species, Canada, Ecosystem
- Abstract
Prior to the arrival of Europeans in North America, forest and grasslands individually covered a 3rd of the conterminous United States; however, following the colonial and pioneer periods, respectively, these land cover categories were reduced to 70% and 50% of their original prominence. The dominant driving force for native land conversion was agriculture, which expanded exponentially from the Atlantic to the Pacific, comprising over half the total land area of America at its peak in 1950. However, farmland area has subsequently declined by 25%, so what has been driving native plant declines north of the 30th latitudinal parallel over the past 75 years? Analysis of recovery plans issued by the U.S. Fish and Wildlife Service indicates that of the over 900 plant species "listed" as threatened and endangered the primary driver of decline was invasive species, followed by habitat alteration, and development, which collectively accounted for 93.2% of the primary drivers for listed species. In Canada, these three drivers of decline were the primary drivers for 81% of listed species. Comparatively, herbicides were identified as the primary or secondary driver in 13 out of 1124 cases (1.2%). Given that agricultural land area is contracting in the U.S. and Canada, there appears to be a misconception that agrochemicals are the seminal cause of native plant decline. Here, we explore the individual contribution of drivers relative to the historical events of North America to provide context and perspective as well as focus and prioritize conservation efforts accordingly., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Evaluating the perceptions of pesticide use, safety, and regulation and identifying common pesticide-related topics on Twitter.
- Author
-
Jun I, Feng Z, Avanasi R, Brain RA, Prosperi M, and Bian J
- Subjects
- Humans, Communication, Social Media, Pesticides toxicity
- Abstract
Synthetic pesticides are important agricultural tools that increase crop yield and help feed the world's growing population. These products are also highly regulated to balance benefits and potential environmental and human risks. Public perception of pesticide use, safety, and regulation is an important topic necessitating discussion across a variety of stakeholders from lay consumers to regulatory agencies since attitudes toward this subject could differ markedly. Individuals and organizations can perceive the same message(s) about pesticides differently due to prior differences in technical knowledge, perceptions, attitudes, and individual or group circumstances. Social media platforms, like Twitter, include both individuals and organizations and function as a townhall where each group promotes their topics of interest, shares their perspectives, and engages in both well-informed and misinformed discussions. We analyzed public Twitter posts about pesticides by user group, time, and location to understand their communication behaviors, including their sentiments and discussion topics, using machine learning-based text analysis methods. We extracted tweets related to pesticides between 2013 and 2021 based on relevant keywords developed through a "snowball" sampling process. Each tweet was grouped into individual versus organizational groups, then further categorized into media, government, industry, academia, and three types of nongovernmental organizations. We compared topic distributions within and between those groups using topic modeling and then applied sentiment analysis to understand the public's attitudes toward pesticide safety and regulation. Individual accounts expressed concerns about health and environmental risks, while industry and government accounts focused on agricultural usage and regulations. Public perceptions are heavily skewed toward negative sentiments, although this varies geographically. Our findings can help managers and decision-makers understand public sentiments, priorities, and perceptions and provide insights into public discourse on pesticides. Integr Environ Assess Manag 2023;19:1581-1599. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)., (© 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).)
- Published
- 2023
- Full Text
- View/download PDF
5. Challenges with the current methodology for conducting Endangered Species Act risk assessments for pesticides in the United States.
- Author
-
Teed RS, Moore DRJ, Vukov O, Brain RA, and Overmyer JP
- Subjects
- Animals, United States, Endangered Species, Risk Assessment methods, Pesticides, Insecticides
- Abstract
The US Environmental Protection Agency (USEPA or the Agency) is responsible for administering the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The Agency is also required to assess the potential risks of pesticides undergoing registration or re-registration to threatened and endangered (i.e., listed) species to ensure compliance with the Endangered Species Act. To assess potential risks to listed species, a screening-level risk assessment in the form of a biological evaluation (BE) is undertaken by the Agency for each pesticide. Given the large number of registration actions handled by the USEPA annually, efficient tools for conducting BEs are desirable. However, the "Revised Method" that is the basis for the USEPA's BE process has been ineffective at filtering out listed species and critical habitats that are at de minimis risk to pesticides. In the USEPA's BEs, the Magnitude of Effect Tool (MAGtool) has been used to determine potential risks to listed species that potentially co-occur with pesticide footprints. The MAGtool is a highly prescriptive, high-throughput compilation of existing FIFRA screening-level models with a geospatial interface. The tool has been a significant contributor to risk inflation and ultimately process inefficiency. The ineffectiveness of the tool stems from compounding conservatism, unrealistic and unreasonable assumptions regarding usage, limited application of species-specific data, lack of consideration of multiple lines of evidence, and inability to integrate higher-tier data. Here, we briefly describe the MAGtool and the critical deficiencies that impair its effectiveness, thus undermining its intention. Case studies are presented to highlight the deficiencies and solutions are recommended for improving listed species assessments in the future. Integr Environ Assess Manag 2023;19:817-829. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)., (© 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).)
- Published
- 2023
- Full Text
- View/download PDF
6. Human induced fish declines in North America, how do agricultural pesticides compare to other drivers?
- Author
-
Brain RA and Prosser RS
- Subjects
- Agriculture, Animals, Carbamates, Ecosystem, Fishes, Humans, Introduced Species, Neonicotinoids, Organophosphates, Pesticides, Pyrethrins
- Abstract
Numerous anthropogenic factors, historical and contemporary, have contributed to declines in the abundance and diversity of freshwater fishes in North America. When Europeans first set foot on this continent some five hundred years ago, the environment was ineradicably changed. Settlers brought with them diseases, animals, and plants via the Columbian Exchange, from the old world to the new, facilitating a process of biological globalization. Invasive species were thus introduced into the Americas, displacing native inhabitants. Timber was felled for ship building and provisioning for agriculture, resulting in a mass land conversion for the purposes of crop cultivation. As European colonization expanded, landscapes were further modified to mitigate against floods and droughts via the building of dams and levees. Resources have been exploited, and native populations have been overfished to the point of collapse. The resultant population explosion has also resulted in wide-spread pollution of aquatic resources, particularly following the industrial and agricultural revolutions. Collectively, these activities have influenced the climate and the climate, in turn, has exacerbated the effects of these activities. Thus, the anthropogenic fingerprints are undeniable, but relatively speaking, which of these transformative factors has contributed most significantly to the decline of freshwater fishes in North America? This manuscript attempts to address this question by comparing and contrasting the preeminent drivers contributing to freshwater fish declines in this region in order to provide context and perspective. Ultimately, an evaluation of the available data makes clear that habitat loss, obstruction of streams and rivers, invasive species, overexploitation, and eutrophication are the most important drivers contributing to freshwater fish declines in North America. However, pesticides remain a dominant causal narrative in the popular media, despite technological advancements in pesticide development and regulation. Transitioning from organochlorines to organophosphates/carbamates, to pyrethroids and ultimately to the neonicotinoids, toxicity and bioaccumulation potential of pesticides have all steadily decreased over time. Concomitantly, regulatory frameworks designed to assess corresponding pesticide risks in Canada and the USA have become increasingly more stringent and intensive. Yet, comparatively, habitat loss continues unabated as agricultural land is ceded to the frontier of urban development, globalized commerce continues to introduce invasive species into North America, permanent barriers in the form of dams and levees remain intact, fish are still being extracted from native habitats (commercially and otherwise), and the climate continues to change. How then should we make sense of all these contributing factors? Here, we attempt to address this issue., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
7. Development of a US national-scale, mixed-source, pesticide, rural well database for use in drinking water risk assessment: an atrazine case study.
- Author
-
Perkins DB, Stone Z, Jacobson A, Chen W, Szarka AZ, White M, Christensen B, Ghebremichael L, and Brain RA
- Subjects
- Environmental Monitoring, United States, Atrazine analysis, Drinking Water, Groundwater, Pesticides analysis
- Abstract
For pesticide registrations in the USA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as implemented by the United States Environmental Protection Agency, drinking water risk assessments for groundwater sources are based on standard scenario modeling concentration estimates. The conceptual model for the drinking water protection goals is defined in terms of (1) a rural well in or near a relatively high pesticide use area, a shallow well (4-10 m); (2) long-term, single-station weather data; (3) soils characterized as highly leachable; (4) upper-end or surrogate, worst-case environmental fate parameters; and (5) maximum, annual use rates repeated every year. To date, monitoring data have not been quantitatively incorporated into FIFRA drinking water risk assessment; even though considerable, US national-scale temporal and spatial data for some chemistries exists. Investigations into drinking water monitoring data development have historically focused on single-source efforts that may not represent wide geographies and/or time periods, whereas Safe Drinking Water Act groundwater monitoring data are focused on a community-level scale rather than an individual, shallow, rural well. In the current case study, US national-scale, rural well data for the herbicide atrazine was collected, quality controlled, and combined into a single database from mixed sources (termed the atrazine rural well database) to (1) characterize differences between exposure estimates from standard EPA modeling approaches for specific characterization, (2) evaluate monitoring data toward direct use in US drinking water risk assessments to compliment or supersede standard modeling approaches to define risk, and (3) evaluate monitoring trends a function of time relative to label changes implemented as part of the registration review process. Of the 75,665 drinking water samples collected from groundwater, atrazine was only detected in 3185, a 4% detection rate., (© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Published
- 2022
- Full Text
- View/download PDF
8. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study.
- Author
-
Perkins DB, Abi-Akar F, Goodwin G, and Brain RA
- Subjects
- Agriculture methods, Cyclohexanones, Environmental Monitoring methods, Plants, Wind, Zea mays, Herbicides pharmacology, Pesticides analysis
- Abstract
Background: This work reports a combined, field-scale spray drift deposition and plant bioassay study for a pre-mixture of the herbicides mesotrione and s-metolachlor. Wind direction data and field dimensions were used to evaluate the potential for spray drift to bypass downwind sampling devices. Variability in resulting spray drift across downwind distances was assessed alongside wind speed measured at on-site weather stations. Measured wind angles were used to geometrically adjust traveled drift particle distances and enabling isolation of wind direction impact from wind speed. Further, the use of single and multiple in-field monitoring locations was compared to quantify the benefit of higher-resolution meteorological sampling., Results: Generally, increased wind speed resulted in significantly greater herbicide deposition at distances proximal to the edge of the spray zone. According to the drift deposition curves that included wind speed data from single and multiple onsite weather stations, trials with relatively higher wind speeds were associated with greater spray drift deposition at relatively close sampling distances downwind from the application area. Only marginal improvement of linear mixed-effects model fit was observed when including data from three weather stations, compared to the fit from a single weather station or absence of weather data in the model. Using tomato and lettuce plant bioassay species, the overall no-effect distance was 3.0 m (10 ft)., Conclusion: Results from this study are informative to refine pesticide risk assessment for non-target plants and indicate that a single weather station is sufficient to capture potential influential effects from wind speed and direction on spray drift. © 2022 Society of Chemical Industry., (© 2022 Society of Chemical Industry.)
- Published
- 2022
- Full Text
- View/download PDF
9. Spray drift deposition comparison of fluorimetry and analytical confirmation techniques.
- Author
-
Szarka AZ, Kruger GR, Golus J, Rodgers C, Perkins D, and Brain RA
- Subjects
- Fluorometry, Particle Size, Tandem Mass Spectrometry, Agriculture, Pesticides analysis
- Abstract
Tracer dyes are often used as surrogates to characterize pesticide spray drift and it is assumed that they accurately reflect analytical measurement of active ingredients; however, the validity of this assumption remains inconclusive. Consequently, the influence of measurement technique on the magnitude of deposition of spray drift was investigated using spray drift samples evaluated by traditional analytical techniques (HPLC-MS/MS) and fluorimetry (1,3,6,8-pyrene-tetra sulfonic acid tetrasodium salt dye tracer). The experiment was conducted in a low-speed wind tunnel under controlled meteorological conditions. The herbicide mesotrione was sprayed through three spray air induction nozzles (anvil deflector flat fan TTI11004; flat fan AI11004; flat fan AIXR11003). Spray drift deposition samples were collected using stainless steel discs pairs placed side by side in the center of the wind tunnel at distances of 5, 10, 20, 30, and 40 ft (1.5, 3.1, 6.1, 9.1, and 12.2 m) from the spray nozzle. The analytical technique determined pesticide concentration on one disc per pair, and the other was evaluated by fluorimetry. The experimental results, analyzed using the linear split-split plot model, revealed that median deposition concentrations were 15% higher using the tracer dye fluorescence method relative to the analytical method, potentially due in part to procedural recovery inefficiencies of the analytical method (the mean overall procedural recovery result and RSD was 87% ± 6.4% (n = 12). This relationship was consistent and held true for the three nozzle types at all distances within the wind tunnel. © 2021 Society of Chemical Industry., (© 2021 Society of Chemical Industry.)
- Published
- 2021
- Full Text
- View/download PDF
10. Assessment of risks to listed species from the use of atrazine in the USA: a perspective.
- Author
-
Smith PN, Armbrust KL, Brain RA, Chen W, Galic N, Ghebremichael L, Giddings JM, Hanson ML, Maul J, Van Der Kraak G, and Solomon KR
- Subjects
- Animals, Atrazine analysis, Herbicides analysis, Risk Assessment methods, Species Specificity, United States, Atrazine toxicity, Environmental Monitoring methods, Herbicides toxicity
- Abstract
Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine. Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50
RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.- Published
- 2021
- Full Text
- View/download PDF
11. A Method to Screen for Consistency of Effect in Laboratory Toxicity Tests: A Case Study with Anurans and the Herbicide Atrazine.
- Author
-
Hanson ML and Brain RA
- Subjects
- Animals, Anura, Laboratories, Atrazine toxicity, Herbicides toxicity, Water Pollutants, Chemical toxicity
- Abstract
This paper presents a semiquantitative method to help ecotoxicologists evaluate the consistency of data within the available peer-reviewed literature. In this case study, we queried whether there is consistent evidence of direct toxicity in Anurans exposed to atrazine at concentrations ≤ 100 μg/L under laboratory conditions. Atrazine was selected because of the relatively large repository of Anuran toxicity data. To accomplish this, we interrogated available data found in recent quantitative weight-of-evidence risk assessments for atrazine with a series of yes or no questions developed a priori. The questions examined consistency of reported effects within and between studies, within and between species, and across a wide range of endpoints categories (e.g., survivorship, growth and development, reproduction). The analysis found no compelling evidence of a consistent direct effect in Anurans around growth and development, reproduction, or survivorship at concentrations of up to at least 100 μg/L atrazine in laboratory studies. Further work is needed to refine the approach, including accounting for the magnitude of the reported effects. However, we recommend that ecotoxicologists employ some method of formal consistency of effects assessment method routinely before performing toxicity tests, in the contextualizing of new data, and in reviews of contaminants.
- Published
- 2021
- Full Text
- View/download PDF
12. Acute and early life-stage toxicity of atrazine in sheepshead minnow (Cyprinodon variegatus).
- Author
-
Brain RA, Anderson JC, and Hanson ML
- Abstract
Given the limited data available for estuarine/marine fish species and potential risk of being exposed to the herbicide atrazine, additional toxicity data regarding sensitive life-stages are needed. As such, this work sought to characterize: 1) the acute larval toxicity, and 2) early life-stage toxicity of technical atrazine in the model marine species sheepshead minnow (Cyprinodon variegatus). Atrazine was observed to be slightly to moderately toxic towards C. variegatus under acute conditions (as per U.S. EPA 2017 criteria). After 96 h exposure, mortality rates of 5%, 15%, 35%, and 90% were observed among fish exposed to atrazine at 4.6, 7.6, 13, and 22 mg a.i./L, respectively. Sub-lethal effects were observed among surviving fish exposed to > 3.2 mg a.i/L. The 96 h LC50 was 13 mg a.i./L and the NOEC was 3.2 mg a.i./L. In the 33 d early-life stage test, mean embryo survival rates in 0.15, 0.30, 0.57, 1.1, and 2.2 mg a.i./L treatments ranged from 71% to 79% and were not different from survival in the control (78%). Following 28 d post-hatch exposure (Day 33), mean larval survival ranged from 98% to 100% in all treatments and the control. Larval length and wet weight were the most sensitive indicators of the toxicity of atrazine to early life-stage sheepshead minnow. The NOEC for growth was 1.1 mg a.i./L and the LOEC was 2.2 mg a.i./L. Based on these, the MATC for atrazine to sheepshead minnow embryos and larvae was estimated to be 1.6 mg a.i./L. These results were consistent with previous investigations in sheepshead minnow and other marine fish species. Based on the results, atrazine would not be expected to pose unacceptable risks for sheepshead minnow early life-stages at environmentally relevant concentrations., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
13. The Press Sells Newspapers, We Should Not Sell Ecotoxicology.
- Author
-
Brain RA and Hanson ML
- Subjects
- Ecotoxicology
- Published
- 2021
- Full Text
- View/download PDF
14. Integrating Exposure and Effect Distributions with the Ecotoxicity Risk Calculator: Case Studies with Crop Protection Products.
- Author
-
Dreier DA, Rodney SI, Moore DR, Grant SL, Chen W, Valenti TW Jr, and Brain RA
- Subjects
- Ecotoxicology, Environmental Monitoring, Probability, Risk Assessment, Risk Management, Crop Protection
- Abstract
Risk curves describe the relationship between cumulative probability and magnitude of effect and thus express far more information than risk quotients. However, their adoption has remained limited in ecological risk assessment. Therefore, we developed the Ecotoxicity Risk Calculator (ERC) to simplify the derivation of risk curves, which can be used to inform risk management decisions. Case studies are presented with crop protection products, highlighting the utility of the ERC at incorporating various data sources, including surface water modeling estimates, monitoring observations, and species sensitivity distributions. Integr Environ Assess Manag 2021;17:321-330. © 2020 Syngenta Crop Protection, LLC. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)., (© 2020 Syngenta Crop Protection, LLC. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).)
- Published
- 2021
- Full Text
- View/download PDF
15. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses.
- Author
-
Dionne E, Hanson ML, Anderson JC, and Brain RA
- Subjects
- Animals, Female, Life Cycle Stages, Reproduction, Atrazine toxicity, Cyprinidae, Water Pollutants, Chemical toxicity
- Abstract
Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 μg/L., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: This research was sponsored by Syngenta Crop Protection, LLC and independently conducted by Smithers. Richard Brain is an employee of Syngenta, Emily Dionne is a retired employee of Smithers. Mark Hanson and Julie Anderson are independent contractors for Syngenta Crop Protection, LLC., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
16. The Comprehensive Aquatic Systems Model (CASM): Advancing Computational Capability for Ecosystem Simulation.
- Author
-
Bartell SM, Nair SK, Galic N, and Brain RA
- Subjects
- Animals, Aquatic Organisms physiology, Biomass, Energy Metabolism, Food Chain, Software, Ecosystem, Models, Theoretical
- Abstract
The comprehensive aquatic systems model (CASM), an aquatic food web-ecosystem model, was developed originally to explore relationships between food web structure and ecosystem function, and was then subsequently adapted to assess potential ecological risks posed by chemical contaminants. The present short communication presents the history of the CASM, describes the model structure, lists the outputs of the model, and introduces user-friendly versions of CASM applications that are being made publicly available. Environ Toxicol Chem 2020;39:2298-2303. © 2020 SETAC., (© 2020 SETAC.)
- Published
- 2020
- Full Text
- View/download PDF
17. How to Make Voluntary Species Conservation Work for Pesticide Registrations.
- Author
-
Brain RA, Li YW, Burd T, Wolf RR, Buttner P, and Cooke T
- Subjects
- Registries, Pesticides
- Published
- 2020
- Full Text
- View/download PDF
18. Context and Perspective in Ecotoxicology.
- Author
-
Hanson ML and Brain RA
- Published
- 2020
- Full Text
- View/download PDF
19. Anthropogenic factors affecting wildlife species status outcomes: why the fixation on pesticides?
- Author
-
Brain RA and Anderson JC
- Abstract
Most Americans are at least three generations removed from the farm, thereby at least three generations removed from the reality of where their food comes from. Not surprisingly, there are many misconceptions about modern food production, including the potential collateral environmental damage attributed to agriculture, particularly the application of pesticides. However, the implication of conventional agriculture in the broader narrative of wildlife species status outcomes (SSOs) lacks context and relativity. Since the dawn of civilization, humans have had a profound impact on their environment. Originating as hunter-gatherer societies, our ancient ancestors initially exploited anything that could be consumed or brought to bear. With the advent of the "first proto-farmers," humans began manipulating their environments to maximize available resources. Urban centers propagated and flourished proximal to agricultural origins, where modern societies have been built primarily on an abundance of food. As societies "developed," and continue to develop, an inevitable economic transition occurs from agriculture to industry/service predominance, culminating in a corresponding shift in land use. Developed countries have typically experienced maximal expansion of the agricultural frontier, where farmland is now steadily eroding by a proverbial flood of urban development. In contrast, in developing countries, this shift in economic development has not yet fully manifested and the agricultural footprint continues to expand at the expense of native habitats. Thus, the relative influence of "agriculture" on SSOs, in terms of land use, is primarily dependent on economic developmental status, which can be, at least in part, ameliorated via technology by increasing yield from existing land. Moreover, in addition to the land use challenge, there are multiple other factors affecting wildlife SSOs, including a figurative plague of invasive species, a literal plague of disease, a barrage of buildings, bumpers, grilles, and windshields to collide with, light pollution to confuse cues with, poachers to contend with, and even more complicated factors such as climate change. Being an easy target does not mean pesticides are the right target, and this fixation can potentially detract from public awareness regarding the primary drivers affecting SSOs as well as the opportunity to proactively address them. So, relatively speaking, how do these other factors compare to "pesticides" in terms of driving SSOs? Moreover, why is the popular media so fixated on the pesticide narrative? Based on the available evidence, this manuscript attempts to address these questions from a holistic and relative perspective within the context of land use change, economic development, population growth, and associated implications of global connectivity and commerce.
- Published
- 2020
- Full Text
- View/download PDF
20. Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions.
- Author
-
Moore DR, Priest CD, Galic N, Brain RA, and Rodney SI
- Subjects
- Animals, Ecotoxicology, Risk Assessment, Sensitivity and Specificity, Chlorpyrifos toxicity, Phylogeny, Species Specificity, Water Pollutants, Chemical toxicity
- Abstract
A species sensitivity distribution (SSD) is a cumulative distribution function of toxicity endpoints for a receptor group. A key assumption when deriving an SSD is that the toxicity data points are independent and identically distributed (iid). This assumption is tenuous, however, because closely related species are more likely to have similar sensitivities than are distantly related species. When the response of 1 species can be partially predicted by the response of another species, there is a dependency or autocorrelation in the data set. To date, phylogenetic relationships and the resulting dependencies in input data sets have been ignored in deriving SSDs. In this paper, we explore the importance of the phylogenetic signal in deriving SSDs using a case studies approach. The case studies involved toxicity data sets for aquatic autotrophs exposed to atrazine and aquatic and avian species exposed to chlorpyrifos. Full and partial data sets were included to explore the influences of differing phylogenetic signal strength and sample size. The phylogenetic signal was significant for some toxicity data sets (i.e., most chlorpyrifos data sets) but not for others (i.e., the atrazine data sets, the chlorpyrifos data sets for all insects, crustaceans, and birds). When a significant phylogenetic signal did occur, effective sample size was reduced. The reduction was large when the signal was strong. In spite of the reduced effective sample sizes, significant phylogenetic signals had little impact on fitted SSDs, even in the tails (e.g., hazardous concentration for 5
th percentile species [HC5]). The lack of a phylogenetic signal impact occurred even when we artificially reduced original sample size and increased strength of the phylogenetic signal. We conclude that it is good statistical practice to account for the phylogenetic signal when deriving SSDs because most toxicity data sets do not meet the independence assumption. That said, SSDs and HC5s are robust to deviations from the independence assumption. Integr Environ Assess Manag 2019;00:1-13. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)., (© 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).)- Published
- 2020
- Full Text
- View/download PDF
21. A Probabilistic Co-Occurrence Approach for Estimating Likelihood of Spatial Overlap Between Listed Species Distribution and Pesticide Use Patterns.
- Author
-
Richardson L, Bang J, Budreski K, Dunne J, Winchell M, Brain RA, and Feken M
- Subjects
- Animals, Models, Statistical, Risk Assessment methods, Spatial Analysis, Animal Distribution, Crop Production, Insecta physiology, Pesticides adverse effects
- Abstract
Characterizing potential spatial overlap between federally threatened and endangered ("listed") species distributions and registered pesticide use patterns is important for accurate risk assessment of threatened and endangered species. Because accurate range information for such rare species is often limited and agricultural pesticide use patterns are dynamic, simple spatial co-occurrence methods may overestimate or underestimate overlap and result in decisions that benefit neither listed species nor the regulatory process. Here, we demonstrate a new method of co-occurrence analysis that employs probability theory to estimate spatial distribution of rare species populations and areas of pesticide use to determine the likelihood of potential exposure. Specifically, we 1) describe a probabilistic method to estimate pesticide use based on crop production patterns; 2) construct species distribution models for 2 listed insect species whose ranges were previously incompletely described, the rusty-patched bumble bee (Bombus affinis) and the Poweshiek skipperling (Oarisma poweshiek); and 3) develop a probabilistic co-occurrence methodology and assessment framework. Using the principles of the Bayes' theorem, we constructed probabilistic spatial models of pesticide use areas by integrating information from land-cover spatial data, agriculture statistics, and remote-sensing data. We used maximum entropy methods to build species distribution models for 2 listed insects based on species collection and observation records and predictor variables relevant to the species' biogeography and natural history. We further developed novel methods for refinement of these models at spatial scales relevant to US Fish and Wildlife Service (FWS) regulatory priorities (e.g., critical habitat areas). Integrating both probabilistic assessments and focusing on USFWS priority management areas, we demonstrate that spatial overlap (i.e., potential for exposure) is not deterministic but instead a function of both species distribution and land use patterns. Our work serves as a framework to enhance the accuracy and efficiency of threatened and endangered species assessments using a data-driven likelihood analysis of species co-occurrence. Integr Environ Assess Manag 2019;00:1-12. © 2019 SETAC., (© 2019 SETAC.)
- Published
- 2019
- Full Text
- View/download PDF
22. The agro-enabled urban revolution, pesticides, politics, and popular culture: a case study of land use, birds, and insecticides in the USA.
- Author
-
Brain RA and Anderson JC
- Subjects
- Animals, Animals, Wild, Biodiversity, Birds, Conservation of Natural Resources, Crops, Agricultural, Humans, Industry, Organizations, Plants, Genetically Modified, Politics, Popular Culture, Population Dynamics, Population Growth, Rural Population, United States, Urban Population, Urbanization, Agriculture, Ecology, Ecosystem, Pesticides
- Abstract
Urbanization is an inevitable process in human civilization. When populations expand, socio-economic and political dynamics typically shift from agricultural predominance to one of industry and services. Accordingly, agrarian societies transform from diffuse rural communities to dense urban centers. By 2050, the world's population is projected to reach 9.1 billion, with the urban population growing from 50 to 70%. Inevitably, this ever-expanding urban frontier encroaches along the human-ecological interface, creating a challenge for conservation and biodiversity. For the past 30 years, agricultural cropland area in the USA has remained fairly constant, despite significant population growth over the same time period. Thus, agricultural production in America has more than kept pace with rapid population growth and global export demand without increasing the farmland footprint at the expense of wildlife habitat. This is primarily due to considerable advances made in pesticide development, safety, and regulation, coupled with soil conservation and genetically modified crops. Still, the potential contribution of agriculture to ecosystem impairment remains contentious, particularly with regard to current use of pesticides. Recently, significant focus has been placed on the state of bird populations in the USA. Many species are considered imperiled, and this is often attributed in the popular media to pesticide use. However, focusing solely on the agricultural/chemical story as a significant driver of species viability and ecological risk within the broader biodiversity and conservation narrative lacks context and perspective. Moreover, the hypothesis that pesticides are indirectly affecting bird population status via reductions in food resources should be considered with caution and within the context of other likely causes. This work explores the dynamics between historical land use, human-controlled activity, and bird population trends from a holistic perspective within the USA. The aim is to provide context, developed from a relative comparison of potential contributing factors, in order to help inform discussion and foster dialogue between industry, academia, government, non-governmental organizations, and the public.
- Published
- 2019
- Full Text
- View/download PDF
23. Relative Abundance Trends of Bird Populations in High Intensity Croplands in the Central United States.
- Author
-
Belden JB, McMurry ST, Maul JD, Brain RA, and Ghebremichael LT
- Subjects
- Animals, Crops, Agricultural, Population Dynamics, United States, Agriculture, Birds, Conservation of Natural Resources
- Abstract
Declining bird populations across the United States have been noted in a number of studies. Although multiple explanations have been proposed as causes of these declines, agricultural intensification has often been suggested as a significant driver of bird population dynamics. Using spatially explicit USDA-NASS Cropland Data Layer, we examined this relationship by comparing bird count data from the Breeding Bird Survey collected between 1995 and 2016 across 13 states in the central United States to corresponding categorical changes in land cover within a 2-km radius of each survey transect. This approach allowed us to compare the slopes of counts for 31 species of birds between grassland- and cropland-dominated landscapes and against increasing levels of cropland (all types combined) and pooled corn and soybean land cover types. Nearly all birds demonstrated significant responses to land cover changes. In all cases, the number of species exhibiting positive or negative responses was comparable, and median differences in percent change per year ranged from -0.5 to 0.7%. Species that responded either positively or negatively did not appear to fall into any particular foraging guild. If changes in agricultural practices are a major cause of declines, we would expect to see it across the spatial scale studied and across the majority of species. While these results do not rule out potential agricultural effects, such as toxicity resulting from pesticide exposure, which may have species-specific or localized effects, a variety of factors related to habitat are likely the most significant contributor overall. Given these results over a large spatial scale basis (multistate) and across numerous bird species, there is not a broad general trend of greater decline in crop-intensive areas. Integr Environ Assess Manag 2018;14:692-702. © 2018 SETAC., (© 2018 SETAC.)
- Published
- 2018
- Full Text
- View/download PDF
24. Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine.
- Author
-
Brain RA, Schneider SZ, Anderson JC, Knopper LD, Wolf JC, and Hanson ML
- Subjects
- Animals, Female, Gonads drug effects, Herbicides pharmacology, Male, Ovary drug effects, Sex Factors, Atrazine pharmacology, Fertility drug effects, Gonads physiology, Oryzias physiology, Ovary physiology, Reproduction drug effects, Water Pollutants, Chemical pharmacology
- Abstract
Short-term reproduction assays were conducted with fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes) to evaluate responses from atrazine exposure at environmentally relevant concentrations and above. Breeding groups of fish with multiple males and females were exposed to atrazine under flow-through conditions. Fathead minnows were exposed to mean measured concentrations of 1.0, 10, 26, 52, and 105 μg atrazine/L for 28 days. Medaka were exposed to mean measured concentrations of 9.4, 48, 74, 97, and 244 μg atrazine/L for 28 or 29 days. Fish were evaluated for survival, fecundity, fertility, total length, wet weight, secondary sex characteristics, gonadosomatic index (GSI) (P. promelas only), plasma or hepatic vitellogenin (VTG), and histopathology of gonads. General observations of health and behaviour were also conducted. There were no statistically significant effects (i.e., p < 0.05) of atrazine on survival, size, reproduction, behaviour, GSI, VTG, or secondary sex characteristics in either species at any exposure level. In fathead minnows, there were no histopathological findings associated with atrazine exposure in male fish, but there was an increased proportion of Stage 4.0 ovaries accompanied by an increase in proportion of Grade 3 post-ovulatory follicles in females of the 105 μg/L treatment group. Without a concomitant increase in oocyte atresia, neither of these findings are considered adverse for the health of the fish. In medaka, there were no significant effects of atrazine exposure on histopathology in either sex. These data support current weight-of-evidence assessments that atrazine does not cause direct adverse effects on fish reproduction at environmentally realistic concentrations., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
25. Derivation of avian dermal LD50 values for dermal exposure models using in vitro percutaneous absorption of [ 14 C]-atrazine through rat, mallard, and northern bobwhite full thickness skin.
- Author
-
Maul JD, Blackstock C, and Brain RA
- Subjects
- Animals, Carbon Radioisotopes, Colinus, Lethal Dose 50, Rats, Skin Absorption, Atrazine toxicity, Pesticides toxicity, Toxicity Tests
- Abstract
Understanding dermal exposure is important for higher-tier avian ecological risk assessments. However, dermal exposure and toxicity are often unknown for avifauna. The US EPA's Terrestrial Investigation Model (TIM) uses a method to estimate avian dermal LD50 values (and ultimately dermal exposure) that frequently results in unusually high dermal exposure and low dermal LD50 estimates. This is primarily a result of using organophosphate and carbamate toxicity data to develop the oral-dermal relationship. An estimated dermal LD50 is necessary to generate a dermal route equivalency factor that normalizes potency relative to oral toxicity within the dermal pathway dose equation. In this study, atrazine dermal absorption experiments were conducted with mallard, northern bobwhite, and rat skin. These data were used to derive an avian-mammal dermal route equivalency factor for atrazine and introduce a new approach for estimating dermal LD50 values and ultimately predicting exposure via the TIM dermal pathway. Compared to the default TIM method, this new approach yielded TIM output with lower mean total dose, lower dermal fraction of total dose, greater oral fraction of total dose, and reduced model predicted mortality for atrazine. In addition, the new approach was compared with other methods for estimating avian dermal LD50 values such as those proposed for use with mammalian data and physico-chemical properties and a triazine-specific oral-dermal equation using mammalian LD50 data. The three alternative approaches resulted in output similar to one another and different from the default TIM methods. These results indicate that a dermal route equivalency factor derived from empirical data provides a higher avian dermal LD50 estimate that is consistent with other methods. In addition, the use of this dermal route equivalency factor results in greatly reduced modeled atrazine risk to birds than previously reported in US EPA risk assessments using TIM., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
26. Sibling rivalry, peace, love, and environmental debate in the 21 st century.
- Author
-
Brain RA and Brain RG
- Published
- 2018
- Full Text
- View/download PDF
27. Modeling the effects of thiamethoxam on Midwestern farm ponds and emergent wetlands.
- Author
-
Bartell SM, Nair SK, Grant S, and Brain RA
- Subjects
- Animals, Aquatic Organisms drug effects, Biomass, Computer Simulation, Ecosystem, Environmental Exposure analysis, Invertebrates drug effects, Toxicity Tests, Acute, Toxicity Tests, Chronic, Farms, Models, Theoretical, Ponds chemistry, Thiamethoxam analysis, Wetlands
- Abstract
Potential toxic effects of thiamethoxam on nontarget organisms and the community structure of a generic Midwestern farm pond and emergent wetland were assessed using 2 versions of the comprehensive aquatic system model: CASM
GFP , a generic farm pond model, and CASMGWL , a generic wetland model. The CASMGFP and CASMGWL are integrated bioenergetics-based and habitat quality models that describe the daily biomass values of selected producer and consumer populations representative of generalized Midwestern farm ponds and emergent wetlands. The CASMGFP demonstrated the ability to reproduce values of population biomass reported for Midwestern (and other) pond ecosystems; the CASMGWL provided a similar modeling capability for Midwestern emergent wetlands. Lethal and sublethal effects of thiamethoxam were modeled as extrapolations of laboratory toxicity assays using the CASMGFP and the CASMGWL . Time series of daily environmental concentrations of thiamethoxam constructed for 6 regional pesticide applications across the United States failed to produce any calculated impacts on modeled population biomass or changes in community structure of modeled trophic guilds in the CASMGFP or the CASMGWL . However, evaluation of systematically increased daily concentrations demonstrated the ability of both models to simulate direct and indirect toxic effects of this pesticide. The present model study suggests that process-based food web/ecosystem models can be used to characterize the potential ecological effects of thiamethoxam on generalized farm pond and emergent wetland ecosystems. Environ Toxicol Chem 2018;37:738-754. © 2017 SETAC., (© 2017 SETAC.)- Published
- 2018
- Full Text
- View/download PDF
28. Collaborative research among academia, business, and government.
- Author
-
Chapman PM, Brain RA, Belden JB, Forbes VE, Mebane CA, Hoke RA, Ankley GT, and Solomon KR
- Published
- 2018
- Full Text
- View/download PDF
29. Incorporating the joint toxicity of co-applied pesticides into the ecological risk assessment process.
- Author
-
Belden JB and Brain RA
- Subjects
- Probability, Risk Assessment methods, Environmental Monitoring methods, Pesticides toxicity, Water Pollutants, Chemical toxicity, Water Pollution, Chemical statistics & numerical data
- Abstract
Pesticides are frequently formulated as mixtures of active ingredients. Although traditionally ecological risk assessments (ERAs) have focused on individual active ingredients, there is an ongoing effort in many jurisdictions to more formally include assessment of mixtures. The overall goal of this project was to describe an approach for conducting ERA of jointly applied pesticides. We suggest that standard testing of formulation mixtures is not warranted due to the low probability of synergy occurring at a high-enough magnitude to be measurable above experimental variability. Thus, empirical testing should focus on formulations for which there is a greater likelihood of synergy due to known toxicological interactions of the pesticide class or a priori knowledge of synergy, such as intellectual property claims. Additionally, empirical testing should focus on species that are above levels of concern and limit testing on species for which it is unlikely that synergy would significantly change the outcome of the ERA. If empirical testing is warranted, we suggest that results be compared to the concentration addition model (CA). If the empirical data deviates from the model by a factor of greater than 5, then synergy is considered likely and the ERA is based on the empirical data. Otherwise, the ERA may use CA to calculate risk quotients or be based on the most toxic active ingredient. To evaluate the approach, we reviewed formulation mixtures for which data were available. Only 3 of 24 mixture studies were found to deviate from CA by more than 5. The majority of the studies had a single component that dominated toxicity, suggesting that the ERA for these formulations will not be meaningfully different if based on the most toxic active ingredient. Overall, this approach balances risk assessment conservatism and reduces testing that would likely not result in improvement of the ERA. Integr Environ Assess Manag 2018;14:79-91. © 2017 SETAC., (© 2017 SETAC.)
- Published
- 2018
- Full Text
- View/download PDF
30. Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione.
- Author
-
Brain RA, Perine J, Cooke C, Ellis CB, Harrington P, Lane A, O'Sullivan C, and Ledson M
- Subjects
- Environmental Monitoring, Risk Assessment, Wind, Cyclohexanones toxicity, Herbicides toxicity, Plants drug effects
- Abstract
Nature of exposure is a fundamental driver in nontarget terrestrial plant risk assessment for pesticides; consequently a novel study was designed to generate field-based drift exposure and evaluate corresponding biological effects of the herbicide mesotrione. The approach used a combination of US guideline drift reduction technology and vegetative vigor approaches. In each of 3 independent replicate spray application trials, 10 pots each of lettuce and tomato were placed at distances of 10, 20, 30, 40, and 50 ft (∼3, 6, 9, 12, and 15 m) from the downwind edge of the spray boom. Each application was conducted using a commercial 60-ft (18-m) boom sprayer fitted with TeeJet
® Technologies TTI110025 nozzles, with a nominal application rate of 0.2 lb a.i./A (224 g a.i./ha). The environmental conditions required by the protocol (air temperature 10-30 °C and wind perpendicular to the swath (±30°) blowing toward the plants at a mean wind speed of ≥10 mph [≥4.5 m/s] measured at 2.0 m above the ground) were met for each application. Following exposure, plants were transferred to a greenhouse for the 21-d vegetative vigor phase of the study. Symptoms of phytotoxicity and plant height were assessed at 7, 14, and 21 d after treatment. On completion of the 21-d after treatment assessment, all plants were harvested and dried in an oven to determine shoot dry weight. The biological data indicated that no statistically significant effects were observed at a distance of 30 ft (∼9 m) from mesotrione drift at wind speeds of ≥10 mph (10.9-12.4 mph); this endpoint (30 ft) is defined as the no observed effects distance (NOED). Environ Toxicol Chem 2017;36:2465-2475. © 2017 SETAC., (© 2017 SETAC.)- Published
- 2017
- Full Text
- View/download PDF
31. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes).
- Author
-
Hosmer AJ, Schneider SZ, Anderson JC, Knopper LD, and Brain RA
- Subjects
- Animals, Female, Fertility drug effects, Liver metabolism, Male, Ovary drug effects, Ovary physiology, Reproduction drug effects, Sex Characteristics, Testis drug effects, Testis physiology, Vitellogenins metabolism, Atrazine toxicity, Herbicides toxicity, Oryzias physiology, Water Pollutants, Chemical toxicity
- Abstract
Breeding groups of Japanese medaka (Oryzias latipes) were exposed to atrazine at measured concentrations of 0.6, 5.5, and 53 μg/L for 35 d. Evaluated endpoints included survival, fecundity, fertility, growth (weight and length), behavior, secondary sex characteristics (anal fin papillae), gonad histopathology, and hepatic vitellogenin. No statistically significant effects of atrazine exposure on survival and growth of medaka were noted during the test, and mean survival was ≥97.5% in all treatment groups on day 35. No significant effects of atrazine exposure on reproduction were observed. The number of mean cumulative eggs produced in the negative control and the 0.6, 5.5, and 53 μg/L treatment groups was 7158, 6691, 6883, and 6856, respectively. The mean number of eggs per female reproductive day was 40.9, 38.2, 40.2, and 39.2, respectively. There were also no dose-dependent effects on mean anal fin papillae counts among male fish or expression of vtg-II in males or females. In addition, atrazine exposure was not related to the developmental stage of test fish, with testes stages ranging from 2 to 3 in all groups and ovaries ranging from stage 2 to 2.5. Overall, exposure to atrazine up to 53 µg/L for 35 d did not result in significant, treatment-related effects on measured endpoints related to survival, growth, or reproduction in Japanese medaka. Environ Toxicol Chem 2017;36:2327-2334. © 2017 SETAC., (© 2017 SETAC.)
- Published
- 2017
- Full Text
- View/download PDF
32. A weight-of-evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities.
- Author
-
Moore DR, Greer CD, Manning G, Wooding K, Beckett KJ, Brain RA, and Marshall G
- Subjects
- Environmental Policy, Reproducibility of Results, United States, United States Environmental Protection Agency, Aquatic Organisms, Atrazine toxicity, Herbicides toxicity, Plants, Water Pollutants, Chemical toxicity
- Abstract
Atrazine is a selective triazine herbicide widely used in the United States primarily for control of broadleaf weeds in corn and sorghum. In 2003, the US Environmental Protection Agency (USEPA) concluded that atrazine poses potential risks to sensitive aquatic species. Consequently, a surface water monitoring program was developed to assess whether measured levels of atrazine could impact aquatic plants in vulnerable watersheds. To facilitate evaluation of the monitoring data, the Agency needed to establish a level of concern (LOC) below which atrazine would not cause unacceptable adverse effects to aquatic plant communities. Several attempts at developing a community-level LOC have followed from USEPA but none have been formally accepted or endorsed by independent Scientific Advisory Panels. As part of registration review, the USEPA needs to revisit development of a community-level LOC for atrazine that will be protective of aquatic plant communities. This article reviews 4 methods that can or have been used for this purpose. Collectively, the methods take advantage of the large number of single species and mesocosm studies that have been conducted for aquatic plants exposed to atrazine. The Plant Assemblage Toxicity Index (PATI) and the Comprehensive Aquatic Systems Model for atrazine (CASM
ATZ2 ) incorporate single-species toxicity data but are calibrated with micro- and mesocosm study results to calculate community-level LOCs. The Brock et al. scoring system relies exclusively on mesocosm studies. Single-species toxicity data were used in a modified version of the USEPA's Water Quality Criteria (WQC) method. The 60-day LOCs calculated using the 4 methods ranged from 19.6 to 26 µg/L. A weight-of-evidence assessment indicated that the CASMATZ2 method was the most environmentally relevant and statistically reliable method. Using all 4 methods with weights based on method reliability, the weighted 60-day LOC was 23.6 µg/L. Integr Environ Assess Manag 2017;13:686-701. © 2016 SETAC., (© 2016 SETAC.)- Published
- 2017
- Full Text
- View/download PDF
33. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides.
- Author
-
Baxter L, Brain RA, Lissemore L, Solomon KR, Hanson ML, and Prosser RS
- Subjects
- Chlorophyta radiation effects, Risk Assessment, Atrazine toxicity, Chlorophyta drug effects, Herbicides toxicity, Light, Temperature, Water Pollutants, Chemical toxicity
- Abstract
The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
34. Recovery of terrestrial plants in vegetative vigor and seedling emergence tests from exposure to atrazine.
- Author
-
Brain RA and Hoberg J
- Subjects
- Avena drug effects, Avena growth & development, Brassica drug effects, Brassica growth & development, Solanum lycopersicum drug effects, Solanum lycopersicum growth & development, Magnoliopsida growth & development, Seedlings drug effects, Seedlings growth & development, Glycine max drug effects, Glycine max growth & development, United States, Zea mays drug effects, Zea mays growth & development, Atrazine toxicity, Herbicides toxicity, Magnoliopsida drug effects
- Abstract
Ten species of terrestrial plants, including 6 dicotyledonous and 4 monocotyledonous species, were exposed to a direct overspray of atrazine according to US Environmental Protection Agency seedling emergence and vegetative vigor study guidelines and subsequently evaluated for potential recovery. For each species, no-observed-effect rate (NOER), 10% effect rate, 25% effect rate, and 50% effect rate values were calculated (where possible) for a variety of guideline-required endpoints (but focusing on growth rate) for both the standard experimental phase and a recovery phase; and the rates subsequently were compared. For the seedling emergence study, the standard experimental (designated test 1) and recovery (designated test 2) phases encompassed days 0 to 14 and days 14 to 28, respectively. Similarly, for the vegetative vigor study, test 1 and test 2 encompassed days 0 to 21 and days 21 to 42, respectively. Plants were exposed to atrazine at nominal application rates ranging from 1.1 g active ingredient (a.i.)/ha (0.0010 lb a.i./A) to 28,000 g a.i./ha (25 lb a.i./A), depending on the species; the 28,000 g a.i./ha rate is greater than 12 times the maximum application rate of 2250 g a.i./ha (2 lb a.i./A) registered on corn. For seedling emergence, only 2 of 10 species tested, cabbage and tomato, provided clear rate responses in the initial 14 d of exposure (test 1). Based on a comparison of x% effect rate (ERx) and NOER values for growth rates of shoot length and shoot dry weight for days 0 to 14 relative to days 14 to 28, recovery was apparent for cabbage shoot length growth rate and tomato shoot length and shoot dry weight growth rates. Test application rates selected for the remaining 8 species showed either a weak response that did not allow a clear assessment of recovery or no response at all. For the vegetative vigor study, 9 of the 10 species tested provided clear rate responses in test 1 (days 0-21); corn did not demonstrate any herbicidal response up to the highest rate tested, 28,000 g a.i./ha. Based on comparison of day 0 to 21 (test 1) relative to day 21 to 42 (test 2) ERx and NOER values for shoot length, average growth rates indicated that 8 of 9 species clearly demonstrated an increase in 2 or more metrics (cabbage did not demonstrate a response based on shoot length). Clear recovery was also indicated by an increase in ERx and/or NOER values from test 1 to test 2 for shoot dry weight average growth rates for 7 of the 9 species (corn did not show a response, and oat and soybean showed variable responses). Thus, in most species, where initial herbicidal effects were observed, the effects are largely ameliorated over time., (© 2015 SETAC.)
- Published
- 2016
- Full Text
- View/download PDF
35. A probabilistic approach for estimating the spatial extent of pesticide agricultural use sites and potential co-occurrence with listed species for use in ecological risk assessments.
- Author
-
Budreski K, Winchell M, Padilla L, Bang J, and Brain RA
- Subjects
- Bayes Theorem, Risk Assessment methods, Agriculture statistics & numerical data, Insect Control statistics & numerical data, Models, Statistical, Pesticides analysis
- Abstract
A crop footprint refers to the estimated spatial extent of growing areas for a specific crop, and is commonly used to represent the potential "use site" footprint for a pesticide labeled for use on that crop. A methodology for developing probabilistic crop footprints to estimate the likelihood of pesticide use and the potential co-occurrence of pesticide use and listed species locations was tested at the national scale and compared to alternative methods. The probabilistic aspect of the approach accounts for annual crop rotations and the uncertainty in remotely sensed crop and land cover data sets. The crop footprints used historically are derived exclusively from the National Land Cover Database (NLCD) Cultivated Crops and/or Pasture/Hay classes. This approach broadly aggregates agriculture into 2 classes, which grossly overestimates the spatial extent of individual crops that are labeled for pesticide use. The approach also does not use all the available crop data, represents a single point in time, and does not account for the uncertainty in land cover data set classifications. The probabilistic crop footprint approach described herein incorporates best available information at the time of analysis from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) for 5 y (2008-2012 at the time of analysis), the 2006 NLCD, the 2007 NASS Census of Agriculture, and 5 y of NASS Quick Stats (2008-2012). The approach accounts for misclassification of crop classes in the CDL by incorporating accuracy assessment information by state, year, and crop. The NLCD provides additional information to improve the CDL crop probability through an adjustment based on the NLCD accuracy assessment data using the principles of Bayes' Theorem. Finally, crop probabilities are scaled at the state level by comparing against NASS surveys (Census of Agriculture and Quick Stats) of reported planted acres by crop. In an example application of the new method, the probabilistic crop footprint for soybean resulted in national and statewide soybean acreages that are within the error bounds of the average reported NASS yearly soybean acreage over the same time period, whereas the method using only NLCD resulted in an acreage that is over 4 times the survey acreage. When the probabilistic crop footprint for soybean was used in a co-occurrence analysis with listed species locations, the number of potentially proximal species identified was half the number based on the standard NLCD crop footprint method (276 species with the probabilistic crop footprint vs 511 for the conventional method). The probabilistic crop footprint methodology allows for a more comprehensive and representative understanding of the potential pesticide use footprint co-occurrence with endangered species locations for use in effects determinations., (© 2015 SETAC.)
- Published
- 2016
- Full Text
- View/download PDF
36. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms.
- Author
-
King RS, Brain RA, Back JA, Becker C, Wright MV, Djomte VT, Scott WC, Virgil SR, Brooks BW, Hosmer AJ, and Chambliss CK
- Subjects
- Atrazine analysis, Biological Oxygen Demand Analysis, Chlorophyll analysis, Diatoms, Ecosystem, Fresh Water, Herbicides analysis, Phosphates analysis, Phosphates metabolism, Phytoplankton, Rivers chemistry, Water Pollutants, Chemical analysis, Water Quality, Atrazine toxicity, Autotrophic Processes drug effects, Biomass, Herbicides toxicity, Water Pollutants, Chemical toxicity
- Abstract
The authors performed a multiple-pulsed atrazine experiment to measure responses of autotrophic endpoints in outdoor stream mesocosms. The experiment was designed to synthetically simulate worst-case atrazine chemographs from streams in agricultural catchments to achieve 60-d mean concentrations of 0 μg/L (control), 10 μg/L, 20 μg/L, and 30 μg/L. The authors dosed triplicate streams with pulses of 0 μg/L, 50 μg/L, 100 μg/L, and 150 μg/L atrazine for 4 d, followed by 7 d without dosing. This 11-d cycle occurred 3 times, followed by a recovery (untreated) period from day 34 to day 60. Mean ± standard error 60-d atrazine concentrations were 0.07 ± 0.03 μg/L, 10.7 ± 0.05 μg/L, 20.9 ± 0.24 μg/L, and 31.0 ± 0.17 μg/L for the control, 10-μg/L, 20-μg/L, and 30-μg/L treatments, respectively. Multivariate analyses revealed that periphyton and phytoplankton community structure did not differ among treatments on any day of the experiment, including during the atrazine pulses. Control periphyton biomass in riffles was higher immediately following the peak of the first atrazine pulse and remained slightly higher than some of the atrazine treatments on most days through the peak of the last pulse. However, periphyton biomass was not different among treatments at the end of the present study. Phytoplankton biomass was not affected by atrazine. Metaphyton biomass in pools was higher in the controls near the midpoint of the present study and remained higher on most days for the remainder of the study. Ceratophyllum demersum, a submersed macrophyte, biomass was higher in controls than in 20-μg/L and 30-μg/L treatments before pulse 3 but was not different subsequent to pulse 3 through the end of the present study. Maximum daily dissolved oxygen (DO, percentage of saturation) declined during each pulse in approximate proportion to magnitude of dose but rapidly converged among treatments after the third pulse. However, DO increased in controls relative to all atrazine treatments during the last 17 d of the experiment, likely a result of metaphyton cover in the pools. Finally, atrazine significantly limited uptake of PO4(3-) and uptake and/or denitrification of NO3(-) but only during pulses; percentage of dose removed from the water column was >85% for P and >95% for N after pulse 3 through the end of the present study. Collectively, only DO and metaphyton biomass differed at the end of the present study and only slightly. Some other endpoints were affected but only during pulses, if at all. The high levels of primary production and accumulation of algal biomass in all streams suggest that effects of pulses of atrazine at the concentrations used in the present study appear transient and likely do not represent ecologically significant adverse outcomes to periphyton, phytoplankton, and aquatic macrophytes, particularly in agricultural streams subjected to high nutrient loads., (© 2015 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.)
- Published
- 2016
- Full Text
- View/download PDF
37. A comparative study of the modeled effects of atrazine on aquatic plant communities in midwestern streams.
- Author
-
Nair SK, Bartell SM, and Brain RA
- Subjects
- Atrazine chemistry, Biomass, Herbicides chemistry, Plants metabolism, Rivers chemistry, Atrazine metabolism, Herbicides metabolism, Models, Biological, Plants chemistry
- Abstract
Potential effects of atrazine on the nontarget aquatic plants characteristic of lower-order streams in the Midwestern United States were previously assessed using the Comprehensive Aquatic System Model (CASMATZ ). Another similar bioenergetics-based, mechanistic model, AQUATOX, was examined in the present study, with 3 objectives: 1) to develop an AQUATOX model simulation similar to the CASMATZ model reference simulation in describing temporal patterns of biomass production by modeled plant populations, 2) to examine the implications of the different approaches used by the models in deriving plant community-based levels of concern (LOCs) for atrazine, and 3) to determine the feasibility of implementing alternative ecological models to assess ecological impacts of atrazine on lower-order Midwestern streams. The results of the present comparative modeling study demonstrated that a similar reference simulation to that from the CASMATZ model could be developed using the AQUATOX model. It was also determined that development of LOCs and identification of streams with exposures in excess of the LOCs were feasible with the AQUATOX model. Compared with the CASMATZ model results, however, the AQUATOX model consistently produced higher estimates of LOCs and generated non-monotonic variations of atrazine effects with increasing exposures. The results of the present study suggest an opportunity for harmonizing the treatments of toxicity and toxicity parameter estimation in the CASMATZ and the AQUATOX models. Both models appear useful in characterizing the potential impacts of atrazine on nontarget aquatic plant populations in lower-order Midwestern streams. The present model comparison also suggests that, with appropriate parameterization, these process-based models can be used to assess the potential effects of other xenobiotics on stream ecosystems., (© 2015 SETAC.)
- Published
- 2015
- Full Text
- View/download PDF
38. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis).
- Author
-
Baxter L, Brain RA, Hosmer AJ, Nema M, Müller KM, Solomon KR, and Hanson ML
- Subjects
- Animals, Chlorophyta physiology, Ovum growth & development, Toxicity Tests, Ambystoma embryology, Atrazine toxicity, Chlorophyta drug effects, Herbicides toxicity, Ovum drug effects, Symbiosis drug effects
- Abstract
Embryonic growth of the yellow-spotted salamander (Ambystoma maculatum) is enhanced by the presence of the green alga Oophila amblystomatis, in the egg capsule. To further assess potential impacts of herbicides on this relationship, A. maculatum egg masses were exposed to atrazine (0-338 μg/L) until hatching (up to 66 days). Exposure to atrazine reduced PSII yield of the symbiotic algae in a concentration-dependent manner, but did not significantly affect visible algal growth or any metrics associated with salamander development. Algal cells were also cultured in the laboratory for toxicity testing. In the 96-h growth inhibition test (0-680 μg/L), ECx values were generally greater than those reported for standard algal test species. Complete recovery of growth rates occurred within 96-h of transferring cells to untreated media. Overall, development of A. maculatum embryos was not affected by exposure to atrazine at concentrations and durations exceeding those found in the environment., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
39. Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure.
- Author
-
Prosser RS, Brain RA, Malia Andrus J, Hosmer AJ, Solomon KR, and Hanson ML
- Subjects
- Biota, Midwestern United States, Photosystem II Protein Complex metabolism, Rivers chemistry, Seasons, Spatial Analysis, Atrazine toxicity, Herbicides toxicity, Microalgae drug effects, Water Pollutants, Chemical toxicity
- Abstract
Lotic systems in agriculturally intensive watersheds can experience short-term pulsed exposures of pesticides as a result of runoff associated with rainfall events following field applications. Of special interest are herbicides that could potentially impair communities of primary producers, such as those associated with periphyton. Therefore, this study examined agroecosystem-derived lotic periphyton to assess (1) variation in community sensitivity to, and ability to recover from, acute (48h) exposure to the photosystem II (PSII)-inhibiting herbicide atrazine across sites and time, and (2) attempt to determine the variables (e.g., community structure, hydrology, water quality measures) that were predictive for observed differences in sensitivity and recovery. Periphyton were sampled from six streams in the Midwestern U.S. on four different dates in 2012 (April to August). Field-derived periphyton were exposed in the laboratory to concentrations of atrazine ranging from 10 to 320μg/L for 48h, followed by untreated media for evaluation of recovery for 48h. Effective quantum yield of PSII was measured after 24h and 48h exposure and 24h and 48h after replacement of media. Inhibition of PSII EC50 values ranged from 53 to >320µg/L. The majority of periphyton samples (16 out of 22) exposed to atrazine up to 320µg/L recovered completely by 48h after replacement of media. Percent inhibition of effective quantum yield of PSII in periphyton (6 of 22 samples) exposed to 320µg/L atrazine that were significantly lower than controls after 48h ranged from 2% to 24%. No distinct spatial or temporal trends in sensitivity and recovery potential were observed over the course of the study. Conditional inference forest analysis and variation partitioning were used to investigate potential associations between periphyton sensitivity to and ability to recover from exposure to atrazine. Although certain environmental variables (i.e., proximity of high flow/velocity events and dissolved solutes) were significantly associated with sensitivity to atrazine, recovery was not significantly associated with any variables, which is predicted by the rapid reversible binding at PSII. Consistent and rapid recovery of effective quantum yield of PSII across sites and sampling dates indicates that acute exposure to atrazine is unlikely to adversely affect function of these communities in their current state in intensive agroecosystems., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
40. Spatial and temporal variation of algal assemblages in six Midwest agricultural streams having varying levels of atrazine and other physicochemical attributes.
- Author
-
Andrus JM, Winter D, Scanlan M, Sullivan S, Bollman W, Waggoner JB, Hosmer AJ, and Brain RA
- Subjects
- Agriculture, Atrazine analysis, Herbicides analysis, Microalgae classification, Midwestern United States, Phytoplankton classification, Phytoplankton growth & development, Rivers chemistry, Spatio-Temporal Analysis, Water Pollutants, Chemical toxicity, Atrazine toxicity, Environmental Monitoring methods, Herbicides toxicity, Microalgae growth & development
- Abstract
Potential effects of pesticides on stream algae occur alongside complex environmental influences; in situ studies examining these effects together are few, and have not typically controlled for collinearity of variables. We monitored the dynamics of periphyton, phytoplankton, and environmental factors including atrazine, and other water chemistry variables at 6 agricultural streams in the Midwest US from spring to summer of 2011 and 2012, and used variation partitioning of community models to determine the community inertia that is explained uniquely and/or jointly by atrazine and other environmental factors or groups of factors. Periphyton and phytoplankton assemblages were significantly structured by year, day of year, and site, and exhibited dynamic synchrony both between site-years and between periphyton and phytoplankton in the same site-year. The majority of inertia in the models (55.4% for periphyton, 68.4% for phytoplankton) was unexplained. The explained inertia in the models was predominantly shared (confounded) between variables and variable groups (13.3, 30.9%); the magnitude of inertia that was explained uniquely by variable groups (15.1, 18.3%) was of the order hydroclimate>chemistry>geography>atrazine for periphyton, and chemistry>hydroclimate>geography>atrazine for phytoplankton. The variables most influential to the assemblage structure included flow and velocity variables, and time since pulses above certain thresholds of nitrate+nitrite, total phosphorus, total suspended solids, and atrazine. Time since a ≥30 μg/L atrazine pulse uniquely explained more inertia than time since pulses ≥ 10 μg/L or daily or historic atrazine concentrations; this result is consistent with studies concluding that the effects of atrazine on algae typically only occur at ≥30 μg/L and are recovered from., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
41. Risk assessment considerations with regard to the potential impacts of pesticides on endangered species.
- Author
-
Brain RA, Teed RS, Bang J, Thorbek P, Perine J, Peranginangin N, Kim M, Valenti T, Chen W, Breton RL, Rodney SI, and Moore DR
- Subjects
- Animals, Environmental Monitoring, Models, Theoretical, Risk Assessment, Endangered Species, Environmental Pollutants toxicity, Pesticides toxicity
- Abstract
Simple, deterministic screening-level assessments that are highly conservative by design facilitate a rapid initial screening to determine whether a pesticide active ingredient has the potential to adversely affect threatened or endangered species. If a worst-case estimate of pesticide exposure is below a very conservative effects metric (e.g., the no observed effects concentration of the most sensitive tested surrogate species) then the potential risks are considered de minimis and unlikely to jeopardize the existence of a threatened or endangered species. Thus by design, such compounded layers of conservatism are intended to minimize potential Type II errors (failure to reject a false null hypothesis of de minimus risk), but correspondingly increase Type I errors (falsely reject a null hypothesis of de minimus risk). Because of the conservatism inherent in screening-level risk assessments, higher-tier scientific information and analyses that provide additional environmental realism can be applied in cases where a potential risk has been identified. This information includes community-level effects data, environmental fate and exposure data, monitoring data, geospatial location and proximity data, species biology data, and probabilistic exposure and population models. Given that the definition of "risk" includes likelihood and magnitude of effect, higher-tier risk assessments should use probabilistic techniques that more accurately and realistically characterize risk. Moreover, where possible and appropriate, risk assessments should focus on effects at the population and community levels of organization rather than the more traditional focus on the organism level. This document provides a review of some types of higher-tier data and assessment refinements available to more accurately and realistically evaluate potential risks of pesticide use to threatened and endangered species., (© 2014 SETAC.)
- Published
- 2015
- Full Text
- View/download PDF
42. Assessment of periphyton, aquatic macrophytes, benthic communities, and physical habitat in midwestern United States streams coinciding with varying historical concentrations of atrazine.
- Author
-
Hall LW Jr, Anderson RD, Killen WD, Hosmer AJ, and Brain RA
- Subjects
- Animals, Diatoms, Environmental Monitoring, Invertebrates, Midwestern United States, Pilot Projects, Plants, Rivers chemistry, Atrazine analysis, Ecosystem, Herbicides analysis
- Abstract
The objectives of this pilot study were to: (1) characterize periphyton and benthic communities using standard collection methods in six Midwest watersheds with varying historical levels of atrazine (low range, medium range and upper range); (2) qualitatively assess presence of aquatic vascular plants at each site; (3) assess and compare physical habitat at each study site in order to evaluate how physical habitat structure may influence the biological communities and (4) analyze the periphyton and benthic macroinvertebrate community data (i.e., series of metrics) among sites to evaluate possible differences or similarities among sites with different historical atrazine exposures. Five of the eight physical habitat metrics (including total physical habitat score) were different among the six study sites. There appeared to be no substantial difference in the structure of periphtyon communities at the six Midwest sites based on 9 of 12 metrics. For the three metrics that showed differences among sites-percentage of sensitive diatoms, percent Achnanches minutissima and percent motile diatoms - there was no consistent pattern with previous degrees of atrazine exposure and the scoring of these metrics. There were also no statistical differences in aquatic macrophyte spatial coverage among the six study areas. Thus, based on the spatially and temporally limited periphyton and aquatic macrophyte data, varying historical atrazine exposure was not associated with impact on resident plant communities (the target receptor group for atrazine). All 10 benthic community metrics showed significant differences among the six Midwest sites. Although no consistent pattern existed with varying historic levels of atrazine, benthic communities at one site with lower historical levels of atrazine were of higher quality than the other five sites. However, this one site also had a higher quality habitat compared to the other sites which was most likely the reason for this benthic condition.
- Published
- 2014
- Full Text
- View/download PDF
43. Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions.
- Author
-
Prosser RS, Brain RA, Hosmer AJ, Solomon KR, and Hanson ML
- Subjects
- Midwestern United States, Rivers, Atrazine toxicity, Herbicides toxicity, Photosystem II Protein Complex antagonists & inhibitors, Phytoplankton drug effects, Water Pollutants, Chemical toxicity
- Abstract
Periphyton communities are an integral component of freshwater ecosystems and the desire to include data from toxicity testing with these organisms for ecological risk assessment is growing. This study developed sampling, storage, and exposure methods for the consistent and effective characterization of acute response and recovery of field-derived periphyton to photosystem II (PSII) inhibiting herbicides, particularly atrazine. Pulse amplitude modulated fluorometry was used to assess PSII quantum yield. For the method development phase, periphyton samples were collected from lotic and lentic systems in the Guelph, Ontario, Canada area during the summer of 2011. Following method development, native periphyton communities from three agricultural streams from the midwestern U.S. were sampled and exposed to atrazine (10-320 μg/L) and assessed for inhibition of PSII quantum yield (from 2 up to 24 h) and subsequent recovery upon cessation of exposure (up to 48 h post-exposure). Sensitivity to atrazine (EC10 and EC50 values) varied slightly (typically less than twofold difference) by site, date of sampling, and exposure interval. Only the highest initial test concentrations (160 or 320 μg/L) demonstrated greater than ~5% inhibition at 48 h post-exposure; however all other test concentrations recovered to within 5% of control levels, typically within 24 h. The rapid physiological recovery of periphyton communities upon atrazine removal supports the conclusion that acute exposure will not likely result in significant or sustained impacts on either structure or function of periphyton in lotic ecosystems. For ecological risk assessment, this suggests the current approach of relying on direct effects data for the most sensitive single species alone may result in overly conservative estimates of potential effects, especially for complex communities of primary producers.
- Published
- 2013
- Full Text
- View/download PDF
44. Modeling the potential effects of atrazine on aquatic communities in midwestern streams.
- Author
-
Bartell SM, Brain RA, Hendley P, and Nair SK
- Subjects
- Animals, Bacteria, Fishes, Food Chain, Invertebrates, Plants, Risk Assessment, Rivers, Zooplankton, Atrazine toxicity, Biomass, Biota, Models, Theoretical, Pesticides toxicity, Water Pollutants, Chemical toxicity
- Abstract
The comprehensive aquatic systems model for atrazine (CASM(ATZ)) estimates the potential toxic effects of atrazine on populations of aquatic plants and consumers in a generic lower-order midwestern stream. The CASM(ATZ) simulates the daily production of 20 periphyton and 6 aquatic vascular plant species. The modeled consumer community consists of 17 functionally defined species of zooplankton, benthic invertebrates, bacteria, and fish. Daily values of population biomass (grams of carbon per square meter) are calculated as nonlinear functions of population bioenergetics, physical-chemical environmental parameters, grazing/predator-prey interactions, and population-specific direct and indirect responses to atrazine. The CASM(ATZ) uses Monte Carlo methods to characterize the implications of phenotypic variability, environmental variability, and uncertainty associated with atrazine toxicity data in estimating the potential impacts of time-varying atrazine exposures on population biomass and community structure. Comparisons of modeled biomass values for plants and consumers with published data indicate that the generic reference simulation realistically describes ecological production in lower-order midwestern streams. Probabilistic assessments were conducted using the CASM(ATZ) to evaluate potential modeled changes in plant community structure resulting from measured atrazine exposure profiles in 3 midwestern US streams representing watersheds highly vulnerable to runoff. Deviation in the median values of maximum 30-d average Steinhaus similarity index ranged from 0.09% to 2.52% from the reference simulation. The CASM(ATZ) could therefore be used for the purposes of risk assessment by comparison of site monitoring-based model output to a biologically relevant Steinhaus similarity index level of concern. Used as a generic screening technology or in site-specific applications, the CASM(AT) provides an effective, coherent, and transparent modeling framework for assessing ecological risks posed by pesticides in lower-order streams., (© 2013 SETAC.)
- Published
- 2013
- Full Text
- View/download PDF
45. Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment.
- Author
-
Andrus JM, Winter D, Scanlan M, Sullivan S, Bollman W, Waggoner JB, Hosmer AJ, and Brain RA
- Subjects
- Biomass, Chlorophyll analysis, Chlorophyll A, Electric Conductivity, Hydrogen-Ion Concentration, Illinois, Iowa, Missouri, Nitrates analysis, Oxygen analysis, Population Dynamics, Rivers chemistry, Temperature, Diatoms growth & development, Ecosystem, Phytoplankton growth & development, Rivers microbiology, Seasons
- Abstract
Numerous studies characterizing the potential effects of atrazine on algal assemblages have been conducted using micro- or mesocosms; however, few evaluations focused on in situ lotic algal communities, potentially confounding risk assessment conclusions. This exploratory study, conducted at several sites in the midwestern United States where atrazine is commonly used, presents in situ observations of native algal communities relative to atrazine exposure and other parameters. Planktonic and periphytic algae from three streams in three Midwestern states, having historically differing atrazine levels, were sampled over a 16-week period in 2011 encompassing atrazine applications and the summer algal growth period at each site. Changes in abundance, diversity, and composition of algal communities were placed in the context of hydrological, climatic, and water quality parameters (including components sometimes present in agricultural runoff) also collected during the study. Diatoms dominated communities at each of the three sites and periphyton was much more abundant than phytoplankton. As expected, significant variations in algal community and environmental parameters were observed between sites. However, correspondence analysis plots revealed that patterns of temporal variation in algal communities at each site and in periphyton or phytoplankton were dominated by seasonal environmental gradients. Significant concordance in these seasonal patterns was detected among sites and between phytoplankton and periphyton communities (via procrustes Protest analysis), suggesting synchronicity of algal communities across a regional scale. While atrazine concentrations generally exhibited seasonal trends at the study watersheds; no effects on algal abundance, diversity or assemblage structure were observed as a result of atrazine pulses. This lack of response may be due to exposure events of insufficient concentration or duration (consistent with previously reported results) or the composition of the algal assemblages present. This was in contrast to the effects of elevated flow events, which were associated with significant changes in periphyton abundance, diversity and assemblage., (Copyright © 2013 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
46. Effects of repeated pulsed herbicide exposures on the growth of aquatic macrophytes.
- Author
-
Boxall AB, Fogg LA, Ashauer R, Bowles T, Sinclair CJ, Colyer A, and Brain RA
- Subjects
- Agriculture, Araceae drug effects, Araceae growth & development, Arylsulfonates toxicity, Models, Chemical, Pentachlorophenol toxicity, Phenylurea Compounds toxicity, Herbicides toxicity, Water Pollutants, Chemical toxicity
- Abstract
Many contaminants are released into aquatic systems intermittently in a series of pulses. Pulse timing and magnitude can vary according to usage, compound-specific physicochemical properties, and use area characteristics. Standard laboratory ecotoxicity tests typically employ continuous exposure concentrations over defined durations and thus may not accurately and realistically reflect the effects of certain compounds on aquatic organisms, resulting in potential over- or underestimation. Consequently, the relative effects of pulsed (2 and 4 d) and continuous exposures of the duckweed Lemna minor to isoproturon, metsulfuron-methyl, and pentachlorophenol over a period of 42 d were explored in the present study. At the highest test concentrations, exposure of L. minor to pulses of metsulfuron-methyl resulted in effects on growth similar to those of an equivalent continuous exposure. For isoproturon, pulsed exposures had a lower impact than a corresponding continuous exposure, whereas the effect of pentachlorophenol delivered in pulses was greater. These differences may be explained by compound-specific uptake and degradation or dissipation rates in plants and the recovery potential that occurs following pulses for different pesticides. Given these results, use of a simple time-weighted average approach to estimate effects of intermittent exposures from short-term standard toxicity studies may not provide an accurate prediction that reflects realistic exposure scenarios. Development of mechanistic modeling approaches may facilitate better estimates of effects from intermittent exposures., (Copyright © 2012 SETAC.)
- Published
- 2013
- Full Text
- View/download PDF
47. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.
- Author
-
Brain RA, Arnie JR, Porch JR, and Hosmer AJ
- Subjects
- Chlorophyta metabolism, Diatoms metabolism, Dolichospermum flos-aquae metabolism, Fluorometry, Photosystem II Protein Complex metabolism, Toxicity Tests, Acute, Water Pollutants, Chemical pharmacology, Atrazine pharmacology, Chlorophyta drug effects, Diatoms drug effects, Dolichospermum flos-aquae drug effects, Herbicides pharmacology, Photosynthesis drug effects
- Abstract
We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ≤ 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations., (Copyright © 2012 SETAC.)
- Published
- 2012
- Full Text
- View/download PDF
48. Recovery of duckweed from time-varying exposure to atrazine.
- Author
-
Brain RA, Hosmer AJ, Desjardins D, Kendall TZ, Krueger HO, and Wall SB
- Subjects
- Araceae growth & development, Time Factors, Water Pollutants, Chemical pharmacology, Araceae drug effects, Atrazine pharmacology, Herbicides pharmacology
- Abstract
The purpose of the present study was to evaluate the recovery of duckweed (Lemna gibba L. G3) after being removed from multiple duration exposures to the herbicide atrazine. Consequently, L. gibba were exposed under various scenarios to atrazine at nominal concentrations ranging from 5 to 160 µg/L and durations of 1, 3, 5, 7, 9, and 14 d under static-renewal test conditions. Exposures were followed by a recovery phase in untreated media for either 7 or 14 d. The 3-, 5-, 7-, 9-, and 14-d median effective concentration (EC50) values were >137, >137, 124, >77, and >75 µg/L, respectively, based on mean growth rate. No clear effect trends were apparent between exposure duration and the magnitude of effective concentrations (EC50s or EC10s). No phytocidal effects of chlorosis or necrosis were identified for any treatment scenario. Nearly all L. gibba plants transferred from treatment groups of different exposure scenarios to media without atrazine during the recovery phase had growth rates that demonstrated immediate recovery, indicating effects were phytostatic in nature and reversible. Only the 1- and 5-d exposure scenarios had growth rates indicating marginally prolonged recovery at the higher concentrations (160 µg/L; additionally, at 40 µg/L for the 5-d exposure). Time to recovery, therefore, was found to be largely independent of exposure duration except at the highest concentrations assessed. Based on growth rate by interval, all treatments demonstrated recovery by the final assessment interval (days 5-7), indicating complete recovery in all exposure scenarios by 7 d, consistent with the mode of action of atrazine., (Copyright © 2012 SETAC.)
- Published
- 2012
- Full Text
- View/download PDF
49. Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis.
- Author
-
Brain RA, Hoberg J, Hosmer AJ, and Wall SB
- Subjects
- Biomass, Fresh Water chemistry, Hydrocharitaceae physiology, Photochemical Processes, Photosynthesis drug effects, Water Pollutants, Chemical toxicity, Atrazine toxicity, Herbicides toxicity, Hydrocharitaceae drug effects, Light
- Abstract
Light intensity can have a profound influence on the degree of phytotoxicity experienced by plants exposed to photosystem II (PSII) inhibiting herbicides. This relationship was evaluated in the submerged aquatic macrophyte Elodea canadensis exposed to three different concentrations of atrazine (510, 1000 and 2000 μg a.i./L) plus an untreated control at three different light intensities (0, 500 and 6000 lx) under static-renewal conditions for 14 days. Under 500 lx light intensity, control plants demonstrated a rapid increase in shoot length but minimal increase in dry shoot weight, suggesting limited photosynthesis. Based on shoot-length and biomass, growth was not affected by any atrazine exposure relative to controls under dark conditions (0 lx). Under low-light conditions at 500 lx, exposures to 510, 1000 and 2000 μg a.i./L atrazine significantly decreased net shoot lengths by 34%, 38% and 35%, respectively, relative to corresponding (500 lx) controls. However, atrazine exposure under this light condition did not significantly decrease biomass (dry shoot weight). Compared to 6000 lx, only approximately 8% of photosynthetically active radiation (PAR) was measured under 500 lx intensity, indicating that minimal PAR was available for photosynthesis. Under optimal light conditions (6000 lx), net shoot lengths significantly decreased in the treated atrazine groups by 48%, 51% and 68%, and net dry shoot weights (biomass) were significantly decreased by 79%, 81% and 91%, respectively, relative to corresponding (6000 lx) controls. These data show that under low light conditions, atrazine-induced effects on dry shoot weight (biomass) are dependent on available PAR and active photosynthesis., (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
50. Exploring Lemna gibba thresholds to nutrient and chemical stressors: differential effects of triclosan on internal stoichiometry and nitrate uptake across a nitrogen:phosphorus gradient.
- Author
-
Fulton BA, Brain RA, Usenko S, Back JA, and Brooks BW
- Subjects
- Nitrates metabolism, Nitrogen metabolism, Phosphorus metabolism, Plants metabolism, Triclosan toxicity
- Abstract
Nutrient enrichment often co-occurs with chemical stressors in aquatic ecosystems, but the impacts of these multiple stressors across nutrient gradients is poorly understood and not typically addressed in ecotoxicity studies of lower trophic level models. Moreover, laboratory assays performed to determine threshold responses of aquatic macrophytes to contaminants typically use growth and morphometric endpoints to establish threshold effects and seldom report other important functional responses of lower trophic levels. Using the aquatic macrophyte Lemna gibba, we examined influences of varying nitrogen (N) and phosphorus (P) levels in combination with triclosan, a widely used antimicrobial agent in consumer care products, on internal carbon (C):N:P and NO(3) (-) uptake kinetics. Triclosan modulated L. gibba tissue N and P content, and these stoichiometric responses for P-limited plants to triclosan exposure were more sensitive than growth endpoints employed in standardized phytotoxicity assays. Nitrate uptake capacities were also differentially inhibited by triclosan exposure according to external nutrient levels. Uptake rates for plants cultured and exposed under saturating N-levels were inhibited by more than threefold compared with N-limited plants. The results suggest that stoichiometric and nutrient uptake responses to chemical stressors provide useful information regarding adverse ecological thresholds not defined in standardized phytotoxicity assays with aquatic macrophytes. Our findings further indicate that site-specific impacts of chemicals associated with the wide ambient ranges of N and P typical of surface waters may be anticipated in lower trophic levels. Future studies should examine adverse effects of other stressors to these ecologically relevant endpoints, which may be useful in environmental assessment and management., (Environ. Toxicol. Chem. 2010;29:2363-2370. © 2010 SETAC.)
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.