64 results on '"Braić, Snježana"'
Search Results
2. Groups \(S_n \times S_m\) in construction of flag-transitive block designs
- Author
-
Braić, Snježana, Mandić, Joško, Šubašić, Aljoša, Vojković, Tanja, and Vučičić, Tanja
- Subjects
combinatorial designs ,incidence structures ,automorphism groups ,General Mathematics - Abstract
In this paper, we observe the possibility that the group \(S_{n}\times S_{m}\) acts as a flag-transitive automorphism group of a block design with point set \(\{1,\ldots ,n\}\times \{1,\ldots ,m\},4\leq n\leq m\leq 70\). We prove the equivalence of that problem to the existence of an appropriately defined smaller flag-transitive incidence structure. By developing and applying several algorithms for the construction of the latter structure, we manage to solve the existence problem for the desired designs with \(nm\) points in the given range. In the vast majority of the cases with confirmed existence, we obtain all possible structures up to isomorphism.
- Published
- 2021
3. Generalized Approach to Differentiability
- Author
-
Koceić-Bilan, Nikola, primary and Braić, Snježana, additional
- Published
- 2022
- Full Text
- View/download PDF
4. CONSTRUCTING FLAG-TRANSITIVE INCIDENCE STRUCTURES.
- Author
-
BRAIĆ, SNJEŽANA, MANDIĆ, JOŠKO, ŠUBAŠIĆ, ALJOŠA, and VOJKOVIĆ, TANJA
- Subjects
AUTOMORPHISM groups ,AUTOMORPHISMS ,GROUP theory ,ISOMORPHISM (Mathematics) ,CATEGORIES (Mathematics) - Abstract
Copyright of Rad HAZU: Matematicke Znanosti is the property of Croatian Academy of Sciences & Arts (HAZU) and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2023
- Full Text
- View/download PDF
5. Groups (S_{n}times S_{m}) in construction of flag-transitive block designs
- Author
-
Braić, Snježana, Mandić, Joško, Šubašić, Aljoša, Vojković, Tanja, and Vučičić, Tanja
- Subjects
Combinatorial designs, incidence structures, automorphism groups - Abstract
In this paper, we observe the possibility that the group (S_{n}times S_{m}) acts as a flag-transitive automorphism group of a block design with point set ({1,ldots ,n}times {1,ldots ,m},4leq nleq mleq 70). We prove the equivalence of that problem to the existence of an appropriately defined smaller flag-transitive incidence structure. By developing and applying several algorithms for the construction of the latter structure, we manage to solve the existence problem for the desired designs with (nm) points in the given range. In the vast majority of the cases with confirmed existence, we obtain all possible structures up to isomorphism.
- Published
- 2021
6. Groups Sn × Sm in construction of flag-transitive block designs
- Author
-
Braić, Snježana, Mandić, Joško, Šubašić, Aljoša, and Vojković, Tanja
- Subjects
Incidence structures ,Flag-transitivity ,Automorphism groups ,Arc-transitive graphs - Abstract
The aim of this research is to develop efficient techniques to construct flag-transitive incidence structures. In this paper we describe those techniques, present the construction results and take a closer look at how some types of flag- transitive incidence structures relate to arc- transitive graphs.
- Published
- 2021
7. Flag-transitive block designs with automorphism group S-n wr S-2
- Author
-
Braić, Snježana, Mandić, Joško, and Vučičić, Tanja
- Subjects
Weakly flag-transitive incidence structure ,Levi graph ,Block design - Abstract
In this paper we consider the possibility that groups Sn wr S2, 4
- Published
- 2018
8. Flag-transitive block designs with automorphism groupSnwrS2
- Author
-
Braić, Snježana, primary, Mandić, Joško, additional, and Vučičić, Tanja, additional
- Published
- 2018
- Full Text
- View/download PDF
9. Kreativnost u nastavi matematike
- Author
-
Braić, Snježana, Vlašić, Josipa, and Zorić, Željka
- Subjects
kreativnost, nastava matematike, matematičke igre, projektni zadatci - Abstract
Tehnološkim napretkom strojevi i računala su uvelike zamijenili čovjeka u obavljanju rutinskih poslova. Stoga zaposlenici više nisu potrebni u onoliko velikom broju, sada je veća potreba za poduzetnicima i kreativcima koji će kreirati promjene. Samim tim se i uloga obrazovanja mijenja. Sada je glavni cilj stvaranje kreativnih pojedinaca, a to je jedino moguće ako škola potiče kreativnost. U ovom članku govorimo o kreativnosti u nastavi matematike kojoj se često spočitava da je dosadna i suhoparna, a ona, kao što će se pokazati i ovim radom, je sve samo ne to. Na početku je dan teorijski aspekt kreativnosti, na što se misli kada se kaže da je netko kreativan, kako postići kreativnost u nastavi, što čini kreativnog nastavnika, kako prepoznati kreativnog učenika te kako sve te savjete primijeniti u nastavi matematike. Nakon toga se govori o igrama u nastavi matematike, o pozitivnom utjecaju igre na razvoj djece, te o prednostima i načinima kako primijeniti igru u nastavi. I na kraju slijede praktični primjeri igara u nastavi matematike koje se na jednostavan način mogu ukomponirati u nastavu i osvježiti ju
- Published
- 2016
10. LINEARNA PERSPEKTIVA I OPTIČKE ILUZIJE
- Author
-
Braić, Snježana, Trombetta Burić, Luisa, and Sablić, Katarina
- Subjects
perspektiva ,linearna perspektiva ,točka nedogleda ,horizont ,optička iluzija - Abstract
U članku se perspektivna slika objekta u prostoru projiciranoga na ravninu povezuje s konstrukcijom slike u linearnoj perspektivi s aspekta likovne umjetnosti. Definira se perspektivna slika točke i pravca, te objašnjava uvođenje beskonačno daleke točke i beskonačno dalekog pravca kao osnovnih elemenata projektivne geometrije. Opisuju se vrste optičkih iluzija koje su tijesno povezane s perspektivom i na primjerima ilustrira varljivost naših osjetila, te ovisnost percepcije o prethodno stečenom iskustvu u promatranju svijeta koji nas okružuje.
- Published
- 2015
11. On the number of primitive designs on projective line and their antiflag-transitivity
- Author
-
Vučičić, Tanja, Mandić, Joško, and Braić, Snježana
- Subjects
block design ,primitive automorphism group ,antiag-transitivity - Abstract
We have considered, up to isomorphism and complementation, the construction of primitive block designs on projective line, i.e. designs with an automorphism group acting primitively on both point and block set. For q ≥13, q ≠23 the proved properties can roughly be put as follows. 1. There exist exactly one infinite series of primitive, flag-transitive designs with the base block stabilizer in the second Aschbacher's class, that being for q ≡1(mod 4) ; 2. There exist exactly one in.nite series of primitive, both flag and antiflag- transitive designs with the base block stabilizer in the third Aschbacher's class, that being for q ≡1(mod 4) ; 3. There exist exactly two in.nite series of primitive, both flag and antiflag-transitive designs with the base block stabilizer in the .fth Aschbacher's class. 4. There exist exactly 9 primitive, antiflag-transitive designs with the base block stabilizer in the sixth Aschbacher's class. 5. There exist exactly 8 primitive, antiflag-transitive designs with the base block stabilizer in the ninth Aschbacher's class.
- Published
- 2012
12. Prebrojavanje savršenih sparivanja
- Author
-
Kalebić, Frane, Mandić, Joško, Vukičević, Damir, and Braić, Snježana
- Subjects
savršena sparivanja ,prebrojavanje ,teorija grafova - Abstract
Članak se bavi problemom sparivanja u grafovima i primjenama u kemiji. http://e.math.hr/math_e_article/br17/kalebic_et_al
- Published
- 2010
13. PRIMITIVE SYMMETRIC DESIGNS HAVING UP TO 2500 POINTS
- Author
-
Braić, Snježana, Golemac, Anka, Mandić, Joško, Vučičić, Tanja, and Scientific committee of Combinatorics 2010
- Subjects
Symmetric design ,primitive automorphism group ,difference set - Abstract
We present the construction of primitive (v , k , lambda) symmetric designs with v < 2500. Up to a few unsolved cases, the total of 116 designs is obtained and their full automorphism groups are analyzed. The method of construction is based on a design automorphism group (primitive) action. In the case of affine type primitive groups and v = p^m, p prime and m > 1, 60 designs are obtained ; non-existence results include the theory of difference sets and multiplier theorems in particular ([1]). The rest of 56 obtained designs have primitive automorphism groups of almost simple or product type. The research involves programming and wide-range computations. We make use of software package GAP and the library of primitive groups which it contains. References [1] S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive Symmetric Designs with Prime Power Number of Points, Journal of Combinatorial Designs 18 (2010), 141-154.
- Published
- 2010
14. Symmetric designs with primitive automorphism groups of prime power degree
- Author
-
Braić, Snježana, Golemac, Anka, Mandić, Joško, and Vučičić, Tanja
- Subjects
Symmetric design ,primitive automorphism group ,difference set - Abstract
We either prove the non-existence or give explicit construction of primitive symmetric (v, k, λ) designs with v=p^{; ; m}; ; 1. The method of design construction is based on an automorphism group action ; non- existence results additionally include the theory of difference sets, multiplier theorems in particular. The research involves programming and wide-range computations. We make use of software package GAP and the library of primitive groups which it contains.
- Published
- 2009
15. Symmetric designs with primitive automorphism groups of degree less than 256
- Author
-
Braić, Snježana and Vučičić, Tanja
- Subjects
Symmetric design ,automorphism group ,primitive action ,difference set - Abstract
We have constructed and classified all primitive (v, k, λ )-symmetric designs with v
- Published
- 2008
16. Some new primitive symmetric designs
- Author
-
Braić, Snježana, Golemac, Anka, Mandić, Joško, and Vučičić, Tanja
- Subjects
Symmetric design ,automorphism group ,primitive action ,difference set - Abstract
All primitive symmetric designs with at most 255 points have been constructed and classified (S. Braić, PhD thesis, 2007). In this research we either prove the non-existence or give explicit construction of some symmetric designs with primitive automorphism groups of higher degree. The method of design construction is based on an automorphism group action, and on the theory of difference sets, multiplier theorems in particular. It involves programming and wide-range computations. We make use of software package GAP, the well-known system for computational group theory, and the library of primitive groups which it contains.
- Published
- 2008
17. Simetrični dizajni s primitivnim grupama automorfizama
- Author
-
Braić, Snježana
- Subjects
simetrični dizajn ,grupa automorfizama ,primitivno djelovanje - Abstract
U ovoj disertaciji su, do na izomorfizam, konstruirani i klasificirani svi (v, k, λ )- simetrični dizajni za v≤ 255 s grupama automorfizama koje djeluju primitivno na skupove točaka tih dizajna. U prva dva poglavlja navedene su osnovne definicije i najznačajniji rezultati vezani za permutacijske grupe, posebice za primitivne grupe koje čine jednu klasu tranzitivnih permutacijskih grupa, te osnove teorije simetričnih dizajna. U trećem poglavlju razmatrane su sve trojke (v, k, λ )∈ N³ ; , v≤ 255, koje udovoljavaju nužne uvjete za parametre simetričnog dizajna i sve primitivne grupe stupnja v≤ 255. Analiziran je tako 2061 par ((v, k, λ ), br), gdje (v, k, λ ) predstavlja dopustivu trojku parametara simetričnog dizajna kojem je G(v, br) primitivna grupa automorfizama. Zbog tako velikog broja slučajeva napravljen je čitav niz algoritama za klasifikaciju i eliminaciju što više tih parova. Korišten je Kantorov rezultat koji daje potpunu klasifikaciju simetričnih dizajna s grupama automorfizama koje djeluju 2-tranzitivno na skupove točaka tih dizajna. Kako su sve 2-tranzitivne grupe ujedno i primitivne, Kantorovim teoremom opisani su simetrični dizajni s grupama automorfizama koje djeluju primitivno i 2-tranzitivno na skupove točaka tih dizajna. Parovi ((v, k, λ ), br) kojima je pripadna primitivna grupa G(v, br) tranzitivnosti veće od 1 izdvojeni su i analizirani u skladu s Kantorovim rezultatima ; ima ih 549. Na preostalih 1512 parova ((v, k, λ ), br) kojima je primitivna grupa G(v, br) točno 1-tranzitivna primijenjeni su različiti eliminacijski kriteriji i na njima zasnovani algoritmi: 1.Aschbacherov uvjet na automorfizme prostog reda ; 2.ograničenja na broj fiksnih točaka netrivijalnih automorfizama ; 3.uvjet na broj orbita grupe automorfizama na skupovima točaka, odnosno blokova pripadnog simetričnog dizajna i uvjet na duljine tih orbita ; 4.postojanje (v, k, λ )-diferencijskog skupa u nekoj grupi ekvivalentno je postojanju (v, k, λ )-simetričnog dizajna na kojem ta grupa djeluje regularno, pa ako primitivna grupa G(v, br) ima regularnu podgrupu, a s druge strane znamo da ne postoji (v, k, λ )-diferencijski skup u grupi tipa te regularne podgrupe, onda ne postoji (v, k, λ )-simetrični dizajn s primitivnom grupom automorfizama G(v, br). Na ovaj način eliminirano je 1097 slučajeva. Preostali slučajevi, njih 415, riješeni su u četvrtom poglavlju neposrednom konstrukcijom dizajna s odgovarajućim grupama automorfizama. Pri samoj konstrukciji bilo je nužno pristup prilagoditi pojedinačnim slučajevima. Jedan pristup je zasnovan na pronalaženju prikladne cikličke podgrupe stabilizatora točke u promatranoj primitivnoj grupi. No, to nije korisno ako je stabilizator malog reda ili čak trivijalan (primitivna grupe je tada regularna i prostog stupnja). U tim slučajevima se algoritam za konstrukciju temelji na rezultatima teorije diferencijskih skupova, preciznije, na teoriji multiplikatora. Konstruirani primitivni simetrični dizajni klasificirani su do na izomorfizam i određene su njihove pune grupe automorfizama. Rezutati su dani u obliku tablica iz kojih se za svaku dopustivu trojku parametara (v, k, λ ) može iščitati koliko ima primitivnih grupa stupnja v i, ako (v, k, λ )-simetrični dizajn postoji, koje od tih grupa su grupe automorfizama tog dizajna te koja je njegova puna grupa automorfizama. Pokazuje se da postoji točno 71 primitivni (v, k, λ )-simetrični dizajn za 2k
- Published
- 2007
18. Searching for a triplane of order 16
- Author
-
Braić, Snježana and Golemac, Anka
- Subjects
Symetric design ,triplane ,automorphism group - Abstract
Groups of order pq, p5 and groups of order q² , q>3 (p and q primes), are examined as possible automorphism groups of a symetric design with parameters (115, 19, 3). All such groups were eliminated except the nonabelian group of order 57.
- Published
- 2005
19. Problemi pakiranja u kombinatornoj geometriji
- Author
-
Braić, Snježana
- Subjects
gustoća pakiranja ,ćelijska dekompozicija ,pakiranje krugova i planarni grafovi - Abstract
Razmatra se gustoća pakiranja kongruentnih kopija konveksnog diska u ravnini, i konveksnog tijela u višedimenzionalnom prostoru, s posebnim naglaskom na pakiranje kongruentnih krugova. Izložen je i "kissing number problem", te čuveni Koebelov teorem o reprezentaciji.
- Published
- 2005
20. Primitive symmetric designs with up to 2500 points
- Author
-
Braić, Snježana, primary, Golemac, Anka, additional, Mandić, Joško, additional, and Vučičić, Tanja, additional
- Published
- 2011
- Full Text
- View/download PDF
21. Graphs and symmetric designs corresponding to difference sets in groups of order 96
- Author
-
Braić, Snježana, primary, Golemac, Anka, additional, Mandić, Joško, additional, and Vučičić, Tanja, additional
- Published
- 2010
- Full Text
- View/download PDF
22. Primitive symmetric designs with prime power number of points
- Author
-
Braić, Snježana, primary, Golemac, Anka, additional, Mandić, Joško, additional, and Vučičić, Tanja, additional
- Published
- 2009
- Full Text
- View/download PDF
23. Primitive symmetric designs with prime power number of points.
- Author
-
Braić, Snježana, Golemac, Anka, Mandić, Joško, and Vučičić, Tanja
- Published
- 2010
- Full Text
- View/download PDF
24. Analiza igre pogađanja nasumično generiranog prirodnog broja danog intervala
- Author
-
Barbarić, Ante, Braić, Snježana, Perišić, Ana, and Radić, Pavao
- Subjects
statistics ,probability ,random functions ,program - Abstract
Vjerojatnost i statistika imaju veliku primjenu u analizi i istraživanju računarskih problema. Problem kojim se u ovom radu bavimo je pogađanje prirodnog broja unutar danog intervala pomoću dviju ugrađenih random funkcija u C++: rand() i std::mt19937. Glavni cilj je bio usporediti princip rada i rezultat djelovanja ovih dviju funkcija. Funkcija rand() generira pseudoslučajne brojeve koristeći linearni generator. Medutim, ta funkcija može imati određene nedostatke prilikom generiranja tih brojeva jer se pokazalo da nisu uvijek generirani u pseudoslučajnom poretku. S druge strane, funkcija std::mt19937 koristi Mersenne Twister generator nasumičnih brojeva koji se pokazao boljim generatorom u odnosu na linearni jer pruža bolji pseudoslučajni poredak i daje mogućnost da, osim intervala, izaberemo i period u kojem se generiraju brojevi. Statistički je obrađeno praćenje uspješnosti pogađanja, broj pokušaja, prosječni broj pokušaja, varijanca i standardna devijacija. Iz samih rezultata, koji su prikazani i histogramima, zaključujemo da je funkcija std::mt19937 puno pogodnija, zahvalnija za korištenje i daje bolji rezultat., Probability and statistics have significant applications in the analysis and research of computational problems. Problem we work on in this thesis is guessing a natural number within a given interval using two built-in random functions in C++: rand() and std::mt19937. The main goal was to compare the performance and outcomes of these two functions. The rand() function generates pseudorandom numbers using a linear generator. However, this function may have certain drawbacks in generating these numbers as it has been found that they are not always generated in a pseudorandom order. On the other hand, the std::mt19937 function utilizes the Mersenne Twister random number generator, which is an improved generator compared to the linear one, providing a better pseudorandom order and allowing us to choose the period in which the numbers are generated. The statistical part is used to track the success of guesses, the number of attempts, the average number of attempts, variance, and standard deviation. In conclusion, based on the results presented in the histograms, we can conclude that the std::mt19937 function is much more suitable, user-friendly, and provides better results.
- Published
- 2023
25. Additional topics for mathematics education in elementary school
- Author
-
Simić, Marina, Braić, Snježana, Pleština, Jelena, and Zorić, Željka
- Subjects
Gauss's Trick ,Dirichlet's principle ,metoda uzastopnih približavanja ,Diophantine equations ,method of successive approximations ,PRIRODNE ZNANOSTI. Interdisciplinarne prirodne znanosti. Metodike nastavnih predmeta prirodnih znanosti ,NATURAL SCIENCES. Interdisciplinary Natural Sciences. Teaching Methods in the Natural Sciences ,Gaussova dosjetka ,competitions ,Dirichletov princip ,PRIRODNE ZNANOSTI. Matematika ,diofantske jednadžbe ,combinatorics ,counting ,prebrojavanja ,natjecanja ,kombinatorika ,NATURAL SCIENCES. Mathematics - Abstract
Cilj ovog rada je obraditi i proučiti dodatne teme iz matematike koje se pojavljuju na matematičkim natjecanjima, ali se ne obrađuju na redovnoj nastavi. Rad je zamišljen kao radni priručnik za dodatnu nastavu. Svaka tema se prvo opisuje, potom se rješava nekoliko zadataka s primjenom teme te se potom obrađuju zadaci s natjecanja. Na početku ćemo reći ponešto o samoj pripremi i edukaciji učitelja za dodatnu nastavu. Predložit ćemo i mogućnosti poboljšanja pripreme učitelja. Potom ćemo se upoznati s metodom uzastopnih približavanja te Gaussovom dosjetkom. Naučit ćemo što je to Dirichletov princip, te kako ga primjenjujemo. Pojasnit ćemo i što su diofantske jednadžbe te gdje ih koristimo, a na kraju ćemo se upoznati s logičkim i kombinatornim zadacima te zadacima s prebrojavanjima., The goal of this master thesis is to interpret and study additional topics in mathematics that appear in mathematics competitions but are not covered in regular classes. A thesis is intended to serve as a teacher’s handbook for advanced mathematics classes. Each topic is described, and the description is followed by several solved tasks with the application of the topic and eventually the tasks from the competitions are presented and solved. At the beginning, we will say something about the preparation and education of teachers for teaching in advanced classes. We will also give suggestions on how to improve teacher training. Then we will learn about the method of successive approximations and Gauss's Trick. We will learn what the Dirichlet principle is, and how we apply it. We will also explain what Diophantine equations are and where we use them, and at the end we will get acquainted with logical and combinatorial tasks and tasks with counting.
- Published
- 2022
26. Catalan numbers
- Author
-
Tomašević, Magdalena, Braić, Snježana, Zorić, Željka, and Marić, Stipe
- Subjects
generating function ,combinations ,combinatorics ,counts ,sequence - Abstract
Catalanovi brojevi javljaju se pri prebrojavanju iznenađujuće mnogo kombinatornih i drugih matematičkih objekata. U ovom radu detaljnije su opisani problem triangulacije konveksnog n-terokuta, problem zagrada, problem binarnih stabala, problem putova u cjelobrojnoj mreži, problem Dyckovih planinskih putova te Bertrandov problem glasovanja. Naposlijetku je pokazano da rješenja tih problema odgovaraju n-tom Catalanovom broju. Radi lakšeg manipuliranja nizom brojeva, izvedena je i odgovarajuća funkcija izvodnica te je tako dobivena formula za računanje općeg člana niza. Konačno, navedene su još neke zanimljive interpretacije Catalanovih brojeva., Catalan’s numbers appear in various combinatorical and other mathematical objects. In this paper convex polygon triangulation as well as balanced parentheses, problem of binary trees, problem of lattice paths, problem of Dyck paths and Bertrand’s ballot problem are being analysed. Ultimately, it was shown that the solution to each problem corresponds to the \(n^{th}\) Catalan number. In order to manipulate these numbers in an easier way, there is a generating function which is used for calculating the general number of the sequence. Finally, there are shown some other interesting interpretations of Catalan’s numbers.
- Published
- 2022
27. Van Hiele model
- Author
-
Lozančić, Anamarija, Koceić-Bilan, Nikola, Braić, Snježana, and Zorić, Željka
- Subjects
geometrijsko razmišljanje ,geometrijsko razmšljanje, pet razina, istražvanje ,research ,PRIRODNE ZNANOSTI. Matematika ,five levels ,understanding of geometry ,PRIRODNE ZNANOSTI. Interdisciplinarne prirodne znanosti. Metodike nastavnih predmeta prirodnih znanosti ,istraživanje ,NATURAL SCIENCES. Interdisciplinary Natural Sciences. Teaching Methods in the Natural Sciences ,NATURAL SCIENCES. Mathematics ,pet razina - Abstract
Teorija Van Hiele pokušava dati odgovor na pitanje razine razumijevanja geometrije kao grane matematike, a sastoji se od pet razina koje opisuju razmišljanje ispitanika i sukladno tom ih smješta na jednu od tih pet razina. U radu su predstavljena moguća proširenja Van Hiele teorije na ostala područja matematike. Provedena su brojna istraživanja nad učenicima, a za potrebe ovog rada osmišljeno je kratko istraživanje nad studentima matematike prve godine preddiplomskog studija i druge godine diplomskog studija, smjer nastavnički, Prirodoslovno-matematičkog fakulteta u Splitu., The Van Hiele theory tries to answer the question about the level of understanding of geometry as a branch of mathematics, and consists of five levels that describe the thinking of respondents and accordingly puts them on one of those five levels. In this paper possible expansions of Van Hiele theory on other mathematical branches are presented. Numerous studies have been been conducted on students all around the world and for the purposed of this paper, a short research was designed on mathematics students in the first year of undergraduate studies and the second year of graduate students, majoring in teaching at the Faculty of Science, University of Split.
- Published
- 2022
28. Teaching Probability in High School Education
- Author
-
Jurišić, Marijana, Braić, Snježana, Zorić, Željka, and Stojan, Antonia
- Subjects
Bayes’ theorem ,geometric and complete probability ,processes ,The comprehensive school reform ,teaching misconceptions ,probability space ,domains - Abstract
Cilj ovog rada je prikazati zastupljenost te obradu vjerojatnosti u srednjoškolskom obrazovanju RH propisanu kurikulumom matematike. Rad je podijeljen u četiri poglavlja. U prvom poglavlju se navode matematički procesi i domene, kao i povećanje zastupljenosti vjerojatnosti u nastavi nakon ideje Cjelovite kurikularne reforme. U drugom se poglavlju prikazuju vjerojatnost kroz povijest i problemi na koje se nailazi poučavanjem iste. U trećem su poglavlju opisani osnovni pojmovi vjerojatnosti (potpune i geometrijske), vjerojatnosnog prostora i Bayesova formula. Četvrto poglavlje sadrži zanimljive primjene sadržaja iz trećeg poglavlja koje su prisutne u srednjoškolskom obrazovanju., The goal of this master thesis is to show representation and analysis of probability in high school in Republic of Croatia. The thesis is divided into four chapters. There are mathematical processes and domains in the first chapter, as further increasing the share of probability after the idea called The comprehensive school reform. The second chapter presents probability through history and the problems encountered by teaching it. The third chapter describes the basic concepts of probability (complete and geometric), probability space and Bayes’ theorem. The fourth chapter contains interesting applications of the content from the third chapter that are presented in high school education.
- Published
- 2021
29. Hamiltonian graphs
- Author
-
Šegvić, Bruno, Vojković, Tanja, Golemac, Anka, and Braić, Snježana
- Subjects
graphs ,toughness of graph ,PRIRODNE ZNANOSTI. Matematika ,zatvorenje grafa ,Hamiltonovi grafovi ,Hamiltonian graphs ,grafovi ,NATURAL SCIENCES. Mathematics ,žilavost grafa ,closure of graph - Abstract
U ovom diplomskom radu smo proučavali pojam Hamiltonovog ciklusa. Definirali smo osnovne pojmove korištene u teoriji grafova te pojmove zatvorenja i žilavosti grafa. Obradili smo nužne i dovoljne uvjete koji nam olakšavaju pronalazak Hamiltonovog ciklusa u grafu. Sve definirane pojmove smo potkrijepili primjerima kako bi si vizualizirali sami pojam., In this master’s thesis we have been studying Hamiltonian cycles in graphs. We defined basic terms used in graph theory and terms of closure and toughness of graph. We processed sufficient and neccessary conditions for Hamiltonicity. We have supported all the defined concepts with examples in order to better visualize the concept itself.
- Published
- 2021
30. Polynomial ring
- Author
-
Runjić, Mateo, Braić, Snježana, Zorić, Željka, and Jelić, Ivan
- Subjects
integer and rational roots of an algebraic equation ,solvability of algebraic equations ,greatest common divisor ,complex roots of an algebraic equation ,reducibility and irreducibility of polynomials ,divisibility ,zero points / polynomial roots - Abstract
Cilj je ovog rada proučiti pojam polinoma, opisati njegovu algebarsku strukturu te pokazati operacije i svojstva na strukturi prstena polinoma. Rad je trodijelne strukture. U prvom dijelu prisjetit ćemo se osnovnih pojmova bez čijih se poznavanja ne može razumjeti rad, a koji će se u radu koristiti kao poznate činjenice. U drugom dijelu rada bazirat ćemo se na polinome jedne varijable i promatrati njihovu djeljivost, algoritme za dijeljenje polinoma i određivanje najvećeg zajedničkog djelitelja, pronalaženje i određivanje prirode korijena algebarskih jednadžbi pridruženih polinomima. Pokazat ćemo kriterije za reducibilnost i ireducibilnost polinoma te algoritme za rješavanje algebarskih jednadžbi trećeg i četvrtog stupnja u radikalima i primijeniti ih na primjeru. U zadnjem dijelu rada kratko ćemo se osvrnuti na zastupnjenost polinoma u školskom obrazovanju., The aim of this paper is to study the concept of a polynomial, to describe its algebraic structure and to show the operations and properties on the structure of a polynomial ring. The work is a three-part structure. The first part will recall the basic concepts without whose knowledge the work cannot be understood and which will be used in the work as known facts. The second part of the paper will be based on the polynomials of one variable and observe their divisibility, algorithms for dividing polynomials and determining the greatest common divisor as well as finding and determining the nature of the roots of algebraic equations associated with polynomials. The criteria for reducibility and irreducibility of polynomials and algorithms for solving algebraic equations of the third and fourth degree in radicals will be shown and applied by example. The last part of the paper will briefly look at the representation of polynomials in school education.
- Published
- 2021
31. Probability and Statistics in Primary Education
- Author
-
Pelajić, Jelena, Braić, Snježana, Zorić, Željka, and Gotovac Đogaš, Vesna
- Subjects
graphs ,activities ,NOK, CKR, osnovni pojmovi, konceptualni pristup, grafikoni, istraživanja, eksperimenti, aktivnosti ,research ,NOK ,CKR ,experiments ,basic concepts ,conceptual approach - Abstract
U Hrvatskom osnovnoškolskom obrazovanju vjerojatnost i statistika imaju neopravdani nedostatak prostora. Naime, one su upravo te grane matematike s čijim se rezultatima učenici susreću svakodnevno putem medija i s kojima će se susretati u kojem god smjeru usmjerili svoje daljnje obrazovanje. Rad opisuje i prati odličnu ideju NOK-a, podržanu i razrađenu u CKR-u, gdje se vjerojatnost i statistika uvodi od prvog razreda osnovne škole. U radu je korišten neformalni, konceptualni pristup, gdje se raznovrsnim primjerima i aktivnostima pokušava učenicima približiti osnovne statističke metode prikupljanja, obrade i analize podataka i apstraktni pojam vjerojatnosti slučajnog događaja. Spomenute aktivnosti potiču učenje iz znatiželje i učenje na temelju iskustva. Provođenjem stvarnih statističkih istraživanja na nastavi, učenicima se olakšava učenje statističkih pojmova, rasvjetljuje potreba izradbe grafičkih prikaza i njihove analize. Također, iako je vjerojatnost „a posteriori“ ostavljena za viši obrazovni stupanj, ovdje se koristimo eksperimentima pri utvrđivanju vjerojatnosti, te u svrhu usporedbe s teorijskom vjerojatnošću., Within the Croatian primary school education, more space should be given to probability and statistics as they are unjustly neglected. In fact, it is the branch of mathematics with whose results students encounter every day through the media and which they will continue to encounter in whatever direction they focus their further education. This thesis describes and follows the great NOK's idea, supported and elaborated in CKR, where probability and statistics are introduced from the first grade. The informal conceptual approach in the thesis uses various examples and activities to bring basic statistical methods, such as collecting, processing, and analysis of data, as well as the abstract concept of the probability of random events, closer to students. These activities encourage students to learn out of curiosity and based on experience. The implementation of real statistical research in class facilitates the apprehension of statistical concepts and clarifies the purposes of graphs and their analysis. Also, although the probability "a posteriori" is left for higher education, here we use experiments to determine probabilities, with the purpose of comparing it with the theoretical probability.
- Published
- 2021
32. The additional mathematical topics for secondary education
- Author
-
Tafra, Doris, Braić, Snježana, Koceić-Bilan, Nikola, and Zorić, Željka
- Subjects
combinatorics ,congruence ,conics ,geometric probability ,divisibility ,geometric constructions ,irrational equations and inequalities with a real parameter - Abstract
Cilj ovog rada je proučiti dodatne teme iz matematike za srednjoškolsko obrazovanje koje se isprepliću sa sadržajima propisanim kurikulumom. Rad je podijeljen u šest poglavlja. U prvom poglavlju ćemo proučiti svojstva djeljivosti i kongruencije te njihovu primjenu na složenije zadatke. U drugom poglavlju upoznat ćemo se s iracionalnim jednadžbama i nejednadžbama s realnim parametrom koje su se u praksi pokazale kao najzahtjevnije od svih jednadžbi i nejednadžbi elementarne algebre. U trećem poglavlju navest ćemo aksiome konstruktivne geometrije i elementarne konstrukcije te njihovu primjenu pri rješavanju složenijih konstruktivnih zadaća. U četvrtom poglavlju proučit ćemo sintetičko-konstruktivni pristup čunosječnicama za razliku od standardnog analičkog pristupa. U petom poglavlju ćemo opisati metode i opća načela prebrojavanja koja se koriste prilikom rješavanja izabranih kombinatornih problema. U šestom poglavlju izdvojit ćemo interesantne i akutalne vjerojatnosne probleme s geometrijskom interpretacijom definirane na \(\mathbb{ℝ}\) i \(\mathbb{ℝ}_2\)., The goal of this master thesis is to study the additional mathematical topics for secondary education that interweave the curriculum prescribed content. A thesis is divided into six chapters. In the first chapter we will investigate divisibility and congruence properties, as well as their applications on to more complex tasks. In the second chapter we will get acquainted with irrational equations and inequalities with a real parameter, that, in practice, proved to be the most demanding of equations and inequalities within elementary algebra. In the third chapter we will state axioms of constructive geometry and elementary constructions that will be applied when solving more complex constructive problems. In the fourth chapter we will study synthetic-constructive approach to the second-order curves as opposed to standard analytical approach. In the fifth chapter we will describe the methods and general principles of counting used to solve chosen combinatorial problems. In the sixth chapter will be singled out interesting and current probabilistic problems with geometric interpretation defined on \(\mathbb{ℝ}\) and \(\mathbb{ℝ}_2\).
- Published
- 2021
33. Geometric Topics in Mathematics Teaching
- Author
-
Mravulj, Željka, Braić, Snježana, Zorić, Željka, and Pleština, Jelena
- Subjects
high school ,geometry ,students ,history ,Mathematics ,teaching ,domains - Abstract
U ovom radu je opisano kako se geometrija razvijala kroz povijest, koji su njeni predstavnici, odgojno – obrazovni ciklusi u procesu obrazovanja te gimnazijsko obrazovanje i geometrija u gimnazijskoj nastavi matematike. Navedene su domene kurikuluma nastavnog predmeta Matematika te posebno izdvojene one koje obuhvaćaju geometriju. Opisan je sadržaj geometrije kroz nastavu matematike u gimnaziji te razrada ishoda, razine ostvarenosti koje učenici postižu i promjene u sadržajima tijekom reformi u odgojno – obrazovnom sustavu., This master's thesis describes how geometry develops through history, her representatives, educational cycles in the process of education and high school education and geometry in high school mathematics teaching. The domains of the curriculum of the subject Mathematics are listed, and those that include geometry are singled out. The content of geometry is described through the teaching of mathematics in high school and the elaboration of outcomes, the level of achievement that students achieve and changes in content during the reforms in the educational system.
- Published
- 2021
34. Cyclic codes
- Author
-
Brkić, Kristina, Mandić, Joško, Braić, Snježana, and Pleština, Jelena
- Subjects
Linear codes ,BCH code ,Reed-Muller code ,Golay code ,Hamming code ,Block codes - Abstract
U ovom diplomskom radu predstavljeni su ciklički kodovi kao specijalna podklasa linearnih kodova. U prvom poglavlju navedeni su osnovni pojmovi potrebni za izgradnju teorije kodiranja. U drugom poglavlju opisani su blok kodovi i linearni kodovi od kojih smo istaknuli Reed-Mullerove i Hammingove kodove. U trećem poglavlju opisan je postupak kodiranja i dekodiranja cikličkih kodova te su predstavljeni BCH i Golayevi kodovi., This thesis introduces cyclic codes as a special linear code subclass. First chapter describes basic terms needed for building a coding theory. Second chapter describes block and linear codes, in which Reed-Muller and Hamming codes are emphasized. Third chapter describes coding and decoding procedures and introduces BCH and Golay codes.
- Published
- 2021
35. Point processes and their characteristics
- Author
-
Dujmović, Dijana, Braić, Snježana, Gotovac, Vesna, Gotovac Đogaš, Vesna, and Pleština, Jelena
- Subjects
PRIRODNE ZNANOSTI. Matematika ,binomni ,distribucija ,K-function ,distribution ,NATURAL SCIENCES. Mathematics ,intenzitet ,K-funkcija ,Poisson ,intensity ,moment ,binomial - Abstract
Razni događaji i pojave u svijetu se mogu prikazati pomoću točkovnih procesa, a motivacija za njihovu analizu se krije u želji za otkrivanjem veza izmedu tih točaka. Analiziranjem konkretnih točkovnih uzoraka se može doći do važnih zaključaka koji su presudni za razumijevanje pojedinih dijelova raznih znanosti. Na jednostavan način su definirani točkovni procesi, njihova distribucija i primjena. Nadalje, definirani su binomni i Poissonov točkovni proces kao dva osnovna primjera. Kroz simulacije su prikazane razlike između dva spomenuta primjera, te par njihovih različitih grafičkih prikaza. Karakteristike točkovnih procesa kao što su intenzitet i K-funkcija daju bolji uvid u podatke opisane točkovnihm procesom. U ovom radu su objašnjeni najosnovniji pojmovi i primjeri primjene točkovnih procesa, kao što je primjena kod testiranja Poissonove hipoteze., Various events and phenomena in the world can be represented by point processes, and the motivation for their analysis lies in the desire to discover the connections between these points. By analyzing specific point patterns, important conclusions can be reached that are crucial for understanding individual parts of various sciences. Point processes, their distribution and application are defined in a simple way. Furthermore, the binomial and Poisson point processes are defined as two basic examples. Through the simulations, the differences between the two mentioned examples are shown, and a couple of their different graphical representations as well. The characteristics of point processes such as intensity and K-function give a better insight into the data described by the point process. This thesis explains the most basic concepts and examples of the application of point processes, such as the application in testing the Poisson hypothesis.
- Published
- 2020
36. Game theory and impartial games
- Author
-
Carić, Barbara, Vukičević, Damir, Braić, Snježana, and Vojković, Tanja
- Subjects
combinatorial game ,nimber ,reverzibilne opcije ,minimum excluded valu ,sum ,outcome class ,dominante opcije ,minimalna isključena vrijednost ,game equality ,reversible option ,kombinatorne igre ,dominated option ,negativna igra ,position ,PRIRODNE ZNANOSTI. Matematika ,pozicije i opcije u igri ,ekvivalentne igre ,negative game ,ishod igre ,nimberi ,NATURAL SCIENCES. Mathematics ,suma igara ,option - Abstract
Glavni cilj ovog rada je analiza nepristranih igara. U tu svrhu objašnjene su neke strategije koje se javljaju u kombinatornim igrama. Kako bi pokazali posebna svojstva koje imaju nepristrane igre, definirane su pozicije i opcije u igri, te suma igara. Poseban naglasak stavljen je na igru nim pomoću koje je definirana vrijednost pod nazivom nimberi. To je klasa beskrajno malih vrijednosti koje se ne ponašaju kao nijedna vrijednost s kojima smo se do sada susreli, a poprimaju je nepristrane igre. Jedan od najbitnijih rezultata ovog rada je Sprague-grundy teorem po kojem je svaka nepristrana igra ekvivalenta nim-hrpi. Zbog toga igra nim ima veliku ulogu u analizi nepristranih igara., The main objective of this master’s thesis is the analysis of impartial games. For this purpose, some strategies that occur in combinatorial games are explained. In order to show the special properties that impartial games have, positions and options in the game are defined, as well as the sum of games. Special emphasis is placed on the game nim by which is defined the value nimbers. It is a class of infinitesimals that do not behave like any values that we have yet encountered. They occur naturally as the values of the impartial game. One of the most important results of this master’s is Sprague-grundy theorem according to which any impartial game is equivalent to a nim-heap. Therefore, nim plays a mayor role in the analysis of impartial games.
- Published
- 2020
37. Automata networks
- Author
-
Botić, Mihaela, Vukičević, Damir, Braić, Snježana, and Pleština, Jelena
- Subjects
Cellular automata ,evolution of configurations ,transient length ,cycle length ,symmetric and antisymmetric neural networks ,Lyapunov functional ,synchronous and sequential iteration - Abstract
U ovom diplomskom radu smo uveli osnovne pojmove vezane za mrežne automate te dokazali teoreme koji pokazuju snagu neuronskih mreža i staničnih automata. Posebno bitan je taj da postoji univerzalan stanični automat, te da za svaki stanični automat postoji neuronska mreža koja ga simulira. Pomoću Lyapunovljevih funkcionala smo dokazali teoreme u kojima su dane granice za duljinu prijelaza i duljinu ciklusa. Za simetrične neuronske mreže smo pokazali da poprimaju cikluse perioda 1 i najviše 2, za sekvencijalnu i sinkronu iteraciju redom, dok su za antisimetrične mreže duljine 2 i 4 za sekvencijalnu i sinkronu iteraciju redom. Na posljetku, dokazana su dva teorema koja osiguravaju da postoje neuronske mreže s eksponencijalnim duljinama prijelaza, i to konstruirajući takvu neuronsku mrežu., In this master’s thesis we have introduced basic terms related to automata networks and proved theorems that show the power of neural networks and cellular automata. Especially important are the ones which show that there exists universal cellular automata and that for every cellular automata exists neural network which simulates it. Using Lyapunov functionals we have proved theorems where we give bounds for transient length and cycle length. For symmetrical neural networks we have proved that their cycle lengths are 1 for sequential, and 1 or 2 for synchronous iteration, while in case of antisymmetrical neural networks cycle lengths are 2 and 4, for sequential and synchronous iteration respectively. At the end, we have proved two theorems which insure that there exist neural networks with exponential transient length, constructing network with that property.
- Published
- 2020
38. Measure theory
- Author
-
Krišto, Arbi, Braić, Snježana, Erceg, Goran, and Jelić, Ivan
- Subjects
measurable set ,measurable functions ,measure ,σ-algebra ,integrable functions - Abstract
Cilj ovoga rada je obraditi temeljne pojmove koji se vežu uz teoriju mjere. U tu svrhu smo definirali opu mjeru i osnovna svojstva mjere. Time smo bili u mogunosti da definiramo vanjsku i Lebesgueovu mjeru koje su nam kasnije koristile za obraditi izmjerive funkcije i svojstva povezana s njima. Na kraju drugog poglavlja definirali smo jednostavne funkcije koje su jako važne za integrabilne funkcije. Da bismo definirali integrabilne funkcije prvo smo definirali integrale nenegativnih funkcija i integrale izmjerivih funkcija, pa nakon toga integrabilne funkcije. Tada smo također iskazali i dokazali neke važne teoreme kao što su ”Levijev teorem o monotonoj konvergenciji” ili ”Lebesgueov teorem o dominiranoj konvergenciji”. Ovaj diplomski rad završili smo povezivanjem Riemannovog i Lebesgu eovog integrala jer je Lebesgueov integral definiran za puno širu klasu funkcija od klase omeđenih funkcija., The aim of this paper is to address the basic concepts that bind to measure theory. For this purpose, we have defined the general measure and the basic properties of the measure. In doing so, we were able to define the external and Lebesgue measures that were later used to explain measurable functions and properties associated with them. At the end of Chapter two, we have defined simple functions that are very important for integrable functions. To define integrable functions, we first define integrals of nonnegative functions and integrals of measurable func tions, and then integrable functions. After that we also proved and proved some important theorems such as ”Levi’s Monotone Convergence Theorem” or ”Lebesgue Domination Convergence Theorem”. We ended this thesis by connecting Riemann’s and Lebesgue’s integrals because the Lebesgue integral is defined for a much wider class of functions than the class of bounded functions.
- Published
- 2019
39. Wallpaper groups
- Author
-
Topić, Antea, Mandić, Joško, Braić, Snježana, and Pleština, Jelena
- Subjects
wallpaper groups ,Euclidean group ,isometrics ,lattices ,plane isometry - Abstract
Grupe mozaika su matematičke klasifikacije dvodimenzionalnog ponavljanja uzoraka koji je utemeljen na simetriji. Ovakvi, različiti uzorci upotrebljavaju se u raznim područjima, poput arhitekture ili pak dekorativne umjetnosti. Postoji sedamnaest međusobno različitih grupa mozaika. Ono što je potrebno naglasiti su rešetke samih mozaika koje mogu imati različite oblike pa se sukladno tome ističu: romboidna, pravokutna, centralno pravokutna, kvadratna te šesterokutna rešetka. Svaka od tih rešetki sadrži samo sebi svojstvene karakteristike koje određuju grupe mozaika. Okruženi smo raznim oblicima i uzorcima, a nismo niti svjesni da se zapravo radi o grupama mozaika. Grupe mozaika imaju odličan potencijal za animiranje učenika i dobar su način kako im dočarati koncepte geometrije, grupa i izomorfizama., Wallpaper groups are mathematical classifications of two-dimensional recurring samples which are based on simetry. Different samples like these are used in different fields like architecture or decorative art. There are 17 different groups of mosaics. It's important to emphasise that lattices of said mosaics can have different shapes and as such can be oblique, rectangular, centred rectangular, square and hexagonal. Each of these lattices has its own set of characteristics which define the mosaic group. We are surrounded with different shapes and patterns yet we are unaware that they are in fact wallpaper groups. Wallpaper groups have excellent potential for immersing students in the class and they are a great way to make them understand the concepts of geometry, groups and isomorphisms.
- Published
- 2019
40. Coding theory
- Author
-
Jurčević, Ana, Mandić, Joško, Braić, Snježana, and Jelić, Ivan
- Subjects
block code ,Shannon model of communication ,orthogonal code ,linear code ,Hamming code ,minimum distance of a code - Abstract
Teorija kodiranja je relativno nova znanost koja se bavi problemom prijenosa informacija putem kanala sa šumom. Informacije se kodiraju na način koji omogućuje otkrivanje i ispravljanje pogrešaka nastalih pri prijenosu. U prvom poglavlju opisat ćemo Shannonov opći komunikacijski sustav. Udrugom poglavlju definirat ćemo Hammingovu udaljenost, blok kod i minimalnu udaljenost koda. Dokazat ćemo tri propozicije koje će nam dati analizu ocjena najboljih mogućih rezultata pri traganju za dobrim kodovima. U trećem poglavlju bavit ćemo se linearnim kodovima. Saznat ćemo neka važna svojstva linearnih kodova. Opisati ga pomoću generirajuće matrice i matrice provjere parnosti. Definirat ćemo ekvivalenciju općih a zatim linearnih kodova, definirati ortogonalni kod, opisati njegova svojstva, te povezati kod C i njegov ortogonalni kod C┴. Na samom kraju pokazat ćemo da možemo konstruirati nove kodove iz već postojećih kodova, opisati metode kojima se to može postići, te povezati kodove i druge konačne strukture., Coding theory is a relatively new science that deals with the problem of transmission of information through the channel with noise and interference. Information is coded in a way that enables us to detect and correct mistakes made during transmission. In the first chapter, we will describe Shannon’s general communication system, while the second chapter is going to deal with the definitions of Hamming’s distance, block code and minimum code distance. We will demonstrate three propositions that will give us an analysis of the best possible results while in search for good codes. In the third chapter, we will deal with linear codes. We will learn some important linear code properties, describe it using the generator matrix and parity-check matrix. We will also define the equivalence of general and linear codes, define the orthogonal code, along with its properties, and then link the C code and its orthogonal code. At the very end we will show that we can construct new codes from the already existing ones, describe the methods that can be used to achieve aforementioned and link codes and other final structures.
- Published
- 2019
41. Linear programming
- Author
-
Višić, Petra, Braić, Snježana, Klaričić Bakula, Milica, and Jelić, Ivan
- Subjects
objective function ,Euclidean space ,graphical method ,duality ,replacement operation ,linear constraint ,simplex method ,optimization ,Gauss-Jordan elimination ,basic solution - Abstract
Ovaj rad obrađuje teoriju linearnog programiranja. Na početku je izložena potrebna teorija iz područja linearne algebre: vektorski prostori s posebnim naglaskom na Euklidski prostor Rn, sustavi linearnih jednadžbi i nejednadžbi te traženje njihovih (bazičnih) rješenja. Središnji je dio posvećen samoj definiciji problema linearnog programiranja (u općem, standardnom i kanonskom obliku), pojmu dualnosti i nizu uz to vezanih teorema o egzistenciji (optimalnog) rješenja. Slijede osnove teorije konveksnih skupova i intuitivna grafička metoda. Naposljetku, opisana je najpoznatija metoda rješavanja problema linearnog programiranja - simpleks metoda. Obje su metode ilustrirane odgovarajućim primjerima., This thesis studies the theory of linear programming. The first part gives insight into necessary linear algebra theory: vector spaces (especially Euclidean space Rn), systems of linear equations and inequalities and their solving method. The central part focuses on definition of linear program (in standard, canonical and general form), concept of duality and (optimal) so lution existence theorems. The thesis then presents the basics of convex set theory necessary for following intuitive graphical method. Finally, the best known method for solving linear problems, the simplex method, is demonstra ted. The linear programming solving methods are illustrated with appropriate examples.
- Published
- 2018
42. Matematičke osnove neuronskih mreža
- Author
-
Kalinić, Matea, Ugrina, Ivo, Braić, Snježana, and Erceg, Goran
- Subjects
matematika ,neuronske mreže ,Backpropagation algorithm ,jednostavna neuronska mreža ,TEHNIČKE ZNANOSTI. Računarstvo ,Elman’s network ,algoritam s povratnim proslijeđivanjem pogreške ,simple neural network ,Elmanova mreža ,k-slojna neuronska mreža ,jednostavni g-perceptron ,PRIRODNE ZNANOSTI. Matematika ,TECHNICAL SCIENCES. Computing ,simple g-perceptron ,multi-layer neural network ,metoda gradijentnog spusta ,NATURAL SCIENCES. Mathematics ,gradient descent method - Abstract
Glavni cilj ovog rada objasniti je matematički model po kojem računalo oponaša proces čovjekovog učenja. U tu svrhu definirane su jednostavne i višeslojne neuronske mreže kao objekt podložan učenju te je oprimjerena njihova upotreba na logičkim funkcijama. Također, objašnjen je algoritam s povratnim proslijeđivanjem pogreške, čija je glavna ideja utemeljena na metodi gradijentnog spusta, koji mijenjanjem parametara neuronskih mreža omogućava učenje istih. Algoritam je proveden na jednoslojnoj neuronskoj mreži. Naposljetku, uvedena je Elmanova mreža kao najjednostavniji primjer povratnih neuronskih mreža i primjerom pokazano učenje te mreže., The main objective of this master’s thesis is to introduce a mathematical model which enables computers to imitate human’s learning process. For this purpose, simple and multi-layer neural networks are defined as objects that can be trained and a few examples for their usage are provided. Also, Backpropagation algoritam, whose main idea is based on gradient descent method and which enables neural network to learn by changing their parametar, is explained. The algorithm was implemented on a single-layer neural network. Lastly, Elman’s network was introduced as the simplest example of reccurent neural networks and its learning is demonstrated.
- Published
- 2018
43. Incidence geometry
- Author
-
Miliša, Ines, Mandić, Joško, Braić, Snježana, and Pleština, Jelena
- Subjects
affine plane ,geometry ,projective space ,projective plane ,pregeometry ,affine space - Abstract
Ovaj rad se temelji na incidencijskim strukturama. Incidencijska struktura je važan pojam koji se često koristi u različitim matematičkim disciplinama. Na početku smo se upoznali s pregeometrijom ili incidencijskom strukturom nad skupom I i iznijeli osnovne rezultate koje vrijede za pregeometriju. Potom smo denirali incidencijsku strukturu kao uređenu trojku koja se sastoji od dva neprazna disjunktna skupa i incidencijske relacije. Pregeometriji ranga 2 nad skupom ftocka;pravac g pridružujemo incidencijsku strukturu, te u daljnjem radu za pregeometriju ranga 2 nad skupom ftocka;pravacg koristimo pripadne incidencijske strukture. Na taj nacin pregeometriju smo identicirali s incidencijskom strukturom. Jednu klasu incidencijskih struktura čine projektivne i afine ravnine i prostori. Nama su posebno zanimljivi odnosi izmeu projektivnih i anih ravnina. Na kraju diplomskog rada poopćili smo pojmove vezane uz projektivne i afine ravnine na projektivne i afine prostore., This work is based on incidence structures. Incidence structure is an important term that is often used in various mathematical disciplines. At the beginning, we met with the pregeometry or incidence structure of the set I and presented the basic results that apply to the pregeometry. Then, we dened the incidence structure as a ordered triple which is consisted of two non-empty disjoint sets and incidence relation. The pregeometry of rank 2 over the set fpoint;lineg we associate with the incidence structure, and in the further work for the pregeometry of rank 2 over the set fpoint;lineg we use the corresponding incidence structures. In this way we have identied the pregeometry with the incidence structure. One class of incidence structures consists of projective and a¢ ne planes and spaces. We are particularly interested in the relationship between the projective and the affine planes. At the end of the work, we introduced concepts related to projective and affine planes on projective and affine spaces.
- Published
- 2018
44. Euclidean space geometry
- Author
-
Bartolović, Jelena, Braić, Snježana, Mandić, Joško, and Vojković, Tanja
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
45. Projective Geometry
- Author
-
Gudelj, Jelena, Braić, Snježana, Mandić, Joško, and Šubašić, Aljoša
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
46. Models and methods in multiple attribute decision making and applications in theory of portfolio
- Author
-
Mamić, Ana, Braić, Snježana, Marasović, Branka, and Martinić, Tea
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
47. Matrix differential calculus
- Author
-
Budimir, Iva, Braić, Snježana, Ugrina, Ivo, and Gotovac, Vesna
- Subjects
matrica, diferencijal, matrična funkcija - Abstract
Cilj ovog rada je uvesti pojam diferencijala matrične funkcije te izvesti diferencijale temeljnih matričnih funkcija poput determinante, matričnog inverza, adjunkte te svojstvenih vrijednosti i svojstvenih vektora.
- Published
- 2017
48. Teaching strategies
- Author
-
Juričić, Mia, Koceić Bilan, Nikola, Zorić, Željka, and Braić, Snježana
- Subjects
nastavne strategije, nastavne tehnike, primjeri različitih nastavnih ideja - Abstract
Mogli bismo reći da kvaliteta nastave najviše ovisi o samom nastavniku. Bez kreativnog nastavnika matematike nema kreativne nastave matematike. Međutim, da bi nastavnik bio kreativan, prvi preduvjet je njegova dobra osposobljenost. Jedan, ali zasigurno ne i jedini aspekt koji bi dobar nastavnik trebao znati jest različitim nastavnim strategijama zainteresirati učenike tako da usvoje sve predviđeno gradivo i tako steknu odgovarajuću razinu znanja i vještina iz matematike. U ovom radu ću se detaljnije baviti upravo tim aspektom – nastavnim strategijama. Navest ću sve dijelove koji objedinjuju nastavne strategije te svaki dio posebno obraditi.
- Published
- 2017
49. Markowitz Model of Portfolio Optimization
- Author
-
Kalinić, Tea, Braić, Snježana, Marasović, Branka, and Gotovac, Vesna
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
50. Symmetric graphs and their properties
- Author
-
Budimir, Sanja, Mandić, Joško, Braić, Snježana, and Šubašić, Aljoša
- Abstract
Rad ne sadrži sažetak.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.