1. Generalized Resubstitution for Regression Error Estimation
- Author
-
Marcondes, Diego and Braga-Neto, Ulisses
- Subjects
Computer Science - Machine Learning - Abstract
We propose generalized resubstitution error estimators for regression, a broad family of estimators, each corresponding to a choice of empirical probability measures and loss function. The usual sum of squares criterion is a special case corresponding to the standard empirical probability measure and the quadratic loss. Other choices of empirical probability measure lead to more general estimators with superior bias and variance properties. We prove that these error estimators are consistent under broad assumptions. In addition, procedures for choosing the empirical measure based on the method of moments and maximum pseudo-likelihood are proposed and investigated. Detailed experimental results using polynomial regression demonstrate empirically the superior finite-sample bias and variance properties of the proposed estimators. The R code for the experiments is provided.
- Published
- 2024