1. Limb accelerations during sleep are related to measures of strength, sensation, and spasticity among individuals with spinal cord injury
- Author
-
Stephanie K. Rigot, Michael L. Boninger, Dan Ding, Jennifer L. Collinger, Brad E. Dicianno, and Lynn A. Worobey
- Subjects
Functional outcomes ,Spinal cord injuries ,Motor activity ,Physiologic monitoring ,Muscle strength ,Sensation ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
Abstract Background To evaluate the relationship between measures of neuromuscular impairment and limb accelerations (LA) collected during sleep among individuals with chronic spinal cord injury (SCI) to provide evidence of construct and concurrent validity for LA as a clinically meaningful measure. Methods The strength (lower extremity motor score), sensation (summed lower limb light touch scores), and spasticity (categorized lower limb Modified Ashworth Scale) were measured from 40 adults with chronic (≥ 1 year) SCI. Demographics, pain, sleep quality, and other covariate or confounding factors were measured using self-report questionnaires. Each participant then wore ActiGraph GT9X Link accelerometers on their ankles and wrist continuously for 1–5 days to measure LA from movements during sleep. Regression models with built-in feature selection were used to determine the most relevant LA features and the association to each measure of impairment. Results LA features were related to measures of impairment with models explaining 69% and 73% of the variance (R²) in strength and sensation, respectively, and correctly classifying 81.6% (F1-score = 0.814) of the participants into spasticity categories. The most commonly selected LA features included measures of power and frequency (frequency domain), movement direction (correlation between axes), consistency between movements (relation to recent movements), and wavelet energy (signal characteristics). Rolling speed (change in angle of inclination) and movement smoothness (median crossings) were uniquely associated with strength. When LA features were included, an increase of 72% and 222% of the variance was explained for strength and sensation scores, respectively, and there was a 34% increase in spasticity classification accuracy compared to models containing only covariate features such as demographics, sleep quality, and pain. Conclusion LA features have shown evidence of having construct and concurrent validity, thus demonstrating that LA are a clinically-relevant measure related to lower limb strength, sensation, and spasticity after SCI. LA may be useful as a more detailed measure of impairment for applications such as clinical prediction models for ambulation.
- Published
- 2022
- Full Text
- View/download PDF