1. Regions of the basal ganglia and primary olfactory system are most sensitive to neurodegeneration after extended sevoflurane anesthesia in the perinatal rat.
- Author
-
Burks SM, Bowyer JF, Walters JL, and Talpos JC
- Subjects
- Animals, Gray Matter metabolism, Rats, Sprague-Dawley, Thalamus metabolism, Amygdala metabolism, Basal Ganglia metabolism, Hippocampus metabolism, Sevoflurane pharmacology
- Abstract
Extended general anesthesia early in life is neurotoxic in multiple species. However, little is known about the temporal progression of neurodegeneration after general anesthesia. It is also unknown if a reduction in natural cell death, or an increase in cell creation, occurs as a form of compensation after perinatal anesthesia exposure. The goal of this study was to evaluate markers of neurodegeneration and cellular division at 2, 24, or 72 h after sevoflurane (Sevo) exposure (6 h) in fully oxygenated postnatal day (PND) 7 rats. Neurodegeneration was observed in areas throughout the forebrain, while the largest changes (fold increase above vehicle) were observed in areas associated with either the primary olfactory learning pathways or the basal ganglia. These regions included the indusium griseum (IG, 25-fold), the posterior dorso medial hippocampal CA1 (17-fold), bed nucleus of the stria terminalis (Bed Nuclei STM, 5-fold), the shell of the nucleus accumbens (Acb, 5-fold), caudate/putamen (CPu, 5-fold), globus pallidus (GP, 9-fold) and associated thalamic (11-fold) and cortical regions (5-fold). Sevo neurodegeneration was minimal or undetectable in the ventral tegmentum, substantia nigra, and most of the hypothalamus and frontal cortex. In most brain regions where neurodegeneration was increased 2 h post Sevo exposure, the levels returned to <4-fold above control levels by 24 h. However, in the IG, CA1, GP, anterior thalamus, medial preoptic nucleus of the hypothalamus (MPO), anterior hypothalamic area (AHP), and the amygdaloid nuclei, neurodegeneration at 24 h was double or more than that at 2 h post exposure. Anesthesia exposure causes either a prolonged period of neurodegeneration in certain brain regions, or a distinct secondary degenerative event occurs after the initial insult. Moreover, regions most sensitive to Sevo neurodegeneration did not necessarily coincide with areas of new cell birth, and new cell birth was not consistently affected by Sevo. The profile of anesthesia related neurotoxicity changes with time, and multiple mechanisms of toxicity may exist in a time-dependent fashion., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF