Betea, Dan, Boutillier, Cédric, Bouttier, Jérémie, Chapuy, Guillaume, Corteel, Sylvie, Vuletić, Mirjana, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'informatique Algorithmique : Fondements et Applications (LIAFA), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics (-), University of Massachusetts [Boston] (UMass Boston), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Projet Émergences Combinatoire à Paris (Ville de Paris)., ANR-08-JCJC-0011,Icomb(2008), ANR-10-BLAN-0123,MAC2,Modèles aléatoires critiques bi-dimensionnels(2010), ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and École normale supérieure - Paris (ENS-PSL)
We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing conditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e. it reads a minimal number of random bits as an input). The algorithm encompasses previous growth procedures for special Schur processes related to the primal and dual RSK algorithm, as well as the famous domino shuffling algorithm for domino tilings of the Aztec diamond. It can be easily adapted to deal with symmetric Schur processes and general Schur processes involving infinitely many parameters. It is more concrete and easier to implement than Borodin's algorithm, and it is entropy optimal. At a technical level, it relies on unified bijective proofs of the different types of Cauchy and Littlewood identities for Schur functions, and on an adaptation of Fomin's growth diagram description of the RSK algorithm to that setting. Simulations performed with this algorithm suggest interesting limit shape phenomena for the corresponding tiling models, some of which are new., Comment: 26 pages, 19 figures (v3: final version, corrected a few misprints present in v2)