1. Acceleration or finite speed propagation in integro-differential equations with logarithmic Allee effect
- Author
-
Bouin, Emeric, Coville, Jérôme, and Zhang, Xi
- Subjects
Mathematics - Analysis of PDEs - Abstract
This paper is devoted to studying propagation phenomena in integro-differential equations with a weakly degenerate non-linearity. The reaction term can be seen as an intermediate between the classical logistic (or Fisher-KPP) non-linearity and the standard weak Allee effect one. We study the effect of the tails of the dispersal kernel on the rate of expansion. When the tail of the kernel is sub-exponential, the exact separation between existence and non-existence of travelling waves is exhibited. This, in turn, provides the exact separation between finite speed propagation and acceleration in the Cauchy problem. Moreover, the exact rates of acceleration for dispersal kernels with sub-exponential and algebraic tails are provided. Our approach is generic and covers a large variety of dispersal kernels including those leading to convolution and fractional Laplace operators. Numerical simulations are provided to illustrate our results., Comment: 61 pages
- Published
- 2024