3,851 results on '"Bouchard, C"'
Search Results
2. The search for new physics in $B \to K \ell^+\ell^-$ and $B \to K \nu\bar{\nu}$ using precise lattice QCD form factors
- Author
-
Parrott, W. G., Bouchard, C., and Davies, C. T. H.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We present HPQCD's improved scalar, vector and tensor form factors for $B \to K$ semileptonic decays, using the heavy-HISQ formalism for more accurate normalisation of the weak currents. Working with masses close to the physical $b$ on the finest ensemble and including three ensembles with physical light quarks, we cover the full physical $q^2$ range with good precision. Our uncertainties at $q^2=0$ are a factor of three better than earlier work. We compare Standard Model observables using our form factors to experimental measurements for the rare flavour changing neutral current processes $B \to K \ell^+\ell^-$ and $B \to K \nu\bar{\nu}$ and discuss the significance of the tensions that arise., Comment: 10 pages, 6 figures. Proceedings of the 39th International Symposium on Lattice Field Theory - LATTICE2022
- Published
- 2022
3. Standard Model predictions for $B\to K\ell^+\ell^-$, $B\to K\ell_1^- \ell_2^+$ and $B\to K\nu\bar{\nu}$ using form factors from $N_f=2+1+1$ lattice QCD
- Author
-
Parrott, W. G., Bouchard, C., and Davies, C. T. H.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice - Abstract
We use HPQCD's recent lattice QCD determination of $B \to K$ scalar, vector and tensor form factors to determine Standard Model differential branching fractions for $B \to K \ell^+\ell^-$, $B\to K \ell_1^+\ell_2^-$ and $B \to K\nu \overline{\nu}$. These form factors are calculated across the full $q^2$ range of the decay and have smaller uncertainties than previous work, particularly at low $q^2$. For $B \to K \ell^+ \ell^-$ we find the Standard Model branching fraction in the $q^2$ region below the squared $J/\psi$ mass to exceed the LHCb results, with tensions as high as $4.2\sigma$ for $B^+\to K^+\mu^+\mu^-$. For the high $q^2$ region we see $2.7\sigma$ tensions. The tensions are much reduced by applying shifts to Wilson coefficients $C_9$ and $C_{10}$ in the effective weak Hamiltonian, moving them away from their Standard Model values consistent with those indicated by other $B$ phenomenology. We also update results for lepton-flavour ratios $R^{\mu}_e$ and $R^{\tau}_{\mu}$ and the `flat term', $F_H^{\ell}$ in the differential branching fraction for $\ell\in\{e,\mu,\tau\}$. Our results for the form-factor-dependent contributions needed for searches for lepton-flavour-violating decays $B\to K\ell^-_1\ell^+_2$ achieve uncertainties of 7%. We also compute the branching fraction $\mathcal{B}(B\to K\nu\bar{\nu})$ with an uncertainty below 10%, for comparison with future experimental results., Comment: 28 pages, 38 figures. Version accepted by Physical Review D. Updated to reflect a change in the scale of alpha_EW
- Published
- 2022
- Full Text
- View/download PDF
4. $B\to K$ and $D\to K$ form factors from fully relativistic lattice QCD
- Author
-
Parrott, W. G., Bouchard, C., and Davies, C. T. H.
- Subjects
High Energy Physics - Lattice - Abstract
We present the result of lattice QCD calculation of the scalar, vector and tensor form factors for the $B\to K\ell^+\ell^-$ decay, across the full physical range of momentum transfer. We use the highly improved staggered quark (HISQ) formalism for all valence quarks on eight ensembles of gluon field configurations generated by the MILC collaboration. These include four flavours of HISQ quarks in the sea, with three ensembles having the light $u/d$ quarks at physical masses. In the first fully relativistic calculation of these form factors, we use the heavy-HISQ method. This allows us to determine the form factors as a function of heavy quark mass from the $c$ to the $b$, and so we also obtain new results for the $D\to K$ tensor form factor. The advantage of the relativistic formalism is that we can match the lattice weak currents to their continuum counterparts much more accurately than in previous calculations; our scalar and vector currents are renormalised fully nonperturbatively and we use a well-matched intermediate momentum-subtraction scheme for our tensor current. Our scalar and vector $B\to K$ form factors have uncertainties of less than 4% across the entire physical $q^2$ range and the uncertainty in our tensor form factor is less than 7%. Our heavy-HISQ method allows us to map out the dependence on heavy-quark mass of the form factors and we can also see the impact of changing spectator quark mass by comparing to earlier HPQCD results for the same quark weak transition but for heavier mesons., Comment: 30 pages, 22 figures. Version accepted by Physical Review D
- Published
- 2022
- Full Text
- View/download PDF
5. Nucleon Axial Form Factor from Domain Wall on HISQ
- Author
-
Meyer, AS, Berkowitz, E, Bouchard, C, Chang, CC, Clark, MA, Hörz, B, Howarth, D, Körber, C, Monge-Camacho, H, Nicholson, A, Rinaldi, E, Vranas, P, and Walker-Loud, A
- Abstract
The Deep Underground Neutrino Experiment (DUNE) is an upcoming neutrino oscillation experiment that is poised to answer key questions about the nature of neutrinos. Lattice QCD has the ability to make significant impact upon DUNE, beginning with computations of nucleon-neutrino interactions with weak currents. Nucleon amplitudes involving the axial form factor are part of the primary signal measurement process for DUNE, and precise calculations from LQCD can significantly reduce the uncertainty for inputs into Monte Carlo generators. Recent calculations of the nucleon axial charge have demonstrated that sub-percent precision is possible on this vital quantity. In these proceedings, we discuss preliminary results for the CalLat collaboration's calculation of the axial form factor of the nucleon. These computations are performed with Möbius domain wall valence quarks on HISQ sea quark ensembles generated by the MILC and CalLat collaborations. The results use a variety of ensembles including several at physical pion mass.
- Published
- 2022
6. $V_{cs}$ determination from $D \to{}K \ell \nu$
- Author
-
Parrott, W. G., Chakraborty, Bipasha, Bouchard, C., Davies, C. T. H., Koponen, J., and Lepage, G. P.
- Subjects
High Energy Physics - Lattice - Abstract
Semileptonic $D \to{}K \ell \nu$ decays provide one angle of attack to get at the CKM matrix element $V_{cs}$, complementary to the study of leptonic $D_s$ decays. Here, HPQCD present the results of a recently published, improved determination of $V_{cs}$. We discuss a new, precise determination of $D\to K$ scalar and vector form factors from a lattice calculation on eight different $N_f=2+1+1$ MILC gluon field ensembles using the HISQ action, including three with physical light quark masses. When combined with experimental results, we are able to extract $|V_{cs}|=0.9663(80)$ to a sub percent level of precision for the first time. This is achieved using three different methods, which each combine our form factors with different sets of experimental results in different ways, with the results in very good agreement. Our primary method is to use $q^2$-binned data for the differential decay rate, but we also calculate $V_{cs}$ from the total branching fraction and from the value $|V_{cs}|f_+(0)$, which is also quoted by some experiments., Comment: 9 pages, 7 figures. Proceedings of the 38th International Symposium on Lattice Field Theory - LATTICE2021
- Published
- 2021
7. Improved $V_{cs}$ determination using precise lattice QCD form factors for $D \rightarrow K \ell \nu$
- Author
-
Chakraborty, Bipasha, Parrott, W. G., Bouchard, C., Davies, C. T. H., Koponen, J., and Lepage, G. P.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We provide a 0.8\%-accurate determination of $V_{cs}$ from combining experimental results for the differential rate of $D \rightarrow K$ semileptonic decays with precise form factors that we determine from lattice QCD. This is the first time that $V_{cs}$ has been determined with an accuracy that allows its difference from 1 to be seen. Our lattice QCD calculation uses the Highly Improved Staggered Quark (HISQ) action for all valence quarks on gluon field configurations generated by the MILC collaboration that include the effect of $u$, $d$, $s$ and $c$ HISQ quarks in the sea. We use eight gluon field ensembles with five values of the lattice spacing ranging from 0.15 fm to 0.045 fm and include results with physical $u/d$ quarks for the first time. Our calculated form factors cover the full $q^2$ range of the physical decay process and enable a Standard Model test of the shape of the differential decay rate as well as the determination of $V_{cs}$ from a correlated weighted average over $q^2$ bins. We obtain $|V_{cs}|= 0.9663(53)_{\text{latt}}(39)_{\text{exp}}(19)_{\eta_{EW}}(40)_{\text{EM}}$, where the uncertainties come from lattice QCD, experiment, short-distance electroweak and electromagnetic corrections, respectively. This last uncertainty, neglected for $D \rightarrow K \ell \nu$ hitherto, now needs attention if the uncertainty on $V_{cs}$ is to be reduced further. We also determine $V_{cs}$ values in good agreement using the measured total branching fraction and the rates extrapolated to $q^2=0$. Our form factors enable tests of lepton flavour universality violation. We find the ratio of branching fractions for $D^0 \rightarrow K^-$ with $\mu$ and $e$ in the final state to be $R_{\mu/e}=0.9779(2)_{\text{latt}}(50)_{\mathrm{EM}}$ in the Standard Model, with the uncertainty dominated by that from electromagnetic corrections., Comment: 27 pages, 28 figures. Small changes to text to improve readability. Updated to include the BES average for the D to K branching fraction from 2104.08081
- Published
- 2021
- Full Text
- View/download PDF
8. Toward accurate form factors for $B$-to-light meson decay from lattice QCD
- Author
-
Parrott, W. G., Bouchard, C., Davies, C. T. H., and Hatton, D.
- Subjects
High Energy Physics - Lattice - Abstract
We present the results of a lattice QCD calculation of the scalar and vector form factors for the unphysical $B_s\to\eta_s$ decay, over the full physical range of $q^2$. This is a useful testing ground both for lattice QCD and for our wider understanding of the behaviour of form factors. Calculations were performed using the highly improved staggered quark (HISQ) action on $N_f = 2 + 1 + 1$ gluon ensembles generated by the MILC Collaboration with an improved gluon action and HISQ sea quarks. We use three lattice spacings and a range of heavy quark masses from that of charm to bottom, all in the HISQ formalism. This permits an extrapolation in the heavy quark mass and lattice spacing to the physical point and nonperturbative renormalisation of the vector matrix element on the lattice. We find results in good agreement with previous work using nonrelativistic QCD $b$ quarks and with reduced errors at low $q^2$, supporting the effectiveness of our heavy HISQ technique as a method for calculating form factors involving heavy quarks. A comparison with results for other decays related by SU(3) flavour symmetry shows that the impact of changing the light daughter quark is substantial but changing the spectator quark has very little effect. We also map out form factor shape parameters as a function of heavy quark mass and compare to heavy quark effective theory expectations for mass scaling at low and high recoil. This work represents an important step in the progression from previous work on heavy-to-heavy decays ($b\to c$) to the numerically more challenging heavy-to-light decays., Comment: published version; 18 pages, 14 figures
- Published
- 2020
- Full Text
- View/download PDF
9. Scale setting the Möbius domain wall fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales t0 and w0
- Author
-
Miller, N, Carpenter, L, Berkowitz, E, Chang, CC, Hörz, B, Howarth, D, Monge-Camacho, H, Rinaldi, E, Brantley, DA, Körber, C, Bouchard, C, Clark, MA, Gambhir, AS, Monahan, CJ, Nicholson, A, Vranas, P, and Walker-Loud, A
- Subjects
hep-lat ,hep-ph ,nucl-th - Abstract
We report on a subpercent scale determination using the omega baryon mass and gradient-flow methods. The calculations are performed on 22 ensembles of Nf=2+1+1 highly improved, rooted staggered sea-quark configurations generated by the MILC and CalLat Collaborations. The valence quark action used is Möbius domain wall fermions solved on these configurations after a gradient-flow smearing is applied with a flowtime of tgf=1 in lattice units. The ensembles span four lattice spacings in the range 0.06a0.15 fm, six pion masses in the range 130mπ400 MeV and multiple lattice volumes. On each ensemble, the gradient-flow scales t0/a2 and w0/a and the omega baryon mass amω are computed. The dimensionless product of these quantities is then extrapolated to the continuum and infinite volume limits and interpolated to the physical light, strange and charm quark mass point in the isospin limit, resulting in the determination of t0=0.1422(14) fm and w0=0.1709(11) fm with all sources of statistical and systematic uncertainty accounted for. The dominant uncertainty in both results is the stochastic uncertainty, though for t0 there are comparable continuum extrapolation uncertainties. For w0, there is a clear path for a few-per-mille uncertainty just through improved stochastic precision, as recently obtained by the Budapest-Marseille-Wuppertal Collaboration.
- Published
- 2021
10. Symmetries and Interactions from Lattice QCD
- Author
-
Nicholson, A., Berkowitz, E., Monge-Camacho, H., Brantley, D., Garron, N., Chang, C. C., Rinaldi, E., Monahan, C., Bouchard, C., Clark, M. A., Joo, B., Kurth, T., Tiburzi, B. C., Vranas, P., and Walker-Loud, A.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, $g_A$, whose precise value as predicted by the SM could help point to new physics contributions to the so-called "neutron lifetime puzzle", and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches., Comment: Plenary talk presented CIPANP2018. 11 pages, 3 figures
- Published
- 2018
11. Impact of diabetes on the management and outcomes in atrial fibrillation: an analysis from the ESC-EHRA EORP-AF Long-Term General Registry
- Author
-
Boriani, G., Lip, G.Y.H., Tavazzi, L., Maggioni, A.P., Dan, G.-A., Potpara, T., Nabauer, M., Marin, F., Kalarus, Z., Goda, A., Mairesse, G., Shalganov, T., Antoniades, L., Taborsky, M., Riahi, S., Muda, P., García Bolao, I., Piot, O., Etsadashvili, K., Simantirakis, E., Haim, M., Azhari, A., Najafian, J., Santini, M., Mirrakhimov, E., Kulzida, K.A., Erglis, A., Poposka, L., Burg, M., Crijns, H., Erküner, Ö., Atar, D., Lenarczyk, R., Martins Oliveira, M., Shah, D., Serdechnaya, E., Diker, E., Lane, D., Zëra, E., Ekmekçiu, U., Paparisto, V., Tase, M., Gjergo, H., Dragoti, J., Ciutea, M., Ahadi, N., el Husseini, Z., Raepers, M., Leroy, J., Haushan, P., Jourdan, A., Lepiece, C., Desteghe, L., Vijgen, J., Koopman, P., Van Genechten, G., Heidbuchel, H., Boussy, T., De Coninck, M., Van Eeckhoutte, H., Bouckaert, N., Friart, A., Boreux, J., Arend, C., Evrard, P., Stefan, L., Hoffer, E., Herzet, J., Massoz, M., Celentano, C., Sprynger, M., Pierard, L., Melon, P., Van Hauwaert, B., Kuppens, C., Faes, D., Van Lier, D., Van Dorpe, A., Gerardy, A., Deceuninck, O., Xhaet, O., Dormal, F., Ballant, E., Blommaert, D., Yakova, D., Hristov, M., Yncheva, T., Stancheva, N., Tisheva, S., Tokmakova, M., Nikolov, F., Gencheva, D., Kunev, B., Stoyanov, M., Marchov, D., Gelev, V., Traykov, V., Kisheva, A., Tsvyatkov, H., Shtereva, R., Bakalska-Georgieva, S., Slavcheva, S., Yotov, Y., Kubíčková, M., Marni Joensen, A., Gammelmark, A., Hvilsted Rasmussen, L., Dinesen, P., Krogh Venø, S., Sorensen, B., Korsgaard, A., Andersen, K., Fragtrup Hellum, C., Svenningsen, A., Nyvad, O., Wiggers, P., May, O., Aarup, A., Graversen, B., Jensen, L., Andersen, M., Svejgaard, M., Vester, S., Hansen, S., Lynggaard, V., Ciudad, M., Vettus, R., Maestre, A., Castaño, S., Cheggour, S., Poulard, J., Mouquet, V., Leparrée, S., Bouet, J., Taieb, J., Doucy, A., Duquenne, H., Furber, A., Dupuis, J., Rautureau, J., Font, M., Damiano, P., Lacrimini, M., Abalea, J., Boismal, S., Menez, T., Mansourati, J., Range, G., Gorka, H., Laure, C., Vassalière, C., Elbaz, N., Lellouche, N., Djouadi, K., Roubille, F., Dietz, D., Davy, J., Granier, M., Winum, P., Leperchois-Jacquey, C., Kassim, H., Marijon, E., Le Heuzey, J., Fedida, J., Maupain, C., Himbert, C., Gandjbakhch, E., Hidden-Lucet, F., Duthoit, G., Badenco, N., Chastre, T., Waintraub, X., Oudihat, M., Lacoste, J., Stephan, C., Bader, H., Delarche, N., Giry, L., Arnaud, D., Lopez, C., Boury, F., Brunello, I., Lefèvre, M., Mingam, R., Haissaguerre, M., Le Bidan, M., Pavin, D., Le Moal, V., Leclercq, C., Beitar, T., Martel, I., Schmid, A., Sadki, N., Romeyer-Bouchard, C., Da Costa, A., Arnault, I., Boyer, M., Piat, C., Lozance, N., Nastevska, S., Doneva, A., Fortomaroska Milevska, B., Sheshoski, B., Petroska, K., Taneska, N., Bakrecheski, N., Lazarovska, K., Jovevska, S., Ristovski, V., Antovski, A., Lazarova, E., Kotlar, I., Taleski, J., Kedev, S., Zlatanovik, N., Jordanova, S., Bajraktarova Proseva, T., Doncovska, S., Maisuradze, D., Esakia, A., Sagirashvili, E., Lartsuliani, K., Natelashvili, N., Gumberidze, N., Gvenetadze, R., Gotonelia, N., Kuridze, N., Papiashvili, G., Menabde, I., Glöggler, S., Napp, A., Lebherz, C., Romero, H., Schmitz, K., Berger, M., Zink, M., Köster, S., Sachse, J., Vonderhagen, E., Soiron, G., Mischke, K., Reith, R., Schneider, M., Rieker, W., Boscher, D., Taschareck, A., Beer, A., Oster, D., Ritter, O., Adamczewski, J., Walter, S., Frommhold, A., Luckner, E., Richter, J., Schellner, M., Landgraf, S., Bartholome, S., Naumann, R., Schoeler, J., Westermeier, D., William, F., Wilhelm, K., Maerkl, M., Oekinghaus, R., Denart, M., Kriete, M., Tebbe, U., Scheibner, T., Gruber, M., Gerlach, A., Beckendorf, C., Anneken, L., Arnold, M., Lengerer, S., Bal, Z., Uecker, C., Förtsch, H., Fechner, S., Mages, V., Martens, E., Methe, H., Schmidt, T., Schaeffer, B., Hoffmann, B., Moser, J., Heitmann, K., Willems, S., Klaus, C., Lange, I., Durak, M., Esen, E., Mibach, F., Mibach, H., Utech, A., Gabelmann, M., Stumm, R., Ländle, V., Gartner, C., Goerg, C., Kaul, N., Messer, S., Burkhardt, D., Sander, C., Orthen, R., Kaes, S., Baumer, A., Dodos, F., Barth, A., Schaeffer, G., Gaertner, J., Winkler, J., Fahrig, A., Aring, J., Wenzel, I., Steiner, S., Kliesch, A., Kratz, E., Winter, K., Schneider, P., Haag, A., Mutscher, I., Bosch, R., Taggeselle, J., Meixner, S., Schnabel, A., Shamalla, A., Hötz, H., Korinth, A., Rheinert, C., Mehltretter, G., Schön, B., Schön, N., Starflinger, A., Englmann, E., Baytok, G., Laschinger, T., Ritscher, G., Gerth, A., Dechering, D., Eckardt, L., Kuhlmann, M., Proskynitopoulos, N., Brunn, J., Foth, K., Axthelm, C., Hohensee, H., Eberhard, K., Turbanisch, S., Hassler, N., Koestler, A., Stenzel, G., Kschiwan, D., Schwefer, M., Neiner, S., Hettwer, S., Haeussler-Schuchardt, M., Degenhardt, R., Sennhenn, S., Brendel, M., Stoehr, A., Widjaja, W., Loehndorf, S., Logemann, A., Hoskamp, J., Grundt, J., Block, M., Ulrych, R., Reithmeier, A., Panagopoulos, V., Martignani, C., Bernucci, D., Fantecchi, E., Diemberger, I., Ziacchi, M., Biffi, M., Cimaglia, P., Frisoni, J., Giannini, I., Boni, S., Fumagalli, S., Pupo, S., Di Chiara, A., Mirone, P., Pesce, F., Zoccali, C., Malavasi, V.L., Mussagaliyeva, A., Ahyt, B., Salihova, Z., Koshum-Bayeva, K., Kerimkulova, A., Bairamukova, A., Lurina, B., Zuzans, R., Jegere, S., Mintale, I., Kupics, K., Jubele, K., Kalejs, O., Vanhear, K., Cachia, M., Abela, E., Warwicker, S., Tabone, T., Xuereb, R., Asanovic, D., Drakalovic, D., Vukmirovic, M., Pavlovic, N., Music, L., Bulatovic, N., Boskovic, A., Uiterwaal, H., Bijsterveld, N., De Groot, J., Neefs, J., van den Berg, N., Piersma, F., Wilde, A., Hagens, V., Van Es, J., Van Opstal, J., Van Rennes, B., Verheij, H., Breukers, W., Tjeerdsma, G., Nijmeijer, R., Wegink, D., Binnema, R., Said, S., Philippens, S., van Doorn, W., Szili-Torok, T., Bhagwandien, R., Janse, P., Muskens, A., van Eck, M., Gevers, R., van der Ven, N., Duygun, A., Rahel, B., Meeder, J., Vold, A., Holst Hansen, C., Engset, I., Dyduch-Fejklowicz, B., Koba, E., Cichocka, M., Sokal, A., Kubicius, A., Pruchniewicz, E., Kowalik-Sztylc, A., Czapla, W., Mróz, I., Kozlowski, M., Pawlowski, T., Tendera, M., Winiarska-Filipek, A., Fidyk, A., Slowikowski, A., Haberka, M., Lachor-Broda, M., Biedron, M., Gasior, Z., Kołodziej, M., Janion, M., Gorczyca-Michta, I., Wozakowska-Kaplon, B., Stasiak, M., Jakubowski, P., Ciurus, T., Drozdz, J., Simiera, M., Zajac, P., Wcislo, T., Zycinski, P., Kasprzak, J., Olejnik, A., Harc-Dyl, E., Miarka, J., Pasieka, M., Ziemińska-Łuć, M., Bujak, W., Śliwiński, A., Grech, A., Morka, J., Petrykowska, K., Prasał, M., Hordyński, G., Feusette, P., Lipski, P., Wester, A., Streb, W., Romanek, J., Woźniak, P., Chlebuś, M., Szafarz, P., Stanik, W., Zakrzewski, M., Kaźmierczak, J., Przybylska, A., Skorek, E., Błaszczyk, H., Stępień, M., Szabowski, S., Krysiak, W., Szymańska, M., Karasiński, J., Blicharz, J., Skura, M., Hałas, K., Michalczyk, L., Orski, Z., Krzyżanowski, K., Skrobowski, A., Zieliński, L., Tomaszewska-Kiecana, M., Dłużniewski, M., Kiliszek, M., Peller, M., Budnik, M., Balsam, P., Opolski, G., Tymińska, A., Ozierański, K., Wancerz, A., Borowiec, A., Majos, E., Dabrowski, R., Szwed, H., Musialik-Lydka, A., Leopold-Jadczyk, A., Jedrzejczyk-Patej, E., Koziel, M., Mazurek, M., Krzemien-Wolska, K., Starosta, P., Nowalany-Kozielska, E., Orzechowska, A., Szpot, M., Staszel, M., Almeida, S., Pereira, H., Brandão Alves, L., Miranda, R., Ribeiro, L., Costa, F., Morgado, F., Carmo, P., Galvao Santos, P., Bernardo, R., Adragão, P., Ferreira da Silva, G., Peres, M., Alves, M., Leal, M., Cordeiro, A., Magalhães, P., Fontes, P., Leão, S., Delgado, A., Costa, A., Marmelo, B., Rodrigues, B., Moreira, D., Santos, J., Santos, L., Terchet, A., Darabantiu, D., Mercea, S., Turcin Halka, V., Pop Moldovan, A., Gabor, A., Doka, B., Catanescu, G., Rus, H., Oboroceanu, L., Bobescu, E., Popescu, R., Dan, A., Buzea, A., Daha, I., Dan, G., Neuhoff, I., Baluta, M., Ploesteanu, R., Dumitrache, N., Vintila, M., Daraban, A., Japie, C., Badila, E., Tewelde, H., Hostiuc, M., Frunza, S., Tintea, E., Bartos, D., Ciobanu, A., Popescu, I., Toma, N., Gherghinescu, C., Cretu, D., Patrascu, N., Stoicescu, C., Udroiu, C., Bicescu, G., Vintila, V., Vinereanu, D., Cinteza, M., Rimbas, R., Grecu, M., Cozma, A., Boros, F., Ille, M., Tica, O., Tor, R., Corina, A., Jeewooth, A., Maria, B., Georgiana, C., Natalia, C., Alin, D., Dinu-Andrei, D., Livia, M., Daniela, R., Larisa, R., Umaar, S., Tamara, T., Ioachim Popescu, M., Nistor, D., Sus, I., Coborosanu, O., Alina-Ramona, N., Dan, R., Petrescu, L., Ionescu, G., Vacarescu, C., Goanta, E., Mangea, M., Ionac, A., Mornos, C., Cozma, D., Pescariu, S., Solodovnicova, E., Soldatova, I., Shutova, J., Tjuleneva, L., Zubova, T., Uskov, V., Obukhov, D., Rusanova, G., Isakova, N., Odinsova, S., Arhipova, T., Kazakevich, E., Zavyalova, O., Novikova, T., Riabaia, I., Zhigalov, S., Drozdova, E., Luchkina, I., Monogarova, Y., Hegya, D., Rodionova, L., Nevzorova, V., Lusanova, O., Arandjelovic, A., Toncev, D., Vukmirovic, L., Radisavljevic, M., Milanov, M., Sekularac, N., Zdravkovic, M., Hinic, S., Dimkovic, S., Acimovic, T., Saric, J., Radovanovic, S., Kocijancic, A., Obrenovic-Kircanski, B., Kalimanovska Ostric, D., Simic, D., Jovanovic, I., Petrovic, I., Polovina, M., Vukicevic, M., Tomasevic, M., Mujovic, N., Radivojevic, N., Petrovic, O., Aleksandric, S., Kovacevic, V., Mijatovic, Z., Ivanovic, B., Tesic, M., Ristic, A., Vujisic-Tesic, B., Nedeljkovic, M., Karadzic, A., Uscumlic, A., Prodanovic, M., Zlatar, M., Asanin, M., Bisenic, B., Vasic, V., Popovic, Z., Djikic, D., Sipic, M., Peric, V., Dejanovic, B., Milosevic, N., Backovic, S., Stevanovic, A., Andric, A., Pencic, B., Pavlovic-Kleut, M., Celic, V., Pavlovic, M., Petrovic, M., Vuleta, M., Petrovic, N., Simovic, S., Savovic, Z., Milanov, S., Davidovic, G., Iric-Cupic, V., Djordjevic, D., Damjanovic, M., Zdravkovic, S., Topic, V., Stanojevic, D., Randjelovic, M., Jankovic-Tomasevic, R., Atanaskovic, V., Antic, S., Simonovic, D., Stojanovic, M., Stojanovic, S., Mitic, V., Ilic, V., Petrovic, D., Deljanin Ilic, M., Ilic, S., Stoickov, V., Markovic, S., Mijatovic, A., Tanasic, D., Radakovic, G., Peranovic, J., Panic-Jelic, N., Vujadinovic, O., Pajic, P., Bekic, S., Kovacevic, S., García Fernandez, A., Perez Cabeza, A., Anguita, M., Tercedor Sanchez, L., Mau, E., Loayssa, J., Ayarra, M., Carpintero, M., Roldán Rabadan, I., Gil Ortega, M., Tello Montoliu, A., Orenes Piñero, E., Manzano Fernández, S., Marín, F., Romero Aniorte, A., Veliz Martínez, A., Quintana Giner, M., Ballesteros, G., Palacio, M., Alcalde, O., García-Bolao, I., Bertomeu Gonzalez, V., Otero-Raviña, F., García Seara, J., Gonzalez Juanatey, J., Dayal, N., Maziarski, P., Gentil-Baron, P., Koç, M., Onrat, E., Dural, I.E., Yilmaz, K., Özin, B., Tan Kurklu, S., Atmaca, Y., Canpolat, U., Tokgozoglu, L., Dolu, A.K., Demirtas, B., Sahin, D., Ozcan Celebi, O., Gagirci, G., Turk, U.O., Ari, H., Polat, N., Toprak, N., Sucu, M., Akin Serdar, O., Taha Alper, A., Kepez, A., Yuksel, Y., Uzunselvi, A., Yuksel, S., Sahin, M., Kayapinar, O., Ozcan, T., Kaya, H., Yilmaz, M.B., Kutlu, M., Demir, M., Gibbs, C., Kaminskiene, S., Bryce, M., Skinner, A., Belcher, G., Hunt, J., Stancombe, L., Holbrook, B., Peters, C., Tettersell, S., Shantsila, A., Senoo, K., Proietti, M., Russell, K., Domingos, P., Hussain, S., Partridge, J., Haynes, R., Bahadur, S., Brown, R., McMahon, S., McDonald, J., Balachandran, K., Singh, R., Garg, S., Desai, H., Davies, K., Goddard, W., Galasko, G., Rahman, I., Chua, Y., Payne, O., Preston, S., Brennan, O., Pedley, L., Whiteside, C., Dickinson, C., Brown, J., Jones, K., Benham, L., Brady, R., Buchanan, L., Ashton, A., Crowther, H., Fairlamb, H., Thornthwaite, S., Relph, C., McSkeane, A., Poultney, U., Kelsall, N., Rice, P., Wilson, T., Wrigley, M., Kaba, R., Patel, T., Young, E., Law, J., Runnett, C., Thomas, H., McKie, H., Fuller, J., Pick, S., Sharp, A., Hunt, A., Thorpe, K., Hardman, C., Cusack, E., Adams, L., Hough, M., Keenan, S., Bowring, A., Watts, J., Zaman, J., Goffin, K., Nutt, H., Beerachee, Y., Featherstone, J., Mills, C., Pearson, J., Stephenson, L., Grant, S., Wilson, A., Hawksworth, C., Alam, I., Robinson, M., Ryan, S., Egdell, R., Gibson, E., Holland, M., Leonard, D., Mishra, B., Ahmad, S., Randall, H., Hill, J., Reid, L., George, M., McKinley, S., Brockway, L., Milligan, W., Sobolewska, J., Muir, J., Tuckis, L., Winstanley, L., Jacob, P., Kaye, S., Morby, L., Jan, A., Sewell, T., Boos, C., Wadams, B., Cope, C., Jefferey, P., Andrews, N., Getty, A., Suttling, A., Turner, C., Hudson, K., Austin, R., Howe, S., Iqbal, R., Gandhi, N., Brophy, K., Mirza, P., Willard, E., Collins, S., Ndlovu, N., Subkovas, E., Karthikeyan, V., Waggett, L., Wood, A., Bolger, A., Stockport, J., Evans, L., Harman, E., Starling, J., Williams, L., Saul, V., Sinha, M., Bell, L., Tudgay, S., Kemp, S., Frost, L., Ingram, T., Loughlin, A., Adams, C., Adams, M., Hurford, F., Owen, C., Miller, C., Donaldson, D., Tivenan, H., Button, H., Nasser, A., Jhagra, O., Stidolph, B., Brown, C., Livingstone, C., Duffy, M., Madgwick, P., Roberts, P., Greenwood, E., Fletcher, L., Beveridge, M., Earles, S., McKenzie, D., Beacock, D., Dayer, M., Seddon, M., Greenwell, D., Luxton, F., Venn, F., Mills, H., Rewbury, J., James, K., Roberts, K., Tonks, L., Felmeden, D., Taggu, W., Summerhayes, A., Hughes, D., Sutton, J., Felmeden, L., Khan, M., Walker, E., Norris, L., O'Donohoe, L., Mozid, A., Dymond, H., Lloyd-Jones, H., Saunders, G., Simmons, D., Coles, D., Cotterill, D., Beech, S., Kidd, S., Wrigley, B., Petkar, S., Smallwood, A., Jones, R., Radford, E., Milgate, S., Metherell, S., Cottam, V., Buckley, C., Broadley, A., Wood, D., Allison, J., Rennie, K., Balian, L., Howard, L., Pippard, L., Board, S., Pitt-Kerby, T., Ding, Wern Yew, Kotalczyk, Agnieszka, Boriani, Giuseppe, Marin, Francisco, Blomström-Lundqvist, Carina, Potpara, Tatjana S., Fauchier, Laurent, and Lip, Gregory.Y.H.
- Published
- 2022
- Full Text
- View/download PDF
12. Cardiac troponins and adverse outcomes in European patients with atrial fibrillation: A report from the ESC-EHRA EORP atrial fibrillation general long-term registry
- Author
-
Boriani, G., Lip, G.Y.H., Tavazzi, L., Maggioni, A.P., Dan, G-A., Potpara, T., Nabauer, M., Marin, F., Kalarus, Z., Fauchier, L., Goda, A., Mairesse, G., Shalganov, T., Antoniades, L., Taborsky, M., Riahi, S., Muda, P., García Bolao, I., Piot, O., Etsadashvili, K., Haim, M., Azhari, A., Najafian, J., Santini, M., Mirrakhimov, E., Kulzida, K., Erglis, A., Poposka, L., Burg, M.R., Crijns, H., Erküner, Ö., Atar, D., Lenarczyk, R., Martins Oliveira, M., Shah, D., Serdechnaya, E., Diker, E., Zëra, E., Ekmekçiu, U., Paparisto, V., Tase, M., Gjergo, H., Dragoti, J., Ciutea, M., Ahadi, N., el Husseini, Z., Raepers, M., Leroy, J., Haushan, P., Jourdan, A., Lepiece, C., Desteghe, L., Vijgen, J., Koopman, P., Van Genechten, G., Heidbuchel, H., Boussy, T., De Coninck, M., Van Eeckhoutte, H., Bouckaert, N., Friart, A., Boreux, J., Arend, C., Evrard, P., Stefan, L., Hoffer, E., Herzet, J., Massoz, M., Celentano, C., Sprynger, M., Pierard, L., Melon, P., Van Hauwaert, B., Kuppens, C., Faes, D., Van Lier, D., Van Dorpe, A., Gerardy, A., Deceuninck, O., Xhaet, O., Dormal, F., Ballant, E., Blommaert, D., Yakova, D., Hristov, M., Yncheva, T., Stancheva, N., Tisheva, S., Tokmakova, M., Nikolov, F., Gencheva, D., Kunev, B., Stoyanov, M., Marchov, D., Gelev, V., Traykov, V., Kisheva, A., Tsvyatkov, H., Shtereva, R., Bakalska-Georgieva, S., Slavcheva, S., Yotov, Y., Kubíčková, M., Marni Joensen, A., Gammelmark, A., Hvilsted Rasmussen, L., Dinesen, P., Krogh Venø, S., Sorensen, B., Korsgaard, A., Andersen, K., Fragtrup Hellum, C., Svenningsen, A., Nyvad, O., Wiggers, P., May, O., Aarup, A., Graversen, B., Jensen, L., Andersen, M., Svejgaard, M., Vester, S., Hansen, S., Lynggaard, V., Ciudad, M., Vettus, R., Maestre, A., Castaño, S., Cheggour, S., Poulard, J., Mouquet, V., Leparrée, S., Bouet, J., Taieb, J., Doucy, A., Duquenne, H., Furber, A., Dupuis, J., Rautureau, J., Font, M., Damiano, P., Lacrimini, M., Abalea, J., Boismal, S., Menez, T., Mansourati, J., Range, G., Gorka, H., Laure, C., Vassalière, C., Elbaz, N., Lellouche, N., Djouadi, K., Roubille, F., Dietz, D., Davy, J., Granier, M., Winum, P., Leperchois-Jacquey, C., Kassim, H., Marijon, E., Le Heuzey, J., Fedida, J., Maupain, C., Himbert, C., Gandjbakhch, E., Hidden-Lucet, F., Duthoit, G., Badenco, N., Chastre, T., Waintraub, X., Oudihat, M., Lacoste, J., Stephan, C., Bader, H., Delarche, N., Giry, L., Arnaud, D., Lopez, C., Boury, F., Brunello, I., Lefèvre, M., Mingam, R., Haissaguerre, M., Le Bidan, M., Pavin, D., Le Moal, V., Leclercq, C., Beitar, T., Martel, I., Schmid, A., Sadki, N., Romeyer-Bouchard, C., Da Costa, A., Arnault, I., Boyer, M., Piat, C., Lozance, N., Nastevska, S., Doneva, A., Fortomaroska Milevska, B., Sheshoski, B., Petroska, K., Taneska, N., Bakrecheski, N., Lazarovska, K., Jovevska, S., Ristovski, V., Antovski, A., Lazarova, E., Kotlar, I., Taleski, J., Kedev, S., Zlatanovik, N., Jordanova, S., Bajraktarova Proseva, T., Doncovska, S., Maisuradze, D., Esakia, A., Sagirashvili, E., Lartsuliani, K., Natelashvili, N., Gumberidze, N., Gvenetadze, R., Gotonelia, N., Kuridze, N., Papiashvili, G., Menabde, I., Glöggler, S., Napp, A., Lebherz, C., Romero, H., Schmitz, K., Berger, M., Zink, M., Köster, S., Sachse, J., Vonderhagen, E., Soiron, G., Mischke, K., Reith, R., Schneider, M., Rieker, W., Boscher, D., Taschareck, A., Beer, A., Oster, D., Ritter, O., Adamczewski, J., Walter, S., Frommhold, A., Luckner, E., Richter, J., Schellner, M., Landgraf, S., Bartholome, S., Naumann, R., Schoeler, J., Westermeier, D., William, F., Wilhelm, K., Maerkl, M., Oekinghaus, R., Denart, M., Kriete, M., Tebbe, U., Scheibner, T., Gruber, M., Gerlach, A., Beckendorf, C., Anneken, L., Arnold, M., Lengerer, S., Bal, Z., Uecker, C., Förtsch, H., Fechner, S., Mages, V., Martens, E., Methe, H., Schmidt, T., Schaeffer, B., Hoffmann, B., Moser, J., Heitmann, K., Willems, S., Klaus, C., Lange, I., Durak, M., Esen, E., Mibach, F., Mibach, H., Utech, A., Gabelmann, M., Stumm, R., Ländle, V., Gartner, C., Goerg, C., Kaul, N., Messer, S., Burkhardt, D., Sander, C., Orthen, R., Kaes, S., Baumer, A., Dodos, F., Barth, A., Schaeffer, G., Gaertner, J., Winkler, J., Fahrig, A., Aring, J., Wenzel, I., Steiner, S., Kliesch, A., Kratz, E., Winter, K., Schneider, P., Haag, A., Mutscher, I., Bosch, R., Taggeselle, J., Meixner, S., Schnabel, A., Shamalla, A., Hötz, H., Korinth, A., Rheinert, C., Mehltretter, G., Schön, B., Schön, N., Starflinger, A., Englmann, E., Baytok, G., Laschinger, T., Ritscher, G., Gerth, A., Dechering, D., Eckardt, L., Kuhlmann, M., Proskynitopoulos, N., Brunn, J., Foth, K., Axthelm, C., Hohensee, H., Eberhard, K., Turbanisch, S., Hassler, N., Koestler, A., Stenzel, G., Kschiwan, D., Schwefer, M., Neiner, S., Hettwer, S., Haeussler-Schuchardt, M., Degenhardt, R., Sennhenn, S., Brendel, M., Stoehr, A., Widjaja, W., Loehndorf, S., Logemann, A., Hoskamp, J., Grundt, J., Block, M., Ulrych, R., Reithmeier, A., Panagopoulos, V., Martignani, C., Bernucci, D., Fantecchi, E., Diemberger, I., Ziacchi, M., Biffi, M., Cimaglia, P., Frisoni, J., Giannini, I., Boni, S., Fumagalli, S., Pupo, S., Di Chiara, A., Mirone, P., Pesce, F., Zoccali, C., Malavasi, V.L., Mussagaliyeva, A., Ahyt, B., Salihova, Z., Koshum-Bayeva, K., Kerimkulova, A., Bairamukova, A., Lurina, B., Zuzans, R., Jegere, S., Mintale, I., Kupics, K., Jubele, K., Kalejs, O., Vanhear, K., Burg, M., Cachia, M., Abela, E., Warwicker, S., Tabone, T., Xuereb, R., Asanovic, D., Drakalovic, D., Vukmirovic, M., Pavlovic, N., Music, L., Bulatovic, N., Boskovic, A., Uiterwaal, H., Bijsterveld, N., De Groot, J., Neefs, J., van den Berg, N., Piersma, F., Wilde, A., Hagens, V., Van Es, J., Van Opstal, J., Van Rennes, B., Verheij, H., Breukers, W., Tjeerdsma, G., Nijmeijer, R., Wegink, D., Binnema, R., Said, S., Philippens, S., van Doorn, W., Szili-Torok, T., Bhagwandien, R., Janse, P., Muskens, A., van Eck, M., Gevers, R., van der Ven, N., Duygun, A., Rahel, B., Meeder, J., Vold, A., Holst Hansen, C., Engset, I., Dyduch-Fejklowicz, B., Koba, E., Cichocka, M., Sokal, A., Kubicius, A., Pruchniewicz, E., Kowalik-Sztylc, A., Czapla, W., Mróz, I., Kozlowski, M., Pawlowski, T., Tendera, M., Winiarska-Filipek, A., Fidyk, A., Slowikowski, A., Haberka, M., Lachor-Broda, M., Biedron, M., Gasior, Z., Kołodziej, M., Janion, M., Gorczyca-Michta, I., Wozakowska-Kaplon, B., Stasiak, M., Jakubowski, P., Ciurus, T., Drozdz, J., Simiera, M., Zajac, P., Wcislo, T., Zycinski, P., Kasprzak, J., Olejnik, A., Harc-Dyl, E., Miarka, J., Pasieka, M., Ziemińska-Łuć, M., Bujak, W., Śliwiński, A., Grech, A., Morka, J., Petrykowska, K., Prasał, M., Hordyński, G., Feusette, P., Lipski, P., Wester, A., Streb, W., Romanek, J., Woźniak, P., Chlebuś, M., Szafarz, P., Stanik, W., Zakrzewski, M., Kaźmierczak, J., Przybylska, A., Skorek, E., Błaszczyk, H., Stępień, M., Szabowski, S., Krysiak, W., Szymańska, M., Karasiński, J., Blicharz, J., Skura, M., Hałas, K., Michalczyk, L., Orski, Z., Krzyżanowski, K., Skrobowski, A., Zieliński, L., Tomaszewska-Kiecana, M., Dłużniewski, M., Kiliszek, M., Peller, M., Budnik, M., Balsam, P., Opolski, G., Tymińska, A., Ozierański, K., Wancerz, A., Borowiec, A., Majos, E., Dabrowski, R., Szwed, H., Musialik-Lydka, A., Leopold-Jadczyk, A., Jedrzejczyk-Patej, E., Koziel, M., Mazurek, M., Krzemien-Wolska, K., Starosta, P., Nowalany-Kozielska, E., Orzechowska, A., Szpot, M., Staszel, M., Almeida, S., Pereira, H., Brandão Alves, L., Miranda, R., Ribeiro, L., Costa, F., Morgado, F., Carmo, P., Galvao Santos, P., Bernardo, R., Adragão, P., Ferreira da Silva, G., Peres, M., Alves, M., Leal, M., Cordeiro, A., Magalhães, P., Fontes, P., Leão, S., Delgado, A., Costa, A., Marmelo, B., Rodrigues, B., Moreira, D., Santos, J., Santos, L., Terchet, A., Darabantiu, D., Mercea, S., Turcin Halka, V., Pop Moldovan, A., Gabor, A., Doka, B., Catanescu, G., Rus, H., Oboroceanu, L., Bobescu, E., Popescu, R., Dan, A., Buzea, A., Daha, I., Dan, G., Neuhoff, I., Baluta, M., Ploesteanu, R., Dumitrache, N., Vintila, M., Daraban, A., Japie, C., Badila, E., Tewelde, H., Hostiuc, M., Frunza, S., Tintea, E., Bartos, D., Ciobanu, A., Popescu, I., Toma, N., Gherghinescu, C., Cretu, D., Patrascu, N., Stoicescu, C., Udroiu, C., Bicescu, G., Vintila, V., Vinereanu, D., Cinteza, M., Rimbas, R., Grecu, M., Cozma, A., Boros, F., Ille, M., Tica, O., Tor, R., Corina, A., Jeewooth, A., Maria, B., Georgiana, C., Natalia, C., Alin, D., Dinu-Andrei, D., Livia, M., Daniela, R., Larisa, R., Umaar, S., Tamara, T., Ioachim Popescu, M., Nistor, D., Sus, I., Coborosanu, O., Alina-Ramona, N., Dan, R., Petrescu, L., Ionescu, G., Vacarescu, C., Goanta, E., Mangea, M., Ionac, A., Mornos, C., Cozma, D., Pescariu, S., Solodovnicova, E., Soldatova, I., Shutova, J., Tjuleneva, L., Zubova, T., Uskov, V., Obukhov, D., Rusanova, G., Isakova, N., Odinsova, S., Arhipova, T., Kazakevich, E., Zavyalova, O., Novikova, T., Riabaia, I., Zhigalov, S., Drozdova, E., Luchkina, I., Monogarova, Y., Hegya, D., Rodionova, L., Nevzorova, V., Lusanova, O., Arandjelovic, A., Toncev, D., Vukmirovic, L., Radisavljevic, M., Milanov, M., Sekularac, N., Zdravkovic, M., Hinic, S., Dimkovic, S., Acimovic, T., Saric, J., Radovanovic, S., Kocijancic, A., Obrenovic-Kircanski, B., Kalimanovska Ostric, D., Simic, D., Jovanovic, I., Petrovic, I., Polovina, M., Vukicevic, M., Tomasevic, M., Mujovic, N., Radivojevic, N., Petrovic, O., Aleksandric, S., Kovacevic, V., Mijatovic, Z., Ivanovic, B., Tesic, M., Ristic, A., Vujisic-Tesic, B., Nedeljkovic, M., Karadzic, A., Uscumlic, A., Prodanovic, M., Zlatar, M., Asanin, M., Bisenic, B., Vasic, V., Popovic, Z., Djikic, D., Sipic, M., Peric, V., Dejanovic, B., Milosevic, N., Backovic, S., Stevanovic, A., Andric, A., Pencic, B., Pavlovic-Kleut, M., Celic, V., Pavlovic, M., Petrovic, M., Vuleta, M., Petrovic, N., Simovic, S., Savovic, Z., Milanov, S., Davidovic, G., Iric-Cupic, V., Djordjevic, D., Damjanovic, M., Zdravkovic, S., Topic, V., Stanojevic, D., Randjelovic, M., Jankovic-Tomasevic, R., Atanaskovic, V., Antic, S., Simonovic, D., Stojanovic, M., Stojanovic, S., Mitic, V., Ilic, V., Petrovic, D., Deljanin Ilic, M., Ilic, S., Stoickov, V., Markovic, S., Mijatovic, A., Tanasic, D., Radakovic, G., Peranovic, J., Panic-Jelic, N., Vujadinovic, O., Pajic, P., Bekic, S., Kovacevic, S., García Fernandez, A., Perez Cabeza, A., Anguita, M., Tercedor Sanchez, L., Mau, E., Loayssa, J., Ayarra, M., Carpintero, M., Roldán Rabadan, I., Gil Ortega, M., Tello Montoliu, A., Orenes Piñero, E., Manzano Fernández, S., Marín, F., Romero Aniorte, A., Veliz Martínez, A., Quintana Giner, M., Ballesteros, G., Palacio, M., Alcalde, O., García-Bolao, I., Bertomeu Gonzalez, V., Otero-Raviña, F., García Seara, J., Gonzalez Juanatey, J., Dayal, N., Maziarski, P., Gentil-Baron, P., Koç, M., Onrat, E., Dural, I.E., Yilmaz, K., Özin, B., Tan Kurklu, S., Atmaca, Y., Canpolat, U., Tokgozoglu, L., Dolu, A.K., Demirtas, B., Sahin, D., Ozcan Celebi, O., Gagirci, G., Turk, U.O., Ari, H., Polat, N., Toprak, N., Sucu, M., Akin Serdar, O., Taha Alper, A., Kepez, A., Yuksel, Y., Uzunselvi, A., Yuksel, S., Sahin, M., Kayapinar, O., Ozcan, T., Kaya, H., Yilmaz, M.B., Kutlu, M., Demir, M., Gibbs, C., Kaminskiene, S., Bryce, M., Skinner, A., Belcher, G., Hunt, J., Stancombe, L., Holbrook, B., Peters, C., Tettersell, S., Shantsila, A., Lane, D., Senoo, K., Proietti, M., Russell, K., Domingos, P., Hussain, S., Partridge, J., Haynes, R., Bahadur, S., Brown, R., McMahon, S., McDonald, J., Balachandran, K., Singh, R., Garg, S., Desai, H., Davies, K., Goddard, W., Galasko, G., Rahman, I., Chua, Y., Payne, O., Preston, S., Brennan, O., Pedley, L., Whiteside, C., Dickinson, C., Brown, J., Jones, K., Benham, L., Brady, R., Buchanan, L., Ashton, A., Crowther, H., Fairlamb, H., Thornthwaite, S., Relph, C., McSkeane, A., Poultney, U., Kelsall, N., Rice, P., Wilson, T., Wrigley, M., Kaba, R., Patel, T., Young, E., Law, J., Runnett, C., Thomas, H., McKie, H., Fuller, J., Pick, S., Sharp, A., Hunt, A., Thorpe, K., Hardman, C., Cusack, E., Adams, L., Hough, M., Keenan, S., Bowring, A., Watts, J., Zaman, J., Goffin, K., Nutt, H., Beerachee, Y., Featherstone, J., Mills, C., Pearson, J., Stephenson, L., Grant, S., Wilson, A., Hawksworth, C., Alam, I., Robinson, M., Ryan, S., Egdell, R., Gibson, E., Holland, M., Leonard, D., Mishra, B., Ahmad, S., Randall, H., Hill, J., Reid, L., George, M., McKinley, S., Brockway, L., Milligan, W., Sobolewska, J., Muir, J., Tuckis, L., Winstanley, L., Jacob, P., Kaye, S., Morby, L., Jan, A., Sewell, T., Boos, C., Wadams, B., Cope, C., Jefferey, P., Andrews, N., Getty, A., Suttling, A., Turner, C., Hudson, K., Austin, R., Howe, S., Iqbal, R., Gandhi, N., Brophy, K., Mirza, P., Willard, E., Collins, S., Ndlovu, N., Subkovas, E., Karthikeyan, V., Waggett, L., Wood, A., Bolger, A., Stockport, J., Evans, L., Harman, E., Starling, J., Williams, L., Saul, V., Sinha, M., Bell, L., Tudgay, S., Kemp, S., Frost, L., Ingram, T., Loughlin, A., Adams, C., Adams, M., Hurford, F., Owen, C., Miller, C., Donaldson, D., Tivenan, H., Button, H., Nasser, A., Jhagra, O., Stidolph, B., Brown, C., Livingstone, C., Duffy, M., Madgwick, P., Roberts, P., Greenwood, E., Fletcher, L., Beveridge, M., Earles, S., McKenzie, D., Beacock, D., Dayer, M., Seddon, M., Greenwell, D., Luxton, F., Venn, F., Mills, H., Rewbury, J., James, K., Roberts, K., Tonks, L., Felmeden, D., Taggu, W., Summerhayes, A., Hughes, D., Sutton, J., Felmeden, L., Khan, M., Walker, E., Norris, L., O'Donohoe, L., Mozid, A., Dymond, H., Lloyd-Jones, H., Saunders, G., Simmons, D., Coles, D., Cotterill, D., Beech, S., Kidd, S., Wrigley, B., Petkar, S., Smallwood, A., Jones, R., Radford, E., Milgate, S., Metherell, S., Cottam, V., Buckley, C., Broadley, A., Wood, D., Allison, J., Rennie, K., Balian, L., Howard, L., Pippard, L., Board, S., Pitt-Kerby, T., Vitolo, Marco, Malavasi, Vincenzo L., Proietti, Marco, Diemberger, Igor, Fauchier, Laurent, Marin, Francisco, Nabauer, Michael, Potpara, Tatjana S., Dan, Gheorghe-Andrei, Kalarus, Zbigniew, Tavazzi, Luigi, Maggioni, Aldo Pietro, Lane, Deirdre A., Lip, Gregory Y.H., and Boriani, Giuseppe
- Published
- 2022
- Full Text
- View/download PDF
13. $B_s \to K \ell\nu$ form factors with 2+1 flavors
- Author
-
Lattice, Fermilab, Collaborations, MILC, Liu, Yuzhi, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gelzer, Z., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Meurice, Y., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice - Abstract
Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors $f_0$ and $f_+$ for the semileptonic $B_s \rightarrow K \ell\nu$ decay. A total of six ensembles with lattice spacing from $\approx0.12$ to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass $m'_l$ is one-tenth the strange quark mass $m'_s$. At the intermediate lattice spacing, the ratio $m'_l/m'_s$ ranges from 0.05 to 0.2. The valence $b$ quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element $|V_{ub}|$., Comment: 8 pages, 6 figures, to appear in the Proceedings of Lattice 2017, June 18-24, Granada, Spain
- Published
- 2017
- Full Text
- View/download PDF
14. Short-distance matrix elements for $D^0$-meson mixing for $N_f=2+1$ lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five $\Delta C=2$ four-fermion operators that contribute to neutral $D$-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration's $N_f = 2+1$ lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as $M_\pi \approx 180$ MeV and lattice spacings as fine as $a\approx 0.045$ fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the $\overline{\text{MS}}$-NDR scheme using the choice of evanescent operators proposed by Beneke \emph{et al.}, evaluated at 3 GeV, $\langle D^0|\mathcal{O}_i|\bar{D}^0 \rangle = \{0.0805(55)(16), -0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)\}~\text{GeV}^4$ ($i=1$--5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in $D^0$~mixing, finding lower limits of about 10--50$\times 10^3$ TeV for couplings of $\mathrm{O}(1)$. To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly-used scheme of Buras, Misiak, and Urban., Comment: Published version, 42 pages, 18 figures
- Published
- 2017
- Full Text
- View/download PDF
15. D-Meson Mixing in 2+1-Flavor Lattice QCD
- Author
-
Chang, Chia Cheng, Bouchard, C. M., El-Khadra, A. X., Freeland, E., Gámiz, E., Kronfeld, A. S., Laiho, J. W., Neil, E. T., Simone, J. N., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations., Comment: 6+1 pp., presented at Lattice 2016
- Published
- 2017
16. A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics
- Author
-
Chang, CC, Nicholson, AN, Rinaldi, E, Berkowitz, E, Garron, N, Brantley, DA, Monge-Camacho, H, Monahan, CJ, Bouchard, C, Clark, MA, Joó, B, Kurth, T, Orginos, K, Vranas, P, and Walker-Loud, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Quantum Physics ,Synchrotrons and Accelerators ,Physical Sciences ,hep-lat ,hep-ex ,hep-ph ,nucl-ex ,nucl-th ,General Science & Technology - Abstract
The axial coupling of the nucleon, gA, is the strength of its coupling to the weak axial current of the standard model of particle physics, in much the same way as the electric charge is the strength of the coupling to the electromagnetic current. This axial coupling dictates the rate at which neutrons decay to protons, the strength of the attractive long-range force between nucleons and other features of nuclear physics. Precision tests of the standard model in nuclear environments require a quantitative understanding of nuclear physics that is rooted in quantum chromodynamics, a pillar of the standard model. The importance of gA makes it a benchmark quantity to determine theoretically-a difficult task because quantum chromodynamics is non-perturbative, precluding known analytical methods. Lattice quantum chromodynamics provides a rigorous, non-perturbative definition of quantum chromodynamics that can be implemented numerically. It has been estimated that a precision of two per cent would be possible by 2020 if two challenges are overcome1,2: contamination of gA from excited states must be controlled in the calculations and statistical precision must be improved markedly2-10. Here we use an unconventional method 11 inspired by the Feynman-Hellmann theorem that overcomes these challenges. We calculate a gA value of 1.271 ± 0.013, which has a precision of about one per cent.
- Published
- 2018
17. $B^0_{(s)}$-mixing matrix elements from lattice QCD for the Standard Model and beyond
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., Chang, C. C., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Mackenzie, P. B., Neil, E. T., Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral $B^0$- and $B_s$-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral $B$-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio $\xi = 1.206(18)(6)$, where the second error stems from the omission of charm sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from $B$ mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light valence quarks, and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral $B$-meson oscillation frequencies to determine the CKM matrix elements $|V_{td}| = 8.00(34)(8) \times 10^{-3}$, $|V_{ts}| = 39.0(1.2)(0.4) \times 10^{-3}$, and $|V_{td}/V_{ts}| = 0.2052(31)(10)$, which differ from CKM-unitarity expectations by about 2$\sigma$. These results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels., Comment: 75 pp, 17 figs. Ver 2 fixes typos; corrects mistakes resulting in slight changes to results, correlation matrices; updates decay constants to agree with recent PDG update; corrects uncertainties for tree-level CKM matrix elements used in comparison, slightly reducing tensions; includes additional analyses that support mostly-nonperturbative matching; expands discussion of isospin-breaking effects
- Published
- 2016
- Full Text
- View/download PDF
18. Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
- Author
-
Berkowitz, E, Bouchard, C, Chang, CC, Clark, MA, Joó, B, Kurth, T, Monahan, C, Nicholson, A, Orginos, K, Rinaldi, E, Vranas, P, and Walker-Loud, A
- Subjects
hep-lat ,hep-ph ,nucl-th - Abstract
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2+1+1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a≃{0.15,0.12,0.09} fm and pion masses mπ≃{310,220,130} MeV. We have additionally generated two new ensembles with a∼0.12 fm and mπ∼{400,350} MeV. With a fixed flow time of tgf=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres0.1×ml, with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
- Published
- 2017
19. On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements
- Author
-
Bouchard, C, Chang, CC, Kurth, T, Orginos, K, and Walker-Loud, A
- Subjects
hep-lat ,hep-ph ,nucl-th - Abstract
The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on the Nf=2+1+1 MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of gA=1.213(26) with a quark-mass-dependent renormalization coefficient.
- Published
- 2017
20. Decay constants $f_B$ and $f_{B_s}$ from HISQ simulations
- Author
-
Lattice, Fermilab, Collaborations, MILC, Bazavov, A., Bernard, C., Bouchard, C., Brown, N., DeTar, C., Du, D., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Monahan, C., Primer, T., Na, Heechang, Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We give a progress report on a project aimed at a high-precision calculation of the decay constants $f_B$ and $f_{B_s}$ from simulations with HISQ heavy and light valence and sea quarks. Calculations are carried out with several heavy valence-quark masses on ensembles with 2+1+1 flavors of HISQ sea quarks at five lattice spacings and several light sea-quark mass ratios $m_{ud}/m_s$, including approximately physical sea-quark masses. This range of parameters provides excellent control of the continuum limit and of heavy-quark discretization errors. We present a preliminary error budget with projected uncertainties of 2.2~MeV and 1.5~MeV for $f_B$ and $f_{B_s}$, respectively., Comment: 7 pages, 6 figures, Lattice 2015
- Published
- 2015
21. $B\to Kl^+l^-$ decay form factors from three-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Jain, R. D., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We compute the form factors for the $B \to Kl^+l^-$ semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy $b$ quark. We present results for the form factors $f_+(q^2)$, $f_0(q^2)$, and $f_T(q^2)$, where $q^2$ is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of $q^2$, and we use the model-independent $z$ expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the $z$ expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low $q^2$. We also compare a Standard-Model calculation of the branching ratio for $B \to Kl^+l^-$ with experimental data., Comment: V2: Fig.7 added. Typos text corrected. Reference added. Version published in Phys. Rev. D
- Published
- 2015
- Full Text
- View/download PDF
22. $B\to\pi\ell\ell$ form factors for new-physics searches from lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Lunghi, E., Mackenzie, P. B., Meurice, Y., Neil, E., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice - Abstract
The rare decay $B\to\pi\ell^+\ell^-$ arises from $b\to d$ flavor-changing neutral currents and could be sensitive to physics beyond the Standard Model. Here, we present the first $ab$-$initio$ QCD calculation of the $B\to\pi$ tensor form factor $f_T$. Together with the vector and scalar form factors $f_+$ and $f_0$ from our companion work [J. A. Bailey $et~al.$, Phys. Rev. D 92, 014024 (2015)], these parameterize the hadronic contribution to $B\to\pi$ semileptonic decays in any extension of the Standard Model. We obtain the total branching ratio ${\text{BR}}(B^+\to\pi^+\mu^+\mu^-)=20.4(2.1)\times10^{-9}$ in the Standard Model, which is the most precise theoretical determination to date, and agrees with the recent measurement from the LHCb experiment [R. Aaij $et~al.$, JHEP 1212, 125 (2012)]. Note added: after this paper was submitted for publication, LHCb announced a new measurement of the differential decay rate for this process [T. Tekampe, talk at DPF 2015], which we now compare to the shape and normalization of the Standard-Model prediction., Comment: V3: Corrected errors in results for Standard-Model differential and total decay rates in abstract, Fig. 3, Table IV, and outlook. Added new preliminary LHCb data to Fig. 3 and brief discussion after outlook. Replaced outdated correlation matrix in Table III with correct final version. Other minor wording changes and references added. 7 pages, 4 tables, 3 figures
- Published
- 2015
- Full Text
- View/download PDF
23. $|V_{ub}|$ from $B\to\pi\ell\nu$ decays and (2+1)-flavor lattice QCD
- Author
-
Lattice, Fermilab, Collaborations, MILC, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We present a lattice-QCD calculation of the $B\to\pi\ell\nu$ semileptonic form factors and a new determination of the CKM matrix element $|V_{ub}|$. We use the MILC asqtad 2+1-flavor lattice configurations at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in the hard-pion and SU(2) limits. We employ a model-independent $z$ parameterization to extrapolate our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a new functional method to propagate information from the chiral-continuum extrapolation to the $z$ expansion. We present our results together with a complete systematic error budget, including a covariance matrix to enable the combination of our form factors with other lattice-QCD and experimental results. To obtain $|V_{ub}|$, we simultaneously fit the experimental data for the $B\to\pi\ell\nu$ differential decay rate obtained by the BaBar and Belle collaborations together with our lattice form-factor results. We find $|V_{ub}|=(3.72\pm 0.16)\times 10^{-3}$ where the error is from the combined fit to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring the QCD error on $|V_{ub}|$ to the same level as the experimental error. We also provide results for the $B\to\pi\ell\nu$ vector and scalar form factors obtained from the combined lattice and experiment fit, which are more precisely-determined than from our lattice-QCD calculation alone. These results can be used in other phenomenological applications and to test other approaches to QCD., Comment: 63 pages, 48 figures; v2: minor changes in Sec. IV, Table X, modified Fig.14,16, results unchanged
- Published
- 2015
- Full Text
- View/download PDF
24. The $B \to D \ell \nu$ form factors at nonzero recoil and $|V_{cb}|$ from $2+1$-flavor lattice QCD
- Author
-
Lattice, Fermilab, Collaborations, MILC, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice - Abstract
We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay $\overline{B} \rightarrow D \ell \overline{\nu}$ at nonzero recoil. We carry out numerical simulations on fourteen ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the $b$ and $c$ valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parameterize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for $f_+(q^2)$ and $f_0(q^2)$, including statistical and systematic errors, as coefficients of a series in the variable $z$ and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BaBar to determine the CKM matrix element, $|V_{cb}|=(39.6 \pm 1.7_{\rm QCD+exp} \pm 0.2_{\rm QED})\times 10^{-3}$. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. Finally, we use them to update our calculation of the ratio $R(D)$ in the Standard Model, which yields $R(D) = 0.299(11)$., Comment: 47 pages, 32 figures
- Published
- 2015
- Full Text
- View/download PDF
25. Testing the Standard Model under the weight of heavy flavors
- Author
-
Bouchard, C. M.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental precision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results., Comment: 18 pages, 9 figures; Review at The 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY; PoS(LATTICE2014)002: Ver. 2 fixes several several typos, including labels in Fig. 3 and updates references, including the addition of recent results to Figs. 7 and 8
- Published
- 2015
26. Neutral B-meson mixing parameters in and beyond the SM with 2+1 flavor lattice QCD
- Author
-
Bouchard, C. M., Freeland, E. D., Bernard, C. W., Chang, C. C., El-Khadra, A. X., Gámiz, M. E., Kronfeld, A. S., Laiho, J., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a \approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis., Comment: 7 pages, 4 figures, presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23-28 June, 2014, Columbia University, New York, NY
- Published
- 2014
27. Prosocialité perçue par les éducatrices en centre de la petite enfance et pragmatique du langage des enfants de 4 ans : une question de genre ?
- Author
-
Bouchard, C., Sylvestre, A., Leblond, J., and Trudel, J.
- Published
- 2020
- Full Text
- View/download PDF
28. Update on a short-distance D^0-meson mixing calculation with $N_f=2+1$ flavors
- Author
-
Chang, C. C., Bernard, C., Bouchard, C. M., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Kronfeld, A. S., Laiho, J., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice - Abstract
We present an update on our calculation of the short-distance $D^0$-meson mixing hadronic matrix elements. The analysis is performed on the MILC collaboration's $N_f=2+1$ asqtad configurations. We use asqtad light valence quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. SU(3), partially quenched, rooted, staggered heavy-meson chiral perturbation theory is used to extrapolate to the chiral-continuum limit. Systematic errors arising from the chiral-continuum extrapolation, heavy-quark discretization, and quark-mass uncertainties are folded into the statistical errors from the chiral-continuum fits with methods of Bayesian inference. A preliminary error budget for all five operators is presented., Comment: 7 pages, 1 figure, LATTICE2014 proceedings
- Published
- 2014
29. $B\to\pi\ell\nu$ semileptonic form factors from unquenched lattice QCD and determination of $|V_{ub}|$
- Author
-
Bailey, J. A., Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Levkova, L., Liu, Yuzhi, Mackenzie, P. B., Meurice, Y., Neil, E. T., Qiu, S., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We compute the $B\to\pi\ell\nu$ semileptonic form factors and update the determination of the CKM matrix element $|V_{ub}|$. We use the MILC asqtad ensembles with $N_f=2+1$ sea quarks at four different lattice spacings in the range $a \approx 0.045$~fm to $0.12$~fm. The lattice form factors are extrapolated to the continuum limit using SU(2) staggered chiral perturbation theory in the hard pion limit, followed by an extrapolation in $q^2$ to the full kinematic range using a functional $z$-parameterization. The extrapolation is combined with the experimental measurements of the partial branching fraction to extract $|V_{ub}|$. Our preliminary result is $|V_{ub}|=(3.72\pm 0.14)\times 10^{-3}$, where the error reflects both the lattice and experimental uncertainties, which are now on par with each other., Comment: 7 pages, 4 figures; talk presented at Lattice 2014. the 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, NY
- Published
- 2014
30. Charmed and light pseudoscalar meson decay constants from HISQ simulations
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\ \mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\ \mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{\pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively., Comment: 7 pages, 1 figure. Proceedings of the 32nd International Symposium on Lattice Field Theory; 23-28 June, 2014, Columbia University, New York
- Published
- 2014
31. Designing networks of resistively-coupled stochastic Magnetic Tunnel Junctions for energy-based optimum search
- Author
-
Danouchi, K., primary, Soumah, L., additional, Bouchard, C., additional, Disdier, F., additional, Fassatoui, A., additional, Phan, N.-T., additional, Ezzadeen, M., additional, Delaet, B., additional, Viala, B., additional, Prenat, G., additional, Anghel, L., additional, Talatchian, P., additional, Prejbeanu, I. -L., additional, Andrieu, F., additional, Garello, K., additional, and Hutin, L., additional
- Published
- 2023
- Full Text
- View/download PDF
32. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD using the experimentally determined value of $f_{\pi^+}$ for normalization. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors---up, down, strange, and charm---and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from $a\approx 0.06$ fm to $0.15$ fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\ \mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\ \mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately two to four times smaller than those of the most precise previous lattice calculations. We also obtain $f_{K^+}/f_{\pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively., Comment: v2: minor clarifications and additions; version published in Phys. Rev. D. (73 pages, 26 figures.)
- Published
- 2014
- Full Text
- View/download PDF
33. $B_s \to K \ell \nu$ form factors from lattice QCD
- Author
-
Bouchard, C. M., Lepage, G. Peter, Monahan, Christopher, Na, Heechang, and Shigemitsu, Junko
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We report the first lattice QCD calculation of the form factors for the standard model tree-level decay $B_s\to K \ell\nu$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $|V_{ub}|$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_s\to K\tau\nu$ and $B_s\to K\mu\nu$. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_s\to K$ form factors with those of the fictitious $B_s\to\eta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC Collaboration's $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses., Comment: 24 pages, 21 figures; Ver. 2 matches published version
- Published
- 2014
- Full Text
- View/download PDF
34. The $D_s$, $D^+$, $B_s$ and $B$ decay constants from $2+1$ flavor lattice QCD
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Mohler, D., Neil, E. T., Oktay, M. B., Qiu, S., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We present a study of the $D$ and $B$ leptonic decay constants on the MILC $N_f=2+1$ asqtad gauge ensembles using asqtad-improved staggered light quarks and clover heavy quarks in the Fermilab interpretation. Our previous analysis \cite{Bazavov:2011aa} computed the decay constants at lattice spacings $a \approx 0.14, 0.11$ and $0.083$ fm. We have extended the simulations to finer $a \approx 0.058$ and $0.043$ fm lattice spacings, and have also increased statistics; this allows us to address many important sources of uncertainty. Technical advances include a two-step two-point fit procedure, better tuning of the heavy quark masses and a better determination of the axial-vector current matching. The present analysis remains blinded, so here we focus on the improvements and their predicted impact on the error budget compared to the prior analysis., Comment: LATTICE 2013; added missing .bbl file
- Published
- 2014
35. Update of $|V_{cb}|$ from the $\bar{B}\to D^*\ell\bar{\nu}$ form factor at zero recoil with three-flavor lattice QCD
- Author
-
Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Qiu, Si-Wei, Simone, J., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We compute the zero-recoil form factor for the semileptonic decay $\bar{B}^0\to D^{*+}\ell^-\bar{\nu}$ (and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC \asqtad\ configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the $D_s$ and $B_s$ hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain $\mathcal{F}(1)=0.906(4)(12)$, where the first error is statistical and the second is the sum in quadrature of all systematic errors. With the latest HFAG average of experimental results and a cautious treatment of QED effects, we find $|V_{cb}| = (39.04 \pm 0.49_\text{expt} \pm 0.53_\text{QCD} \pm 0.19_\text{QED})\times10^{-3}$. The QCD error is now commensurate with the experimental error., Comment: 53 pages, 12 figures; expanded discussion of correlator fits, typos corrected, conforms to version published in PRD
- Published
- 2014
- Full Text
- View/download PDF
36. Heavy-meson semileptonic decays for the Standard Model and beyond
- Author
-
Liu, Yuzhi, Zhou, Ran, Bailey, Jon A., Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Jain, R. D., Kim, Jongjeong, Kronfeld, A. S., Levkova, J. Laiho L., Mackenzie, P. B., Meurice, Y., Mohler, D., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We calculate the form factors for the semileptonic decays $B_s\to K\ell\nu$ and $B\to K\ell\ell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $\sim1.2$ GeV and then extend to the entire kinematic range with the model-independent $z$ expansion., Comment: 7. pp, 6 figs. Presented at the 31st International Symposium on Lattice Field Theory - LATTICE 2013, July 29 - August 3, 2013, Mainz, Germany
- Published
- 2013
37. Determination of $|V_{us}|$ from a lattice-QCD calculation of the $K\to\pi\ell\nu$ semileptonic form factor with physical quark masses
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,High Energy Physics - Lattice - Abstract
We calculate the kaon semileptonic form factor $f_+(0)$ from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC collaboration with $N_f=2+1+1$ flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, $f_+(0) = 0.9704(32)$, where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of $K$ semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|=0.22290(74)(52)$, where the first error is from $f_+(0)$ and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from $|V_{us}|$ is now comparable to that from $|V_{ud}|$., Comment: 6 pages, 2 figures; version published in PRL
- Published
- 2013
- Full Text
- View/download PDF
38. Circumpolar genetic population structure of polar cod, Boreogadus saida
- Author
-
Nelson, R. J., Bouchard, C., Fortier, L., Majewski, A. R., Reist, J. D., Præbel, K., Madsen, M. L., Rose, G. A., Kessel, S. T., and Divoky, G. J.
- Published
- 2020
- Full Text
- View/download PDF
39. Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study
- Author
-
Gottlieb, DJ, Hek, K, Chen, T-H, Watson, NF, Eiriksdottir, G, Byrne, EM, Cornelis, M, Warby, SC, Bandinelli, S, Cherkas, L, Evans, DS, Grabe, HJ, Lahti, J, Li, M, Lehtimäki, T, Lumley, T, Marciante, KD, Pérusse, L, Psaty, BM, Robbins, J, Tranah, GJ, Vink, JM, Wilk, JB, Stafford, JM, Bellis, C, Biffar, R, Bouchard, C, Cade, B, Curhan, GC, Eriksson, JG, Ewert, R, Ferrucci, L, Fülöp, T, Gehrman, PR, Goodloe, R, Harris, TB, Heath, AC, Hernandez, D, Hofman, A, Hottenga, J-J, Hunter, DJ, Jensen, MK, Johnson, AD, Kähönen, M, Kao, L, Kraft, P, Larkin, EK, Lauderdale, DS, Luik, AI, Medici, M, Montgomery, GW, Palotie, A, Patel, SR, Pistis, G, Porcu, E, Quaye, L, Raitakari, O, Redline, S, Rimm, EB, Rotter, JI, Smith, AV, Spector, TD, Teumer, A, Uitterlinden, AG, Vohl, M-C, Widen, E, Willemsen, G, Young, T, Zhang, X, Liu, Y, Blangero, J, Boomsma, DI, Gudnason, V, Hu, F, Mangino, M, Martin, NG, O'Connor, GT, Stone, KL, Tanaka, T, Viikari, J, Gharib, SA, Punjabi, NM, Räikkönen, K, Völzke, H, Mignot, E, and Tiemeier, H
- Subjects
Biomedical and Clinical Sciences ,Clinical Sciences ,Mental Health ,Sleep Research ,Clinical Research ,Brain Disorders ,Genetics ,Human Genome ,2.1 Biological and endogenous factors ,Aetiology ,Good Health and Well Being ,Adult ,Black or African American ,Aged ,Dyssomnias ,Female ,Genetic Association Studies ,Genome-Wide Association Study ,Humans ,Male ,Middle Aged ,Polymorphism ,Single Nucleotide ,Self Report ,Sleep ,White People ,Biological Sciences ,Medical and Health Sciences ,Psychology and Cognitive Sciences ,Psychiatry ,Clinical sciences ,Biological psychology ,Clinical and health psychology - Abstract
Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10(-9)). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10(-4)). The strongest combined association was at rs1823125 (P=1.5 × 10(-10), minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.
- Published
- 2015
40. Charmed and strange pseudoscalar meson decay constants from HISQ simulations
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Kim, J., Komijani, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We update our determinations of $f_{D^+}$, $f_{D_s}$, $f_K$, and quark mass ratios from simulations with four flavors of HISQ dynamical quarks. The availability of ensembles with light quarks near their physical mass means that we can extract physical results with only small corrections for valence- and sea-quark mass mistunings instead of a chiral extrapolation. The adjusted valence-quark masses and lattice spacings may be determined from an ensemble-by-ensemble analysis, and the results for the quark mass ratios then extrapolated to the continuum limit. Our central values of the charmed meson decay constants, however, come from an alternative analysis, which uses staggered chiral perturbation theory for the heavy-light mesons, and allows us to incorporate data at unphysical quark masses where statistical errors are often smaller. A jackknife analysis propagated through all of these steps takes account of the correlations among all the quantities used in the analysis. Systematic errors from the finite spatial size and EM effects are estimated by varying the parameters in the analysis, and systematic errors from the assumptions in the continuum extrapolation are estimated from the spread of values from different extrapolations., Comment: presented at Lattice 2013, Mainz, Germany, July 29 - August 3, 2013. 14 pages, 7 figures
- Published
- 2013
41. K semileptonic form factor with HISQ fermions at the physical point
- Author
-
Gámiz, E., Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gottlieb, Steven, Heller, U. M., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice - Abstract
We present results for the form factor $f_+^{K \pi}(0)$, needed to extract the CKM matrix element $|V_{us}|$ from experimental data on semileptonic $K$ decays, on the HISQ $N_f=2+1+1$ MILC configurations. The HISQ action is also used for the valence sector. The data set used for our final result includes three different values of the lattice spacing and data at the physical light quark masses. We discuss the error budget and how this calculation improves on our previous determination of $f_+^{K \pi}(0)$ on the asqtad $N_f=2+1$ MILC configurations., Comment: 7 pages, 1 figure, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany; v2: minor changes
- Published
- 2013
42. Matrix Elements for $D$- and $B$-Mixing from 2+1 Flavor Lattice QCD
- Author
-
Chang, C. C., Bernard, C., Bouchard, C. M., El-Khadra, A. X., Freeland, E. D., Gámiz, E., Kronfeld, A. S., Laiho, J., and van de Water, R. S.
- Subjects
High Energy Physics - Lattice - Abstract
We present the status of our calculation of hadronic matrix elements for $D$- and $B$-meson mixing. We use a large set of the MILC collaboration's $N_f=2+1$ asqtad ensembles, which includes lattice spacings in the range $a\approx0.12$-0.045 fm, and up/down to strange quark mass ratios as low as 0.05. The asqtad action is also employed for the light valence quarks. For the heavy quarks we use the Sheikholeslami-Wohlert action with the Fermilab interpretation. Our calculation covers the complete set of five local operators needed to describe $B$-meson mixing in the Standard Model and Beyond. In the charm sector, our calculation of local mixing matrix elements may be used to constrain new physics models. We present final correlator fit results on the full data set for the $B$-meson mixing project and preliminary fit results for the $D$-meson mixing project., Comment: 7 pages, 4 figures, Lattice 2013 proceedings
- Published
- 2013
43. B and Bs semileptonic decay form factors with NRQCD/HISQ quarks
- Author
-
Bouchard, C. M., Lepage, G. Peter, Monahan, Chris J., Na, Heechang, and Shigemitsu, Junko
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We discuss our ongoing effort to calculate form factors for several B and Bs semileptonic decays. We have recently completed the first unquenched calculation of the form factors for the rare decay B -> K ll. Extrapolated over the full kinematic range of q^2 via model-independent z expansion, these form factor results allow us to calculate several Standard Model observables. We compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make predictions elsewhere. We discuss preliminary results for Bs -> K l nu which, when combined with anticipated experimental results, will provide an alternative exclusive determination of |Vub|. We are exploring the possibility of using ratios of form factors for this decay with those for the unphysical decay Bs -> eta_s as a means of significantly reducing form factor errors. We are also studying B -> pi l nu, form factors for which are combined with experiment in the standard exclusive determination of |Vub|. Our simulations use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations., Comment: 7 pages, 5 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, Germany
- Published
- 2013
44. Flavor Physics and Lattice QCD
- Author
-
Bouchard, C. M.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Lattice - Abstract
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision of such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics., Comment: Invited review of lattice QCD in quark and lepton flavor physics. Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 2013
- Published
- 2013
45. Neutral B mixing from 2+1 flavor lattice QCD
- Author
-
Freeland, E. D., Bouchard, C. M., Bernard, C., El-Khadra, A. X., Gamiz, E., Kronfeld, A. S., Laiho, J., and Van de Water, R. S.
- Subjects
High Energy Physics - Lattice - Abstract
We present an update of the Fermilab-MILC Collaboration's calculation of hadronic matrix elements for B^0-\bar{B^0} mixing. This work is a more extended analysis than our recent publication of the SU(3)-breaking ratio xi [arXiv:1205.7013]. We use the asqtad staggered action for light valence quarks in combination with the Fermilab interpretation of the Sheikoleslami-Wohlert action for heavy quarks. The calculations use MILC's 2+1 flavor asqtad ensembles. Ensembles include four lattice spacings from approximately 0.125 fm to 0.045 fm and up/down to strange quark mass ratios as low as 0.05. Our calculation covers the complete set of five operators needed to describe B mixing in the Standard Model and beyond. In addition to an update including a fuller set of analyzed data, we comment on the form of the staggered ChPT extrapolation function., Comment: 7 pages, 2 figures; Proceedings of the 30th International Symposium on Lattice Field Theory, June 24-29, 2012, Cairns, Australia
- Published
- 2012
46. Kaon semileptonic vector form factor and determination of |V_{us}| using staggered fermions
- Author
-
Bazavov, A., Bernard, C., Bouchard, C. M., DeTar, C., Du, Daping, El-Khadra, A. X., Foley, J., Freeland, E. D., Gámiz, E., Gottlieb, Steven, Heller, U. M., Kim, Jongjeong, Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, Ran
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
Using staggered fermions and twisted boundary conditions, we calculate the K meson semileptonic decay vector form factor at zero momentum transfer. The HISQ formulation is used for the valence quarks, while the sea quarks are simulated with the asqtad action (MILC N_f=2+1 configurations). For the chiral and continuum extrapolation we use two-loop continuum CHPT, supplemented by partially quenched staggered CHPT at one loop. Our result is f_+^{K\pi}(0) = 0.9667+-0.0023+-0.0033, where the first error is statistical and the second is the sum in quadrature of the systematic uncertainties. This result is the first N_f=2+1 calculation with two lattice spacings and a controlled continuum extrapolation. It is also the most precise result to date for the vector form factor and, although the central value is larger than previous unquenched lattice calculations, it is compatible with them within errors. Combining our value for f_+^{K\pi}(0) with the latest experimental measurements of K semileptonic decays, we obtain |V_{us}| = 0.2238+-0.0009+-0.0005, where the first error is from f_+^{K\pi}(0) and the second one is experimental. As a byproduct of our calculation, we obtain the combination of low-energy constants [C_{12}^r+C_{34}^r-(L_5^r)^2](M_\rho) = (3.62+-1.00)x10^{-6}., Comment: 28 pages, 6 figures
- Published
- 2012
- Full Text
- View/download PDF
47. Two-point Correlator Fits on HISQ Ensembles
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Hetrick, J. E., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Lightman, M., Mackenzie, P. B., Neil, E. T., Oktay, M., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We present our methods to fit the two point correlators for light, strange, and charmed pseudoscalar meson physics with the highly improved staggered quark (HISQ) action. We make use of the least-squares fit including the full covariance matrix of the correlators and including Gaussian constraints on some parameters. We fit the correlators on a variety of the HISQ ensembles. The lattice spacing ranges from 0.15 fm down to 0.06 fm. The light sea quark mass ranges from 0.2 times the strange quark mass down to the physical light quark mass. The HISQ ensembles also include lattices with different volumes and with unphysical values of the strange quark mass. We use the results from this work to obtain our preliminary results of $f_D$, $f_{D_s}$, $f_{D_s}/f_{D}$, and ratios of quark masses presented in another talk [1]., Comment: Proceedings of Lattice 2012 Int. Symposium
- Published
- 2012
48. A workable tool for assessing eco-efficiency in dairy processing using process simulation
- Author
-
Benoit, S., Margni, M., Bouchard, C., and Pouliot, Y.
- Published
- 2019
- Full Text
- View/download PDF
49. Kaon semileptonic decay form factors with HISQ valence quarks
- Author
-
Gamiz, E., Bailey, J. A., Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gottlieb, Steven, Heller, U. M., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Mackenzie, P. B., Neil, E. T., Oktay, M. B., Qiu, Si-Wei, Simone, J. N., Sugar, R., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice - Abstract
We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed., Comment: Proceedings of Lattice 2012 International Symposium, 7 pages, 4 figures
- Published
- 2012
50. Pseudoscalar meson physics with four dynamical quarks
- Author
-
Bazavov, A., Bernard, C., Bouchard, C., DeTar, C., Du, D., El-Khadra, A. X., Foley, J., Freeland, E. D., Gamiz, E., Gottlieb, Steven, Heller, U. M., Hetrick, J. E., Kim, J., Kronfeld, A. S., Laiho, J., Levkova, L., Lightman, M., Mackenzie, P. B., Neil, E. T., Oktay, M., Simone, J. N., Sugar, R. L., Toussaint, D., Van de Water, R. S., and Zhou, R.
- Subjects
High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings ranging from 0.15 to 0.06 fm, and sea-quark masses both above and at their physical value. The major results are charm meson decay constants f_D, f_{D_s} and f_{D_s}/f_D and ratios of quark masses. This talk will focus on our procedures for finding the decay constants on each ensemble, the continuum extrapolation, and estimates of systematic error., Comment: Proceedings of Lattice 2012 Int. Symposium
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.