837 results on '"Borrill, P."'
Search Results
2. An Evaluation of an Algorithm for the Selection of Flexible Survival Models for Cancer Immunotherapies: Pass or Fail?
- Author
-
Latimer, Nicholas R., Taylor, Kurt, Hatswell, Anthony J., Ho, Sophia, Okorogheye, Gabriel, Chen, Clara, Kim, Inkyu, Borrill, John, and Bertwistle, David
- Published
- 2024
- Full Text
- View/download PDF
3. Near-Field Channel Characterization for Mid-band ELAA Systems: Sounding, Parameter Estimation, and Modeling
- Author
-
Fan, Wei, Yuan, Zhiqiang, Lyu, Yejian, Zhang, Jianhua, Pedersen, Gert, Borrill, Jonathan, and Zhang, Fengchun
- Subjects
Electrical Engineering and Systems Science - Signal Processing - Abstract
6G communication will greatly benefit from using extremely large-scale antenna arrays (ELAAs) and new mid-band spectrums (7-24 GHz). These techniques require a thorough exploration of the challenges and potentials of the associated near-field (NF) phenomena. It is crucial to develop accurate NF channel models that include spherical wave propagation and spatial non-stationarity (SnS). However, channel measurement campaigns for mid-band ELAA systems have rarely been reported in the state-of-the-art. To this end, this work develops a channel sounder dedicated to mid-band ELAA systems based on a distributed modular vector network analyzer incorporating radio-over-fiber (RoF), phase compensation, and virtual antenna array schemes. This novel channel-sounding testbed based on off-the-shelf VNA has the potential to enable large-scale experimentation due to its generic and easy-accessible nature. The main challenges and solutions for developing NF channel models for mid-band ELAA systems are discussed, including channel sounders, multipath parameter estimation algorithms, and channel modeling frameworks. Besides, the study reports a measurement campaign in an indoor scenario using a 720-element virtual uniform circular array ELAA operating at {16-20} GHz, highlighting the presence of spherical wavefronts and spatial non-stationary effects. The effectiveness of the proposed near-field channel parameter estimator and channel modeling framework is also demonstrated using the measurement data., Comment: Submitted to IEEE Communication Magazine
- Published
- 2024
4. Sustained ocean cooling insufficient to reverse sea level rise from Antarctica
- Author
-
Alevropoulos-Borrill, Alanna, Golledge, Nicholas R., Cornford, Stephen L., Lowry, Daniel P., and Krapp, Mario
- Published
- 2024
- Full Text
- View/download PDF
5. The Future of Astronomical Data Infrastructure: Meeting Report
- Author
-
Blanton, Michael R., Evans, Janet D., Norman, Dara, O'Mullane, William, Price-Whelan, Adrian, Rizzi, Luca, Accomazzi, Alberto, Ansdell, Megan, Bailey, Stephen, Barrett, Paul, Berukoff, Steven, Bolton, Adam, Borrill, Julian, Cruz, Kelle, Dalcanton, Julianne, Desai, Vandana, Dubois-Felsmann, Gregory P., Economou, Frossie, Ferguson, Henry, Field, Bryan, Foreman-Mackey, Dan, Forero-Romero, Jaime, Gaffney, Niall, Gillies, Kim, Graham, Matthew J., Gwyn, Steven, Hennawi, Joseph, Hughes, Anna L. H., Jaffe, Tess, Jagannathan, Preshanth, Jenness, Tim, Jurić, Mario, Kavelaars, JJ, Kee, Kerk, Kern, Jeff, Kremin, Anthony, Labrie, Kathleen, Lacy, Mark, Law, Casey, Martínez-Galarza, Rafael, McCully, Curtis, McEnery, Julie, Miller, Bryan, Moriarty, Christopher, Muench, August, Muna, Demitri, Murillo, Angela, Narayan, Gautham, Neill, James D., Nikutta, Robert, Ojha, Roopesh, Olsen, Knut, O'Meara, John, Rusholme, Ben, Seaman, Robert, Starkman, Nathaniel, Still, Martin, Stoehr, Felix, Swinbank, John D., Teuben, Peter, Toledo, Ignacio, Tollerud, Erik, Turk, Matthew D., Turner, James, Vacca, William, Vieira, Joaquin, Weaver, Benjamin, Weiner, Benjamin, Weiss, Jason, Westfall, Kyle, Willman, Beth, and Zhao, Lily
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The astronomical community is grappling with the increasing volume and complexity of data produced by modern telescopes, due to difficulties in reducing, accessing, analyzing, and combining archives of data. To address this challenge, we propose the establishment of a coordinating body, an "entity," with the specific mission of enhancing the interoperability, archiving, distribution, and production of both astronomical data and software. This report is the culmination of a workshop held in February 2023 on the Future of Astronomical Data Infrastructure. Attended by 70 scientists and software professionals from ground-based and space-based missions and archives spanning the entire spectrum of astronomical research, the group deliberated on the prevailing state of software and data infrastructure in astronomy, identified pressing issues, and explored potential solutions. In this report, we describe the ecosystem of astronomical data, its existing flaws, and the many gaps, duplication, inconsistencies, barriers to access, drags on productivity, missed opportunities, and risks to the long-term integrity of essential data sets. We also highlight the successes and failures in a set of deep dives into several different illustrative components of the ecosystem, included as an appendix., Comment: 59 pages; please send comments and/or questions to foadi@googlegroups.com
- Published
- 2023
6. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland
- Author
-
Habib, Salman, Roser, Robert, Gerber, Richard, Antypas, Katie, Dart, Eli, Dosanjh, Sudip, Hack, James, Monga, Inder, Papka, Michael E, Riley, Katherine, Rotman, Lauren, Straatsma, Tjerk, Wells, Jack, Williams, Tim, Almgren, A, Amundson, J, Bailey, Stephen, Bard, Deborah, Bloom, Ken, Bockelman, Brian, Borgland, Anders, Borrill, Julian, Boughezal, Radja, Brower, Richard, Cowan, Benjamin, Finkel, Hal, Frontiere, Nicholas, Fuess, Stuart, Ge, Lixin, Gnedin, Nick, Gottlieb, Steven, Gutsche, Oliver, Han, T, Heitmann, Katrin, Hoeche, Stefan, Ko, Kwok, Kononenko, Oleksiy, LeCompte, Thomas, Li, Zheng, Lukic, Zarija, Mori, Warren, Ng, Cho-Kuen, Nugent, Peter, Oleynik, Gene, O’Shea, Brian, Padmanabhan, Nikhil, Petravick, Donald, Petriello, Frank J, Pope, Adrian, Power, John, Qiang, Ji, Reina, Laura, Rizzo, Thomas Gerard, Ryne, Robert, Schram, Malachi, Spentzouris, P, Toussaint, Doug, Vay, Jean Luc, Viren, B, Wuerthwein, Frank, Xiao, Liling, and Coffey, Richard
- Published
- 2023
7. Immune reconstitution, vaccine responses, and rituximab use after ex-vivo CD34-selected myeloablative allogenic hematopoietic cell transplantation
- Author
-
Melica, Giovanna, Preston, Elaina, Palazzo, Meighan, Seier, Kenneth, Malard, Florent, Cho, Christina, Devlin, Sean M., Maloy, Molly, Borrill, Taylor, Maslak, Peter, Shah, Gunjan L., and Perales, Miguel-Angel
- Published
- 2024
- Full Text
- View/download PDF
8. The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
- Author
-
Westbrook, B., Ade, P. A. R., Aguilar, M., Akiba, Y., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Beckman, S., Bender, A. N., Bianchini, F., Boettger, D., Borrill, J., Chapman, S., Chinone, Y., Coppi, G., Crowley, K., Cukierman, A., de, T., Dünner, R., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feeney, S. M., Feng, C., Fuller, G., Galitzki, N., Gilbert, A., Goeckner-Wald, N., Groh, J., Halverson, N. W., Hamada, T., Hasegawa, M., Hazumi, M., Hill, C. A., Holzapfel, W., Howe, L., Inoue, Y., Jaehnig, G., Jaffe, A., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Keskitalo, R., Kisner, T., Krachmalnicoff, N., Kusaka, A., Le, M., Lee, A. T., Leon, D., Linder, E., Lowry, L., Madurowicz, A., Mak, D., Matsuda, F., May, A., Miller, N. J., Minami, Y., Montgomery, J., Navaroli, M., Nishino, H., Peloton, J., Pham, A., Piccirillo, L., Plambeck, D., Poletti, D., Puglisi, G., Raum, C., Rebeiz, G., Reichardt, C. L., Richards, P. L., Roberts, H., Ross, C., Rotermund, K. M., Segawa, Y., Sherwin, B., Silva-Feaver, M., Siritanasak, P., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Tat, R., Teply, G. P., Tikhomirov, A., Tomaru, T., Tsai, C., Whitehorn, N., and Zahn, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simon Array (SA), which is an array of three cosmic microwave background (CMB) polarization sensitive telescopes located at the POLARBEAR (PB) site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each of which have four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission lines and cross-over process for orthogonal polarizations. The second we call Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15 mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of 5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/- 1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively.
- Published
- 2022
- Full Text
- View/download PDF
9. Wide Field High Cadence CMB Survey Designs for Chilean Telescopes
- Author
-
Ebina, Haruki, Keskitalo, Reijo, Borrill, Julian, Choi, Steve K., Kisner, Theodore, Naess, Sigurd, Niemack, Michael, and Stevens, Jason R.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present new wide field survey strategies for Chilean Large Aperture Telescopes (LAT) measuring the Cosmic Microwave Background (CMB), which we call Sinusoidal Modulated High Cadence Survey Strategies. The strategies were developed during the process of optimizing LAT measurements for the CMB-S4, Simons Observatory, and CCAT-prime collaborations. Observing more than $f_{sky} \sim 0.5$, the telescope consistently achieves high observation efficiency, even with Sun-avoidance enabled. Classical azimuthal scan survey strategies observing fields of equal size suffer from problems of observation depth non-uniformity relative to declination and lack of crosslinking. The new survey strategies described here significantly improve both uniformity and crosslinking while also enabling higher cadence observations for time-domain astrophysics. Uniformity and crosslinking are improved by modulation of azimuthal angular velocity and sinusoidal elevation nods, respectively. In particular, there is nearly uniform observation depth and crosslinking is improved from total lack of crosslinking near -40 degree declination to clearing the strictest thresholds for crosslinking across the entire field. The simulated strategies are compared to the strategies used for the Atacama Cosmology Telescope and previously studied Simons Observatory survey strategies., Comment: 9 pages, 15 figures, 1 table, SPIE Astronomical Telescopes + Instrumentation 2022
- Published
- 2022
- Full Text
- View/download PDF
10. Event-Based Imaging of Levitated Microparticles
- Author
-
Ren, Yugang, Benedetto, Enrique, Borrill, Harry, Savchuk, Yelizaveta, Message, Molly, O'Flynn, Katie, Rashid, Muddassar, and Millen, James
- Subjects
Physics - Instrumentation and Detectors - Abstract
Event-based imaging is a neurmorphic detection technique whereby an array of pixels detects a positive or negative change in light intensity at each pixel, and is hence particularly well suited to detecting motion. As compared to standard camera technology, an event-based camera reduces redundancy by not detecting regions of the image where there is no motion, allowing increased frame-rates without compromising on field-of-view. Here, we apply event-based imaging to detect the motion of a microparticle levitated under vacuum conditions, which greatly facilitates the study of nanothermodynamics and enables the independent detection and control of arrays of many particles.
- Published
- 2022
- Full Text
- View/download PDF
11. Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper
- Author
-
Chang, Clarence L., Huffenberger, Kevin M., Benson, Bradford A., Bianchini, Federico, Chluba, Jens, Delabrouille, Jacques, Flauger, Raphael, Hanany, Shaul, Jones, William C., Kogut, Alan J., McMahon, Jeffrey J., Meyers, Joel, Sehgal, Neelima, Simon, Sara M., Umilta, Caterina, Abazajian, Kevork N., Ahmed, Zeeshan, Akrami, Yashar, Anderson, Adam J., Ansarinejad, Behzad, Austermann, Jason, Baccigalupi, Carlo, Barkats, Denis, Barron, Darcy, Barry, Peter S., Battaglia, Nicholas, Baxter, Eric, Beck, Dominic, Bender, Amy N., Bennett, Charles, Beringue, Benjamin, Bischoff, Colin, Bleem, Lindsey, Bock, James, Bolliet, Boris, Bond, J Richard, Borrill, Julian, Brinckmann, Thejs, Brown, Michael L., Calabrese, Erminia, Carlstrom, John, Challinor, Anthony, Chang, Chihway, Chinone, Yuji, Clark, Susan E., Coulton, William, Cukierman, Ari, Cyr-Racine, Francis-Yan, Duff, Shannon M., Dvorkin, Cora, van Engelen, Alexander, Errard, Josquin, Eskilt, Johannes R., Essinger-Hileman, Thomas, Fabbian, Giulio, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey, Freese, Katherine, Galitzki, Nicholas, Gawiser, Eric, Grin, Daniel, Grohs, Evan, Gruppuso, Alessandro, Gudmundsson, Jon E., Halverson, Nils W., Hamilton, Jean-Christophe, Harrington, Kathleen, Henrot-Versillé, Sophie, Hensley, Brandon, Hill, J. Colin, Hincks, Adam D., Hlozek, Renee, Holzapfel, William, Hotinli, Selim C., Hui, Howard, Ibitoye, Ayodeji, Johnson, Matthew, Johnson, Bradley R., Kang, Jae Hwan, Karkare, Kirit S., Knox, Lloyd, Kovac, John, Lau, Kenny, Legrand, Louis, Loverde, Marilena, Lubin, Philip, Ma, Yin-Zhe, Mroczkowski, Tony, Mukherjee, Suvodip, Münchmeyer, Moritz, Nagai, Daisuke, Nagy, Johanna, Niemack, Michael, Novosad, Valentine, Omori, Yuuki, Orlando, Giorgio, Pan, Zhaodi, Perotto, Laurence, Petroff, Matthew A., Pogosian, Levon, Pryke, Clem, Rahlin, Alexandra, Raveri, Marco, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Ruhl, John, Schaan, Emmanuel, Shandera, Sarah, Shimon, Meir, Soliman, Ahmed, Stark, Antony A., Starkman, Glenn D., Stompor, Radek, Thakur, Ritoban Basu, Trendafilova, Cynthia, Tristram, Matthieu, Trivedi, Pranjal, Tucker, Gregory, Di Valentino, Eleonora, Vieira, Joaquin, Vieregg, Abigail, Wang, Gensheng, Watson, Scott, Wenzl, Lukas, Wollack, Edward J., Wu, W. L. Kimmy, Xu, Zhilei, Zegeye, David, and Zhang, Cheng
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
This is a solicited whitepaper for the Snowmass 2021 community planning exercise. The paper focuses on measurements and science with the Cosmic Microwave Background (CMB). The CMB is foundational to our understanding of modern physics and continues to be a powerful tool driving our understanding of cosmology and particle physics. In this paper, we outline the broad and unique impact of CMB science for the High Energy Cosmic Frontier in the upcoming decade. We also describe the progression of ground-based CMB experiments, which shows that the community is prepared to develop the key capabilities and facilities needed to achieve these transformative CMB measurements., Comment: contribution to Snowmass 2021
- Published
- 2022
12. Snowmass 2021 CMB-S4 White Paper
- Author
-
Abazajian, Kevork, Abdulghafour, Arwa, Addison, Graeme E., Adshead, Peter, Ahmed, Zeeshan, Ajello, Marco, Akerib, Daniel, Allen, Steven W., Alonso, David, Alvarez, Marcelo, Amin, Mustafa A., Amiri, Mandana, Anderson, Adam, Ansarinejad, Behzad, Archipley, Melanie, Arnold, Kam S., Ashby, Matt, Aung, Han, Baccigalupi, Carlo, Baker, Carina, Bakshi, Abhishek, Bard, Debbie, Barkats, Denis, Barron, Darcy, Barry, Peter S., Bartlett, James G., Barton, Paul, Thakur, Ritoban Basu, Battaglia, Nicholas, Beall, Jim, Bean, Rachel, Beck, Dominic, Belkner, Sebastian, Benabed, Karim, Bender, Amy N., Benson, Bradford A., Besuner, Bobby, Bethermin, Matthieu, Bhimani, Sanah, Bianchini, Federico, Biquard, Simon, Birdwell, Ian, Bischoff, Colin A., Bleem, Lindsey, Bocaz, Paulina, Bock, James J., Bocquet, Sebastian, Boddy, Kimberly K., Bond, J. Richard, Borrill, Julian, Bouchet, Francois R., Brinckmann, Thejs, Brown, Michael L., Bryan, Sean, Buza, Victor, Byrum, Karen, Calabrese, Erminia, Calafut, Victoria, Caldwell, Robert, Carlstrom, John E., Carron, Julien, Cecil, Thomas, Challinor, Anthony, Chan, Victor, Chang, Clarence L., Chapman, Scott, Charles, Eric, Chauvin, Eric, Cheng, Cheng, Chesmore, Grace, Cheung, Kolen, Chinone, Yuji, Chluba, Jens, Cho, Hsiao-Mei Sherry, Choi, Steve, Clancy, Justin, Clark, Susan, Cooray, Asantha, Coppi, Gabriele, Corlett, John, Coulton, Will, Crawford, Thomas M., Crites, Abigail, Cukierman, Ari, Cyr-Racine, Francis-Yan, Dai, Wei-Ming, Daley, Cail, Dart, Eli, Daues, Gregorg, de Haan, Tijmen, Deaconu, Cosmin, Delabrouille, Jacques, Derylo, Greg, Devlin, Mark, Di Valentino, Eleonora, Dierickx, Marion, Dober, Brad, Doriese, Randy, Duff, Shannon, Dutcher, Daniel, Dvorkin, Cora, Dünner, Rolando, Eftekhari, Tarraneh, Eimer, Joseph, Bouhargani, Hamza El, Elleflot, Tucker, Emerson, Nick, Errard, Josquin, Essinger-Hileman, Thomas, Fabbian, Giulio, Fanfani, Valentina, Fasano, Alessandro, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey P., Flauger, Raphael, Flaugher, Brenna, Fraisse, Aurelien A., Frisch, Josef, Frolov, Andrei, Galitzki, Nicholas, Gallardo, Patricio A., Galli, Silvia, Ganga, Ken, Gerbino, Martina, Giannakopoulos, Christos, Gilchriese, Murdock, Gluscevic, Vera, Goeckner-Wald, Neil, Goldfinger, David, Green, Daniel, Grimes, Paul, Grin, Daniel, Grohs, Evan, Gualtieri, Riccardo, Guarino, Vic, Gudmundsson, Jon E., Gullett, Ian, Guns, Sam, Habib, Salman, Haller, Gunther, Halpern, Mark, Halverson, Nils W., Hanany, Shaul, Hand, Emma, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hazumi, Masashi, Heitmann, Katrin, Henderson, Shawn, Hensley, Brandon, Herbst, Ryan, Hervias-Caimapo, Carlos, Hill, J. Colin, Hills, Richard, Hivon, Eric, Hlozek, Renée, Ho, Anna, Holder, Gil, Hollister, Matt, Holzapfel, William, Hood, John, Hotinli, Selim, Hryciuk, Alec, Hubmayr, Johannes, Huffenberger, Kevin M., Hui, Howard, nez, Roberto Ibá, Ibitoye, Ayodeji, Ikape, Margaret, Irwin, Kent, Jacobus, Cooper, Jeong, Oliver, Johnson, Bradley R., Johnstone, Doug, Jones, William C., Joseph, John, Jost, Baptiste, Kang, Jae Hwan, Kaplan, Ari, Karkare, Kirit S., Katayama, Nobuhiko, Keskitalo, Reijo, King, Cesiley, Kisner, Theodore, Klein, Matthias, Knox, Lloyd, Koopman, Brian J., Kosowsky, Arthur, Kovac, John, Kovetz, Ely D., Krolewski, Alex, Kubik, Donna, Kuhlmann, Steve, Kuo, Chao-Lin, Kusaka, Akito, Lähteenmäki, Anne, Lau, Kenny, Lawrence, Charles R., Lee, Adrian T., Legrand, Louis, Leitner, Matthaeus, Leloup, Clément, Lewis, Antony, Li, Dale, Linder, Eric, Liodakis, Ioannis, Liu, Jia, Long, Kevin, Louis, Thibaut, Loverde, Marilena, Lowry, Lindsay, Lu, Chunyu, Lubin, Phil, Ma, Yin-Zhe, Maccarone, Thomas, Madhavacheril, Mathew S., Maldonado, Felipe, Mantz, Adam, Marques, Gabriela, Matsuda, Frederick, Mauskopf, Philip, May, Jared, McCarrick, Heather, McCracken, Ken, McMahon, Jeffrey, Meerburg, P. Daniel, Melin, Jean-Baptiste, Menanteau, Felipe, Meyers, Joel, Millea, Marius, Miranda, Vivian, Mitchell, Don, Mohr, Joseph, Moncelsi, Lorenzo, Monzani, Maria Elena, Moshed, Magdy, Mroczkowski, Tony, Mukherjee, Suvodip, Münchmeyer, Moritz, Nagai, Daisuke, Nagarajappa, Chandan, Nagy, Johanna, Namikawa, Toshiya, Nati, Federico, Natoli, Tyler, Nerval, Simran, Newburgh, Laura, Nguyen, Hogan, Nichols, Erik, Nicola, Andrina, Niemack, Michael D., Nord, Brian, Norton, Tim, Novosad, Valentine, O'Brient, Roger, Omori, Yuuki, Orlando, Giorgio, Osherson, Benjamin, Osten, Rachel, Padin, Stephen, Paine, Scott, Partridge, Bruce, Patil, Sanjaykumar, Petravick, Don, Petroff, Matthew, Pierpaoli, Elena, Pilleux, Mauricio, Pogosian, Levon, Prabhu, Karthik, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Raghunathan, Srinivasan, Rahlin, Alexandra, Raveri, Marco, Reese, Ben, Reichardt, Christian L., Remazeilles, Mathieu, Rizzieri, Arianna, Rocha, Graca, Roe, Natalie A., Rotermund, Kaja, Roy, Anirban, Ruhl, John E., Saba, Joe, Sailer, Noah, Salatino, Maria, Saliwanchik, Benjamin, Sapozhnikov, Leonid, Rao, Mayuri Sathyanarayana, Saunders, Lauren, Schaan, Emmanuel, Schillaci, Alessandro, Schmitt, Benjamin, Scott, Douglas, Sehgal, Neelima, Shandera, Sarah, Sherwin, Blake D., Shirokoff, Erik, Shiu, Corwin, Simon, Sara M., Singari, Baibhav, Slosar, Anze, Spergel, David, Germaine, Tyler St., Staggs, Suzanne T., Stark, Antony A., Starkman, Glenn D., Steinbach, Bryan, Stompor, Radek, Stoughton, Chris, Suzuki, Aritoki, Tajima, Osamu, Tandoi, Chris, Teply, Grant P., Thayer, Gregg, Thompson, Keith, Thorne, Ben, Timbie, Peter, Tomasi, Maurizio, Trendafilova, Cynthia, Tristram, Matthieu, Tucker, Carole, Tucker, Gregory, Umiltà, Caterina, van Engelen, Alexander, van Marrewijk, Joshiwa, Vavagiakis, Eve M., Vergès, Clara, Vieira, Joaquin D., Vieregg, Abigail G., Wagoner, Kasey, Wallisch, Benjamin, Wang, Gensheng, Wang, Guo-Jian, Watson, Scott, Watts, Duncan, Weaver, Chris, Wenzl, Lukas, Westbrook, Ben, White, Martin, Whitehorn, Nathan, Wiedlea, Andrew, Williams, Paul, Wilson, Robert, Winch, Harrison, Wollack, Edward J., Wu, W. L. Kimmy, Xu, Zhilei, Yefremenko, Volodymyr G., Yu, Cyndia, Zegeye, David, Zivick, Jeff, and Zonca, Andrea
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
This Snowmass 2021 White Paper describes the Cosmic Microwave Background Stage 4 project CMB-S4, which is designed to cross critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. We provide an overview of the science case, the technical design, and project plan., Comment: Contribution to Snowmass 2021. arXiv admin note: substantial text overlap with arXiv:1908.01062, arXiv:1907.04473
- Published
- 2022
13. Improved limits on the tensor-to-scalar ratio using BICEP and Planck
- Author
-
Tristram, M., Banday, A. J., Górski, K. M., Keskitalo, R., Lawrence, C. R., Andersen, K. J., Barreiro, R. B., Borrill, J., Colombo, L. P. L., Eriksen, H. K., Fernandez-Cobos, R., Kisner, T. S., Martínez-González, E., Partridge, B., Scott, D., Svalheim, T. L., and Wehus, I. K.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present constraints on the tensor-to-scalar ratio r using a combination of BICEP/Keck 2018 and Planck PR4 data allowing us to fit for r consistently with the six parameters of the $\Lambda$CDM model without fixing any of them. In particular, we are able to derive a constraint on the reionization optical depth $\tau$ and thus propagate its uncertainty onto the posterior distribution for r. While Planck sensitivity to r is no longer comparable with ground-based measurements, combining Planck with BK18 and BAO gives results consistent with r = 0 and tightens the constraint to r < 0.032., Comment: 7 pages, 7 figures, published in PRD
- Published
- 2021
- Full Text
- View/download PDF
14. Improved limits on the tensor-to-scalar ratio using BICEP and Planck data
- Author
-
Tristram, M, Banday, AJ, Górski, KM, Keskitalo, R, Lawrence, CR, Andersen, KJ, Barreiro, RB, Borrill, J, Colombo, LPL, Eriksen, HK, Fernandez-Cobos, R, Kisner, TS, Martínez-González, E, Partridge, B, Scott, D, Svalheim, TL, and Wehus, IK
- Subjects
Particle and High Energy Physics ,Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Mathematical physics ,Astronomical sciences ,Particle and high energy physics - Abstract
We present constraints on the tensor-to-scalar ratio r using a combination of BICEP/Keck 2018 (BK18) and Planck PR4 data allowing us to fit for r consistently with the six parameters of the ΛCDM model. We discuss the sensitivity of constraints on r to uncertainties in the ΛCDM parameters as defined by the Planck data. In particular, we are able to derive a constraint on the reionization optical depth τ and thus propagate its uncertainty into the posterior distribution for r. While Planck sensitivity to r is slightly lower than the current ground-based measurements, the combination of Planck with BK18 and baryon-acoustic-oscillation data yields results consistent with r=0 and tightens the constraint to r
- Published
- 2022
15. The Python Sky Model 3 software
- Author
-
Zonca, Andrea, Thorne, Ben, Krachmalnicoff, Nicoletta, and Borrill, Julian
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Python Sky Model (PySM) is a Python package used by Cosmic Microwave Background (CMB) experiments to simulate maps, in HEALPix pixelization, of the various diffuse astrophysical components of Galactic emission relevant at CMB frequencies (i.e. dust, synchrotron, free-free and Anomalous Microwave Emission), as well as the CMB itself. These maps may be integrated over a given instrument bandpass and smoothed with a given instrument beam. PySM 2, released in 2016, has become the de-facto standard for simulating Galactic emission, for example it is used by CMB-S4, Simons Observatory, LiteBird, PICO, CLASS, POLARBEAR and other CMB experiments, as shown by the 80+ citations of the PySM 2 publication. As the resolution of upcoming experiments increases, the PySM 2 software has started to show some limitations, the solution to these issues was to reimplement PySM from scratch focusing on these features: reimplement all the models with the numba Just-In-Time compiler for Python to reduce memory overhead and optimize performance; use MPI through mpi4py to coordinate execution of PySM 3 across multiple nodes and rely on libsharp, for distributed spherical harmonic transforms; employ the data utilities infrastructure provided by astropy to download the input templates and cache them when requested. At this stage we strive to maintain full compatibility with PySM 2, therefore we implement the exact same astrophysical emission models with the same naming scheme. In the extensive test suite we compare the output of each PySM 3 model with the results obtained by PySM 2., Comment: Submitted to JOSS, Github repository: https://github.com/galsci/pysm
- Published
- 2021
- Full Text
- View/download PDF
16. Simulating Calibration and Beam Systematics for a Future CMB Space Mission with the TOAST Package
- Author
-
Puglisi, Giuseppe, Keskitalo, Reijo, Kisner, Ted, and Borrill, Julian D.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We address in this work the instrumental systematic errors that can potentially affect the forthcoming and future Cosmic Microwave Background experiments aimed at observing its polarized emission. In particular, we focus on the systematics induced by the beam and calibration, which are considered the major sources of leakage from total intensity measurements to polarization. We simulated synthetic data sets with Time-Ordered Astrophysics Scalable Tools, a publicly available simulation and data analysis package. We also propose a mitigation technique aiming at reducing the leakage by means of a template fitting approach. This technique has shown promising results reducing the leakage by 2 orders of magnitude at the power spectrum level when applied to a realistic simulated data set of the LiteBIRD satellite mission.
- Published
- 2021
- Full Text
- View/download PDF
17. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
- Author
-
Abazajian, Kevork, Addison, Graeme E, Adshead, Peter, Ahmed, Zeeshan, Akerib, Daniel, Ali, Aamir, Allen, Steven W, Alonso, David, Alvarez, Marcelo, Amin, Mustafa A, Anderson, Adam, Arnold, Kam S, Ashton, Peter, Baccigalupi, Carlo, Bard, Debbie, Barkats, Denis, Barron, Darcy, Barry, Peter S, Bartlett, James G, Thakur, Ritoban Basu, Battaglia, Nicholas, Bean, Rachel, Bebek, Chris, Bender, Amy N, Benson, Bradford A, Bianchini, Federico, Bischoff, Colin A, Bleem, Lindsey, Bock, James J, Bocquet, Sebastian, Boddy, Kimberly K, Bond, J Richard, Borrill, Julian, Bouchet, François R, Brinckmann, Thejs, Brown, Michael L, Bryan, Sean, Buza, Victor, Byrum, Karen, Caimapo, Carlos Hervias, Calabrese, Erminia, Calafut, Victoria, Caldwell, Robert, Carlstrom, John E, Carron, Julien, Cecil, Thomas, Challinor, Anthony, Chang, Clarence L, Chinone, Yuji, Cho, Hsiao-Mei Sherry, Cooray, Asantha, Coulton, Will, Crawford, Thomas M, Crites, Abigail, Cukierman, Ari, Cyr-Racine, Francis-Yan, de Haan, Tijmen, Delabrouille, Jacques, Devlin, Mark, Di Valentino, Eleonora, Dierickx, Marion, Dobbs, Matt, Duff, Shannon, Dvorkin, Cora, Eimer, Joseph, Elleflot, Tucker, Errard, Josquin, Essinger-Hileman, Thomas, Fabbian, Giulio, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey P, Flauger, Raphael, Flaugher, Brenna, Fraisse, Aurelien A, Frolov, Andrei, Galitzki, Nicholas, Gallardo, Patricio A, Galli, Silvia, Ganga, Ken, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Green, Daniel, Grin, Daniel, Grohs, Evan, Gualtieri, Riccardo, Gudmundsson, Jon E, Gullett, Ian, Gupta, Nikhel, Habib, Salman, Halpern, Mark, Halverson, Nils W, Hanany, Shaul, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hazumi, Masashi, Heitmann, Katrin, and Henderson, Shawn
- Subjects
Particle and High Energy Physics ,Physical Sciences ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Physical Chemistry (incl. Structural) ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
CMB-S4 - the next-generation ground-based cosmic microwave background (CMB) experiment - is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2-3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
- Published
- 2022
18. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Montier, L., Mot, B., de Bernardis, P., Maffei, B., Pisano, G., Columbro, F., Gudmundsson, J. E., Henrot-Versillé, S., Lamagna, L., Montgomery, J., Prouvé, T., Russell, M., Savini, G., Stever, S., Thompson, K. L., Tsujimoto, M., Tucker, C., Westbrook, B., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Morgante, G., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Polenta, G., Poletti, D., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34GHz to 448GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium- and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89-224GHz) and the High-Frequency Telescope (166-448GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., Comment: SPIE Conference
- Published
- 2021
- Full Text
- View/download PDF
19. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Hazumi, M., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banjeri, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., de Bernardis, P., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Columbro, F., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Henrot-Versillé, S., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mitsuda, K., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., Noviello, F., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sekimoto, Y., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stever, S., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., Comment: 20 pages, 9 figures
- Published
- 2021
- Full Text
- View/download PDF
20. Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD
- Author
-
Sekimoto, Y., Ade, P. A. R., Adler, A., Allys, E., Arnold, K., Auguste, D., Aumont, J., Aurlien, R., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beck, D., Beckman, S., Bermejo, J., de Bernardis, P., Bersanelli, M., Bonis, J., Borrill, J., Boulanger, F., Bounissou, S., Brilenkov, M., Brown, M., Bucher, M., Calabrese, E., Campeti, P., Carones, A., Casas, F. J., Challinor, A., Chan, V., Cheung, K., Chinone, Y., Cliche, J. F., Colombo, L., Columbro, F., Cubas, J., Cukierman, A., Curtis, D., D'Alessandro, G., Dachlythra, N., De Petris, M., Dickinson, C., Diego-Palazuelos, P., Dobbs, M., Dotani, T., Duband, L., Duff, S., Duval, J. M., Ebisawa, K., Elleflot, T., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gao, J. R., Genova-Santos, R., Gerbino, M., Gervasi, M., Ghigna, T., Gjerløw, E., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., de Haan, T., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versillé, S., Herman, D., Herranz, D., Hill, C. A., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R. A., Hoshino, Y., de la Hoz, E., Hubmayr, J., Ichiki, K., iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G., Kaga, T., Kashima, S., Katayama, N., Kato, A., Kawasaki, T., Keskitalo, R., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kreykenbohm, I., Kuo, C. L., Kushino, A., Lamagna, L., Lanen, J. V., Lattanzi, M., Lee, A. T., Leloup, C., Levrier, F., Linder, E., Louis, T., Luzzi, G., Maciaszek, T., Maffei, B., Maino, D., Maki, M., Mandelli, S., Martinez-Gonzalez, E., Masi, S., Matsumura, T., Mennella, A., Migliaccio, M., Minanmi, Y., Mitsuda, K., Montgomery, J., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagano, Y., Nagasaki, T., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerval, S., Nishibori, T., Nishino, H., O'Sullivan, C., Ogawa, H., Oguri, S., Ohsaki, H., Ohta, I. S., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Peloton, J., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Reinecke, M., Remazeilles, M., Ritacco, A., Roudil, G., Rubino-Martin, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Sasaki, M., Savini, G., Scott, D., Seibert, J., Sherwin, B., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Stever, S., Stompor, R., Sugai, H., Sugiyama, S., Suzuki, A., Suzuki, J., Svalheim, T. L., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takase, Y., Takeda, Y., Tartari, A., Taylor, E., Terao, Y., Thommesen, H., Thompson, K. L., Thorne, B., Toda, T., Tomasi, M., Tominaga, M., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Wehus, I., Weller, J., Westbrook, B., Wilms, J., Winter, B., Wollack, E. J., Yamasaki, N. Y., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2021
- Full Text
- View/download PDF
21. Planck constraints on the tensor-to-scalar ratio
- Author
-
Tristram, M., Banday, A. J., Górski, K. M., Keskitalo, R., Lawrence, C. R., Andersen, K. J., Barreiro, R. B., Borrill, J., Eriksen, H. K., Fernandez-Cobos, R., Kisner, T. S., Martínez-González, E., Partridge, B., Scott, D., Svalheim, T. L., Thommesen, H., and Wehus, I. K.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present constraints on the tensor-to-scalar ratio r using Planck data. We use the latest release of Planck maps (PR4), processed with the NPIPE code, which produces calibrated frequency maps in temperature and polarization for all Planck channels from 30 GHz to 857 GHz using the same pipeline. We computed constraints on r using the BB angular power spectrum, and we also discuss constraints coming from the TT spectrum. Given Planck's noise level, the TT spectrum gives constraints on r that are cosmic-variance limited (with $\sigma$(r)=0.093), but we show that the marginalized posterior peaks towards negative values of r at about the 1.2$\sigma$ level. We derived Planck constraints using the BB power spectrum at both large angular scales (the 'reionization bump') and intermediate angular scales (the 'recombination bump') from $\ell$=2 to 150, and find a stronger constraint than that from TT, with $\sigma$(r)=0.069. The Planck BB spectrum shows no systematic bias, and is compatible with zero, given both the statistical noise and the systematic uncertainties. The likelihood analysis using B modes yields the constraint r<0.158 at 95% confidence using more than 50% of the sky. This upper limit tightens to r<0.069 when Planck EE, BB, and EB power spectra are combined consistently, and it tightens further to r<0.056 when the Planck TT power spectrum is included in the combination. Finally, combining Planck with BICEP2/Keck 2015 data yields an upper limit of r<0.044., Comment: 11 pages, 10 figures, 8 appendix pages. Revised to match version accepted by Astronomy & Astrophysics
- Published
- 2020
- Full Text
- View/download PDF
22. Planck intermediate results. LV. Reliability and thermal properties of high-frequency sources in the Second Planck Catalogue of Compact Sources
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Carvalho, P., Chiang, H. C., Crill, B. P., Cuttaia, F., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fernandez-Cobos, R., Finelli, F., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Ganga, K., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Hobson, M., Huang, Z., Jones, W. C., Keihänen, E., Keskitalo, R., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Migliaccio, M., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Paoletti, D., Partridge, B., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Ruiz-Granados, B., Savelainen, M., Scott, D., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution, which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Planck's three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeeP's data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1 per cent of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. The results of the BeeP extension of PCCS2, which are made publicly available via the PLA, will enable the study of the thermal properties of well-defined samples of compact Galactic and extra-galactic dusty sources., Comment: 55 pages. Accepted for publication in A&A. The BeeP catalogue will be published in the Planck Legacy Archive (https://pla.esac.esa.int/pla)
- Published
- 2020
- Full Text
- View/download PDF
23. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
- Author
-
Collaboration, CMB-S4, Abazajian, Kevork, Addison, Graeme E., Adshead, Peter, Ahmed, Zeeshan, Akerib, Daniel, Ali, Aamir, Allen, Steven W., Alonso, David, Alvarez, Marcelo, Amin, Mustafa A., Anderson, Adam, Arnold, Kam S., Ashton, Peter, Baccigalupi, Carlo, Bard, Debbie, Barkats, Denis, Barron, Darcy, Barry, Peter S., Bartlett, James G., Thakur, Ritoban Basu, Battaglia, Nicholas, Bean, Rachel, Bebek, Chris, Bender, Amy N., Benson, Bradford A., Bianchini, Federico, Bischoff, Colin A., Bleem, Lindsey, Bock, James J., Bocquet, Sebastian, Boddy, Kimberly K., Bond, J. Richard, Borrill, Julian, Bouchet, François R., Brinckmann, Thejs, Brown, Michael L., Bryan, Sean, Buza, Victor, Byrum, Karen, Caimapo, Carlos Hervias, Calabrese, Erminia, Calafut, Victoria, Caldwell, Robert, Carlstrom, John E., Carron, Julien, Cecil, Thomas, Challinor, Anthony, Chang, Clarence L., Chinone, Yuji, Cho, Hsiao-Mei Sherry, Cooray, Asantha, Coulton, Will, Crawford, Thomas M., Crites, Abigail, Cukierman, Ari, Cyr-Racine, Francis-Yan, de Haan, Tijmen, Delabrouille, Jacques, Devlin, Mark, Di Valentino, Eleonora, Dierickx, Marion, Dobbs, Matt, Duff, Shannon, Dunkley, Jo, Dvorkin, Cora, Eimer, Joseph, Elleflot, Tucker, Errard, Josquin, Essinger-Hileman, Thomas, Fabbian, Giulio, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey P., Flauger, Raphael, Flaugher, Brenna, Fraisse, Aurelien A., Frolov, Andrei, Galitzki, Nicholas, Gallardo, Patricio A., Galli, Silvia, Ganga, Ken, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Green, Daniel, Grin, Daniel, Grohs, Evan, Gualtieri, Riccardo, Gudmundsson, Jon E., Gullett, Ian, Gupta, Nikhel, Habib, Salman, Halpern, Mark, Halverson, Nils W., Hanany, Shaul, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hazumi, Masashi, Heitmann, Katrin, Henderson, Shawn, Hensley, Brandon, Hill, Charles, Hill, J. Colin, Hlozek, Renée, Ho, Shuay-Pwu Patty, Hoang, Thuong, Holder, Gil, Holzapfel, William, Hood, John, Hubmayr, Johannes, Huffenberger, Kevin M., Hui, Howard, Irwin, Kent, Jeong, Oliver, Johnson, Bradley R., Jones, William C., Kang, Jae Hwan, Karkare, Kirit S., Katayama, Nobuhiko, Keskitalo, Reijo, Kisner, Theodore, Knox, Lloyd, Koopman, Brian J., Kosowsky, Arthur, Kovac, John, Kovetz, Ely D., Kuhlmann, Steve, Kuo, Chao-lin, Kusaka, Akito, Lähteenmäki, Anne, Lawrence, Charles R., Lee, Adrian T., Lewis, Antony, Li, Dale, Linder, Eric, Loverde, Marilena, Lowitz, Amy, Lubin, Phil, Madhavacheril, Mathew S., Mantz, Adam, Marques, Gabriela, Matsuda, Frederick, Mauskopf, Philip, McCarrick, Heather, McMahon, Jeffrey, Meerburg, P. Daniel, Melin, Jean-Baptiste, Menanteau, Felipe, Meyers, Joel, Millea, Marius, Mohr, Joseph, Moncelsi, Lorenzo, Monzani, Maria, Mroczkowski, Tony, Mukherjee, Suvodip, Nagy, Johanna, Namikawa, Toshiya, Nati, Federico, Natoli, Tyler, Newburgh, Laura, Niemack, Michael D., Nishino, Haruki, Nord, Brian, Novosad, Valentine, O'Brient, Roger, Padin, Stephen, Palladino, Steven, Partridge, Bruce, Petravick, Don, Pierpaoli, Elena, Pogosian, Levon, Prabhu, Karthik, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Rahlin, Alexandra, Rao, Mayuri Sathyanarayana, Raveri, Marco, Reichardt, Christian L., Remazeilles, Mathieu, Rocha, Graca, Roe, Natalie A., Roy, Anirban, Ruhl, John E., Salatino, Maria, Saliwanchik, Benjamin, Schaan, Emmanuel, Schillaci, Alessandro, Schmitt, Benjamin, Schmittfull, Marcel M., Scott, Douglas, Sehgal, Neelima, Shandera, Sarah, Sherwin, Blake D., Shirokoff, Erik, Simon, Sara M., Slosar, Anze, Spergel, David, Germaine, Tyler St., Staggs, Suzanne T., Stark, Antony, Starkman, Glenn D., Stompor, Radek, Stoughton, Chris, Suzuki, Aritoki, Tajima, Osamu, Teply, Grant P., Thompson, Keith, Thorne, Ben, Timbie, Peter, Tomasi, Maurizio, Tristram, Matthieu, Tucker, Gregory, Umiltà, Caterina, van Engelen, Alexander, Vavagiakis, Eve M., Vieira, Joaquin D., Vieregg, Abigail G., Wagoner, Kasey, Wallisch, Benjamin, Wang, Gensheng, Watson, Scott, Westbrook, Ben, Whitehorn, Nathan, Wollack, Edward J., Wu, W. L. Kimmy, Xu, Zhilei, Yang, H. Y. Eric, Yasini, Siavash, Yefremenko, Volodymyr G., Yoon, Ki Won, Young, Edward, Yu, Cyndia, and Zonca, Andrea
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, $r$, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for $r > 0.003$ at greater than $5\sigma$, or, in the absence of a detection, of reaching an upper limit of $r < 0.001$ at $95\%$ CL., Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.04473
- Published
- 2020
- Full Text
- View/download PDF
24. Planck intermediate results. LVII. Joint Planck LFI and HFI data processing
- Author
-
Planck Collaboration, Akrami, Y., Andersen, K. J., Ashdown, M., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Burigana, C., Butler, R. C., Calabrese, E., Casaponsa, B., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Dupac, X., Eriksen, H. K., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Helou, G., Herranz, D., Hildebrandt, S. R., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maino, D., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Mitra, S., Molinari, D., Montier, L., Morgante, G., Moss, A., Natoli, P., Paoletti, D., Partridge, B., Patanchon, G., Pearson, D., Pearson, T. J., Perrotta, F., Piacentini, F., Polenta, G., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Suur-Uski, A. -S., Svalheim, T. L., Tauber, J. A., Tavagnacco, D., Tenti, M., Terenzi, L., Thommesen, H., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE represents a natural evolution of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. The net effect of the improvements is lower levels of noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component separation across all nine Planck frequencies. The amplitude is ($3366.6 \pm 2.7$)$\mu$K, consistent with, albeit slightly higher than, earlier estimates. From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of $\tau = 0.051 \pm 0.006$, which appears robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and parameter files needed to improve further on the analysis and to run matching simulations., Comment: 97 pages, 93 figures and 16 tables, abstract abridged for arXiv submission, accepted for publication in A&A
- Published
- 2020
- Full Text
- View/download PDF
25. Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Chiang, H. C., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Dupac, X., Enßlin, T. A., Eriksen, H. K., Fernandez-Cobos, R., Finelli, F., Frailis, M., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Macías-Pérez, J. F., Maino, D., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Mennella, A., Migliaccio, M., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Sullivan, R. M., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first, and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum, noting that it contributes negligible noise to the bispectrum at relevant scales., Comment: 15 pages, 8 figures. Added references, small clarifying and language edits. All results remain the same
- Published
- 2020
- Full Text
- View/download PDF
26. Erratum: Planck 2018 results: VI. Cosmological parameters (Astronomy and Astrophysics (2020) 641 (A6) DOI: 10.1051/0004-6361/201833910)
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battye, R, Benabed, K, Bernard, JP, Bersanelli, M, Bielewicz, P, Bock, JJ, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, JF, Carron, J, Challinor, A, Chiang, HC, Chluba, J, Colombo, LPL, Combet, C, Contreras, D, Crill, BP, Cuttaia, F, De Bernardis, P, De Zotti, G, Delabrouille, J, Delouis, JM, DI Valentino, E, DIego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Farhang, M, Fergusson, J, Fernandez-Cobos, R, Finelli, F, Forastieri, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Hamann, J, Handley, W, Hansen, FK, Herranz, D, Hildebrandt, SR, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Karakci, A, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Knox, L, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, JM, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Lemos, P, Lesgourgues, J, Levrier, F, Lewis, A, and Liguori, M
- Subjects
cosmic background radiation ,cosmological parameters ,errata ,addenda ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) < 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) < 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea & Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich & Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.
- Published
- 2021
27. Planck 2018 results
- Author
-
Aghanim, N, Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Battye, R, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bock, JJ, Bond, JR, Borrill, J, Bouchet, FR, Boulanger, F, Bucher, M, Burigana, C, Butler, RC, Calabrese, E, Cardoso, J-F, Carron, J, Challinor, A, Chiang, HC, Chluba, J, Colombo, LPL, Combet, C, Contreras, D, Crill, BP, Cuttaia, F, de Bernardis, P, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Doré, O, Douspis, M, Ducout, A, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fantaye, Y, Farhang, M, Fergusson, J, Fernandez-Cobos, R, Finelli, F, Forastieri, F, Frailis, M, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, Ghosh, T, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Hamann, J, Handley, W, Hansen, FK, Herranz, D, Hildebrandt, SR, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Karakci, A, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Knox, L, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Lemos, P, Lesgourgues, J, Levrier, F, Lewis, A, and Liguori, M
- Subjects
Space Sciences ,Particle and High Energy Physics ,Astronomical Sciences ,Physical Sciences ,cosmic background radiation ,cosmological parameters ,errata ,addenda ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) < 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) < 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea & Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich & Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.
- Published
- 2021
28. Planck constraints on the tensor-to-scalar ratio
- Author
-
Tristram, M, Banday, AJ, Górski, KM, Keskitalo, R, Lawrence, CR, Andersen, KJ, Barreiro, RB, Borrill, J, Eriksen, HK, Fernandez-Cobos, R, Kisner, TS, Martínez-González, E, Partridge, B, Scott, D, Svalheim, TL, Thommesen, H, and Wehus, IK
- Subjects
cosmology: observations ,cosmic background radiation ,cosmological parameters ,gravitational waves ,methods: data analysis ,astro-ph.CO ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
We present constraints on the tensor-to-scalar ratio r using Planck data. We use the latest release of Planck maps, processed with the NPIPE code, which produces calibrated frequency maps in temperature and polarisation for all Planck channels from 30 GHz to 857 GHz using the same pipeline. We computed constraints on r using the BB angular power spectrum, and we also discuss constraints coming from the TT spectrum. Given Planck's noise level, the TT spectrum gives constraints on r that are cosmic-variance limited (with σr = 0.093), but we show that the marginalised posterior peaks towards negative values of r at about the 1.2σ level. We derived Planck constraints using the BB power spectrum at both large angular scales (the 'reionisation bump') and intermediate angular scales (the 'recombination bump') from ℓ = 2 to 150 and find a stronger constraint than that from TT, with σr = 0.069. The Planck BB spectrum shows no systematic bias and is compatible with zero, given both the statistical noise and the systematic uncertainties. The likelihood analysis using B modes yields the constraint r < 0.158 at 95% confidence using more than 50% of the sky. This upper limit tightens to r < 0.069 when Planck EE, BB, and EB power spectra are combined consistently, and it tightens further to r < 0.056 when the Planck TT power spectrum is included in the combination. Finally, combining Planck with BICEP2/Keck 2015 data yields an upper limit of r < 0.044.
- Published
- 2021
29. Updated design of the CMB polarization experiment satellite LiteBIRD
- Author
-
Sugai, H., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Austermann, J., Baccigalupi, C., Banday, A. J., Banerji, R., Barreiro, R. B., Basak, S., Beall, J., Beckman, S., Bersanelli, M., Borrill, J., Boulanger, F., Brown, M. L., Bucher, M., Buzzelli, A., Calabrese, E., Casas, F. J., Challinor, A., Chan, V., Chinone, Y., Cliche, J. -F., Columbro, F., Cukierman, A., Curtis, D., Danto, P., de Bernardis, P., de Haan, T., De Petris, M., Dickinson, C., Dobbs, M., Dotani, T., Duband, L., Ducout, A., Duff, S., Duivenvoorden, A., Duval, J. -M., Ebisawa, K., Elleflot, T., Enokida, H., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Finelli, F., Flauger, R., Franceschet, C., Fuskeland, U., Ganga, K., Gao, J. -R., Génova-Santos, R., Ghigna, T., Gomez, A., Gradziel, M. L., Grain, J., Grupp, F., Gruppuso, A., Gudmundsson, J. E., Halverson, N. W., Hargrave, P., Hasebe, T., Hasegawa, M., Hattori, M., Hazumi, M., Henrot-Versille, S., Herranz, D., Hill, C., Hilton, G., Hirota, Y., Hivon, E., Hlozek, R., Hoang, D. -T., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Ishimura, K., Ishino, H., Jaehnig, G. C., Jones, M., Kaga, T., Kashima, S., Kataoka, Y., Katayama, N., Kawasaki, T., Keskitalo, R., Kibayashi, A., Kikuchi, T., Kimura, K., Kisner, T., Kobayashi, Y., Kogiso, N., Kogut, A., Kohri, K., Komatsu, E., Komatsu, K., Konishi, K., Krachmalnicoff, N., Kuo, C. L., Kurinsky, N., Kushino, A., Kuwata-Gonokami, M., Lamagna, L., Lattanzi, M., Lee, A. T., Linder, E., Maffei, B., Maino, D., Maki, M., Mangilli, A., Martínez-González, E., Masi, S., Mathon, R., Matsumura, T., Mennella, A., Migliaccio, M., Minami, Y., Mistuda, K., Molinari, D., Montier, L., Morgante, G., Mot, B., Murata, Y., Murphy, J. A., Nagai, M., Nagata, R., Nakamura, S., Namikawa, T., Natoli, P., Nerva, S., Nishibori, T., Nishino, H., Nomura, Y., Noviello, F., O'Sullivan, C., Ochi, H., Ogawa, H., Ohsaki, H., Ohta, I., Okada, N., Pagano, L., Paiella, A., Paoletti, D., Patanchon, G., Piacentini, F., Pisano, G., Polenta, G., Poletti, D., Prouvé, T., Puglisi, G., Rambaud, D., Raum, C., Realini, S., Remazeilles, M., Roudil, G., Rubiño-Martín, J. A., Russell, M., Sakurai, H., Sakurai, Y., Sandri, M., Savini, G., Scott, D., Sekimoto, Y., Sherwin, B. D., Shinozaki, K., Shiraishi, M., Shirron, P., Signorelli, G., Smecher, G., Spizzi, P., Stever, S. L., Stompor, R., Sugiyama, S., Suzuki, A., Suzuki, J., Switzer, E., Takaku, R., Takakura, H., Takakura, S., Takeda, Y., Taylor, A., Taylor, E., Terao, Y., Thompson, K. L., Thorne, B., Tomasi, M., Tomida, H., Trappe, N., Tristram, M., Tsuji, M., Tsujimoto, M., Tucker, C., Ullom, J., Uozumi, S., Utsunomiya, S., Van Lanen, J., Vermeulen, G., Vielva, P., Villa, F., Vissers, M., Vittorio, N., Voisin, F., Walker, I., Watanabe, N., Wehus, I., Weller, J., Westbrook, B., Winter, B., Wollack, E., Yamamoto, R., Yamasaki, N. Y., Yanagisawa, M., Yoshida, T., Yumoto, J., Zannoni, M., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite CMB polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the cosmic microwave background (CMB) by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34GHz and 448GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5Kelvin for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for three years. An international collaboration between Japan, USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science (ISAS), JAXA selected LiteBIRD as the strategic large mission No. 2., Comment: Journal of Low Temperature Physics, in press
- Published
- 2020
- Full Text
- View/download PDF
30. A Measurement of the Degree Scale CMB B-mode Angular Power Spectrum with POLARBEAR
- Author
-
Adachi, S., Faúndez, M. A. O. Aguilar, Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Beckman, S., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Chapman, S., Cheung, K., Chinone, Y., Crowley, K., Cukierman, A., Dobbs, M., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Galitzki, N., Goeckner-Wald, N., Groh, J., Hall, G., Halverson, N., Hamada, T., Hasegawa, M., Hazumi, M., Hill, C. A., Howe, L., Inoue, Y., Jaehnig, G., Jeong, O., Kaneko, D., Katayama, N., Keating, B., Keskitalo, R., Kikuchi, S., Kisner, T., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Mangu, A., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Segawa, Y., Silva-Feaver, M., Siritanasak, P., Stebor, N., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Tanabe, D., Teply, G. P., Tsai, C., Verges, C., Westbrook, B., and Zhou, Y.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
- Published
- 2019
- Full Text
- View/download PDF
31. Internal delensing of Cosmic Microwave Background polarization B-modes with the POLARBEAR experiment
- Author
-
Adachi, S., Faúndez, M. A. O. Aguilar, Akiba, Y., Ali, A., Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Borrill, J., Carron, J., Cheung, K., Chinone, Y., Crowley, K., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Fujino, T., Goeckner-Wald, N., Hasegawa, M., Hazumi, M., Hill, C. A., Howe, L., Katayama, N., Keating, B., Kikuchi, S., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Matsuda, F., Matsumura, T., Minami, Y., Namikawa, T., Navaroli, M., Nishino, H., Peloton, J., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Segawa, Y., Sherwin, B. D., Silva-Feaver, M., Siritanasak, P., Stompor, R., Tajima, O., Takatori, S., Tanabe, D., Teply, G. P., and Vergès, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology - Abstract
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5\sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments., Comment: Matches version published in Physical Review Letters
- Published
- 2019
- Full Text
- View/download PDF
32. PICO: Probe of Inflation and Cosmic Origins
- Author
-
Hanany, S., Alvarez, M., Artis, E., Ashton, P., Aumont, J., Aurlien, R., Banerji, R., Barreiro, R. B., Bartlett, J. G., Basak, S., Battaglia, N., Bock, J., Boddy, K. K., Bonato, M., Borrill, J., Bouchet, F., Boulanger, F., Burkhart, B., Chluba, J., Chuss, D., Clark, S., Cooperrider, J., Crill, B. P., De Zotti, G., Delabrouille, J., Di Valentino, E., Didier, J., Dore, O., Eriksen, H. K., Errard, J., Essinger-Hileman, T., Feeney, S., Filippini, J., Fissel, L., Flauger, R., Fuskeland, U., Gluscevic, V., Gorski, K. M., Green, D., Hensley, B., Herranz, D., Hill, J. C., Hivon, E., Hlozek, R., Hubmayr, J., Johnson, B. R., Jones, W., Jones, T., Knox, L., Kogut, A., Lopez-Caniego, M., Lawrence, C., Lazarian, A., Li, Z., Madhavacheril, M., Melin, J. B., Meyers, J., Murray, C., Negrello, M., Novak, G., O'Brient, R., Paine, C., Pearson, T., Pogosian, L., Pryke, C., Puglisi, G., Remazeilles, M., Rocha, G., Schmittfull, M., Scott, D., Shirron, P., Stephens, I., Sutin, B., Tomasi, M., Trangsrud, A., van Engelen, A., Vansyngel, F., Wehus, I. K., Wen, Q., Xu, S., Young, K., and Zonca, A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,High Energy Physics - Theory - Abstract
The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost., Comment: APC White Paper submitted to the Astro2020 decadal panel; 10 page version of the 50 page mission study report arXiv:1902.10541
- Published
- 2019
33. CMB-S4 Decadal Survey APC White Paper
- Author
-
Abazajian, Kevork, Addison, Graeme, Adshead, Peter, Ahmed, Zeeshan, Allen, Steven W., Alonso, David, Alvarez, Marcelo, Amin, Mustafa A., Anderson, Adam, Arnold, Kam S., Baccigalupi, Carlo, Bailey, Kathy, Barkats, Denis, Barron, Darcy, Barry, Peter S., Bartlett, James G., Thakur, Ritoban Basu, Battaglia, Nicholas, Baxter, Eric, Bean, Rachel, Bebek, Chris, Bender, Amy N., Benson, Bradford A., Berger, Edo, Bhimani, Sanah, Bischoff, Colin A., Bleem, Lindsey, Bock, James J., Bocquet, Sebastian, Boddy, Kimberly, Bonato, Matteo, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Brown, Michael L., Bryan, Sean, Burkhart, Blakesley, Buza, Victor, Byrum, Karen, Calabrese, Erminia, Calafut, Victoria, Caldwell, Robert, Carlstrom, John E., Carron, Julien, Cecil, Thomas, Challinor, Anthony, Chang, Clarence L., Chinone, Yuji, Cho, Hsiao-Mei Sherry, Cooray, Asantha, Crawford, Thomas M., Crites, Abigail, Cukierman, Ari, Cyr-Racine, Francis-Yan, de Haan, Tijmen, de Zotti, Gianfranco, Delabrouille, Jacques, Demarteau, Marcel, Devlin, Mark, Di Valentino, Eleonora, Dobbs, Matt, Duff, Shannon, Duivenvoorden, Adriaan, Dvorkin, Cora, Edwards, William, Eimer, Joseph, Errard, Josquin, Essinger-Hileman, Thomas, Fabbian, Giulio, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey P., Flauger, Raphael, Flaugher, Brenna, Fraisse, Aurelien A., Frolov, Andrei, Galitzki, Nicholas, Galli, Silvia, Ganga, Ken, Gerbino, Martina, Gilchriese, Murdock, Gluscevic, Vera, Green, Daniel, Grin, Daniel, Grohs, Evan, Gualtieri, Riccardo, Guarino, Victor, Gudmundsson, Jon E., Habib, Salman, Haller, Gunther, Halpern, Mark, Halverson, Nils W., Hanany, Shaul, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hazumi, Masashi, Heitmann, Katrin, Henderson, Shawn, Henning, Jason W., Hill, J. Colin, Hlozek, Renée, Holder, Gil, Holzapfel, William, Hubmayr, Johannes, Huffenberger, Kevin M., Huffer, Michael, Hui, Howard, Irwin, Kent, Johnson, Bradley R., Johnstone, Doug, Jones, William C., Karkare, Kirit, Katayama, Nobuhiko, Kerby, James, Kernovsky, Sarah, Keskitalo, Reijo, Kisner, Theodore, Knox, Lloyd, Kosowsky, Arthur, Kovac, John, Kovetz, Ely D., Kuhlmann, Steve, Kuo, Chao-lin, Kurita, Nadine, Kusaka, Akito, Lahteenmaki, Anne, Lawrence, Charles R., Lee, Adrian T., Lewis, Antony, Li, Dale, Linder, Eric, Loverde, Marilena, Lowitz, Amy, Madhavacheril, Mathew S., Mantz, Adam, Matsuda, Frederick, Mauskopf, Philip, McMahon, Jeff, Meerburg, P. Daniel, Melin, Jean-Baptiste, Meyers, Joel, Millea, Marius, Mohr, Joseph, Moncelsi, Lorenzo, Mroczkowski, Tony, Mukherjee, Suvodip, Münchmeyer, Moritz, Nagai, Daisuke, Nagy, Johanna, Namikawa, Toshiya, Nati, Federico, Natoli, Tyler, Negrello, Mattia, Newburgh, Laura, Niemack, Michael D., Nishino, Haruki, Nordby, Martin, Novosad, Valentine, O'Connor, Paul, Obied, Georges, Padin, Stephen, Pandey, Shivam, Partridge, Bruce, Pierpaoli, Elena, Pogosian, Levon, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Raghunathan, Srinivasan, Rahlin, Alexandra, Rajagopalan, Srini, Raveri, Marco, Reichanadter, Mark, Reichardt, Christian L., Remazeilles, Mathieu, Rocha, Graca, Roe, Natalie A., Roy, Anirban, Ruhl, John, Salatino, Maria, Saliwanchik, Benjamin, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel M., Scott, Douglas, Sehgal, Neelima, Shandera, Sarah, Sheehy, Christopher, Sherwin, Blake D., Shirokoff, Erik, Simon, Sara M., Slosar, Anze, Somerville, Rachel, Staggs, Suzanne T., Stark, Antony, Stompor, Radek, Story, Kyle T., Stoughton, Chris, Suzuki, Aritoki, Tajima, Osamu, Teply, Grant P., Thompson, Keith, Timbie, Peter, Tomasi, Maurizio, Treu, Jesse I., Tristram, Matthieu, Tucker, Gregory, Umiltà, Caterina, van Engelen, Alexander, Vieira, Joaquin D., Vieregg, Abigail G., Vogelsberger, Mark, Wang, Gensheng, Watson, Scott, White, Martin, Whitehorn, Nathan, Wollack, Edward J., Wu, W. L. Kimmy, Xu, Zhilei, Yasini, Siavash, Yeck, James, Yoon, Ki Won, Young, Edward, and Zonca, Andrea
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey., Comment: Project White Paper submitted to the 2020 Decadal Survey, 10 pages plus references. arXiv admin note: substantial text overlap with arXiv:1907.04473
- Published
- 2019
34. Planck 2018 results. V. CMB power spectra and likelihoods
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Carron, J., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Millea, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Nørgaard-Nielsen, H. U., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter $\tau$ to better than 15% (in combination with with the other low- and high-$\ell$ likelihoods). We also update the 2015 baseline low-$\ell$ joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker $\tau$ constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the $\Lambda$CDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-$\ell$ implementations, we estimate the consistency of the results to be better than the 0.5$\sigma$ level. Minor curiosities already present before (differences between $\ell$<800 and $\ell$>800 parameters or the preference for more smoothing of the $C_\ell$ peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged), Comment: Revised to match version published in Astronomy & Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
35. The Simons Observatory: Astro2020 Decadal Project Whitepaper
- Author
-
The Simons Observatory Collaboration, Abitbol, Maximilian H., Adachi, Shunsuke, Ade, Peter, Aguirre, James, Ahmed, Zeeshan, Aiola, Simone, Ali, Aamir, Alonso, David, Alvarez, Marcelo A., Arnold, Kam, Ashton, Peter, Atkins, Zachary, Austermann, Jason, Awan, Humna, Baccigalupi, Carlo, Baildon, Taylor, Lizancos, Anton Baleato, Barron, Darcy, Battaglia, Nick, Battye, Richard, Baxter, Eric, Bazarko, Andrew, Beall, James A., Bean, Rachel, Beck, Dominic, Beckman, Shawn, Beringue, Benjamin, Bhandarkar, Tanay, Bhimani, Sanah, Bianchini, Federico, Boada, Steven, Boettger, David, Bolliet, Boris, Bond, J. Richard, Borrill, Julian, Brown, Michael L., Bruno, Sarah Marie, Bryan, Sean, Calabrese, Erminia, Calafut, Victoria, Calisse, Paolo, Carron, Julien, Carl, Fred. M, Cayuso, Juan, Challinor, Anthony, Chesmore, Grace, Chinone, Yuji, Chluba, Jens, Cho, Hsiao-Mei Sherry, Choi, Steve, Clark, Susan, Clarke, Philip, Contaldi, Carlo, Coppi, Gabriele, Cothard, Nicholas F., Coughlin, Kevin, Coulton, Will, Crichton, Devin, Crowley, Kevin D., Crowley, Kevin T., Cukierman, Ari, D'Ewart, John M., Dünner, Rolando, de Haan, Tijmen, Devlin, Mark, Dicker, Simon, Dober, Bradley, Duell, Cody J., Duff, Shannon, Duivenvoorden, Adri, Dunkley, Jo, Bouhargani, Hamza El, Errard, Josquin, Fabbian, Giulio, Feeney, Stephen, Fergusson, James, Ferraro, Simone, Fluxà, Pedro, Freese, Katherine, Frisch, Josef C., Frolov, Andrei, Fuller, George, Galitzki, Nicholas, Gallardo, Patricio A., Ghersi, Jose Tomas Galvez, Gao, Jiansong, Gawiser, Eric, Gerbino, Martina, Gluscevic, Vera, Goeckner-Wald, Neil, Golec, Joseph, Gordon, Sam, Gralla, Megan, Green, Daniel, Grigorian, Arpi, Groh, John, Groppi, Chris, Guan, Yilun, Gudmundsson, Jon E., Halpern, Mark, Han, Dongwon, Hargrave, Peter, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hattori, Makoto, Haynes, Victor, Hazumi, Masashi, Healy, Erin, Henderson, Shawn W., Hensley, Brandon, Hervias-Caimapo, Carlos, Hill, Charles A., Hill, J. Colin, Hilton, Gene, Hilton, Matt, Hincks, Adam D., Hinshaw, Gary, Hložek, Renée, Ho, Shirley, Ho, Shuay-Pwu Patty, Hoang, Thuong D., Hoh, Jonathan, Hotinli, Selim C., Huang, Zhiqi, Hubmayr, Johannes, Huffenberger, Kevin, Hughes, John P., Ijjas, Anna, Ikape, Margaret, Irwin, Kent, Jaffe, Andrew H., Jain, Bhuvnesh, Jeong, Oliver, Johnson, Matthew, Kaneko, Daisuke, Karpel, Ethan D., Katayama, Nobuhiko, Keating, Brian, Keskitalo, Reijo, Kisner, Theodore, Kiuchi, Kenji, Klein, Jeff, Knowles, Kenda, Kofman, Anna, Koopman, Brian, Kosowsky, Arthur, Krachmalnicoff, Nicoletta, Kusaka, Akito, LaPlante, Phil, Lashner, Jacob, Lee, Adrian, Lee, Eunseong, Lewis, Antony, Li, Yaqiong, Li, Zack, Limon, Michele, Linder, Eric, Liu, Jia, Lopez-Caraballo, Carlos, Louis, Thibaut, Lungu, Marius, Madhavacheril, Mathew, Mak, Daisy, Maldonado, Felipe, Mani, Hamdi, Mates, Ben, Matsuda, Frederick, Maurin, Loïc, Mauskopf, Phil, May, Andrew, McCallum, Nialh, McCarrick, Heather, McKenney, Chris, McMahon, Jeff, Meerburg, P. Daniel, Mertens, James, Meyers, Joel, Miller, Amber, Mirmelstein, Mark, Moodley, Kavilan, Moore, Jenna, Munchmeyer, Moritz, Munson, Charles, Murata, Masaaki, Naess, Sigurd, Namikawa, Toshiya, Nati, Federico, Navaroli, Martin, Newburgh, Laura, Nguyen, Ho Nam, Nicola, Andrina, Niemack, Mike, Nishino, Haruki, Nishinomiya, Yume, Orlowski-Scherer, John, Pagano, Luca, Partridge, Bruce, Perrotta, Francesca, Phakathi, Phumlani, Piccirillo, Lucio, Pierpaoli, Elena, Pisano, Giampaolo, Poletti, Davide, Puddu, Roberto, Puglisi, Giuseppe, Raum, Chris, Reichardt, Christian L., Remazeilles, Mathieu, Rephaeli, Yoel, Riechers, Dominik, Rojas, Felipe, Rotti, Aditya, Roy, Anirban, Sadeh, Sharon, Sakurai, Yuki, Salatino, Maria, Rao, Mayuri Sathyanarayana, Saunders, Lauren, Schaan, Emmanuel, Schmittfull, Marcel, Sehgal, Neelima, Seibert, Joseph, Seljak, Uros, Shellard, Paul, Sherwin, Blake, Shimon, Meir, Sierra, Carlos, Sievers, Jonathan, Sifon, Cristobal, Sikhosana, Precious, Silva-Feaver, Maximiliano, Simon, Sara M., Sinclair, Adrian, Smith, Kendrick, Sohn, Wuhyun, Sonka, Rita, Spergel, David, Spisak, Jacob, Staggs, Suzanne T., Stein, George, Stevens, Jason R., Stompor, Radek, Suzuki, Aritoki, Tajima, Osamu, Takakura, Satoru, Teply, Grant, Thomas, Daniel B., Thorne, Ben, Thornton, Robert, Trac, Hy, Treu, Jesse, Tsai, Calvin, Tucker, Carole, Ullom, Joel, Vagnozzi, Sunny, van Engelen, Alexander, Van Lanen, Jeff, Van Winkle, Daniel D., Vavagiakis, Eve M., Vergès, Clara, Vissers, Michael, Wagoner, Kasey, Walker, Samantha, Wang, Yuhan, Ward, Jon, Westbrook, Ben, Whitehorn, Nathan, Williams, Jason, Williams, Joel, Wollack, Edward, Xu, Zhilei, Yasini, Siavash, Young, Edward, Yu, Byeonghee, Yu, Cyndia, Zago, Fernando, Zannoni, Mario, Zhang, Hezi, Zheng, Kaiwen, Zhu, Ningfeng, and Zonca, Andrea
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form ('SO-Nominal') consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating ("Stage 3") experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4., Comment: Astro2020 Decadal Project Whitepaper. arXiv admin note: text overlap with arXiv:1808.07445
- Published
- 2019
36. CMB-S4 Science Case, Reference Design, and Project Plan
- Author
-
Abazajian, Kevork, Addison, Graeme, Adshead, Peter, Ahmed, Zeeshan, Allen, Steven W., Alonso, David, Alvarez, Marcelo, Anderson, Adam, Arnold, Kam S., Baccigalupi, Carlo, Bailey, Kathy, Barkats, Denis, Barron, Darcy, Barry, Peter S., Bartlett, James G., Thakur, Ritoban Basu, Battaglia, Nicholas, Baxter, Eric, Bean, Rachel, Bebek, Chris, Bender, Amy N., Benson, Bradford A., Berger, Edo, Bhimani, Sanah, Bischoff, Colin A., Bleem, Lindsey, Bocquet, Sebastian, Boddy, Kimberly, Bonato, Matteo, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Brown, Michael L., Bryan, Sean, Burkhart, Blakesley, Buza, Victor, Byrum, Karen, Calabrese, Erminia, Calafut, Victoria, Caldwell, Robert, Carlstrom, John E., Carron, Julien, Cecil, Thomas, Challinor, Anthony, Chang, Clarence L., Chinone, Yuji, Cho, Hsiao-Mei Sherry, Cooray, Asantha, Crawford, Thomas M., Crites, Abigail, Cukierman, Ari, Cyr-Racine, Francis-Yan, de Haan, Tijmen, de Zotti, Gianfranco, Delabrouille, Jacques, Demarteau, Marcel, Devlin, Mark, Di Valentino, Eleonora, Dobbs, Matt, Duff, Shannon, Duivenvoorden, Adriaan, Dvorkin, Cora, Edwards, William, Eimer, Joseph, Errard, Josquin, Essinger-Hileman, Thomas, Fabbian, Giulio, Feng, Chang, Ferraro, Simone, Filippini, Jeffrey P., Flauger, Raphael, Flaugher, Brenna, Fraisse, Aurelien A., Frolov, Andrei, Galitzki, Nicholas, Galli, Silvia, Ganga, Ken, Gerbino, Martina, Gilchriese, Murdock, Gluscevic, Vera, Green, Daniel, Grin, Daniel, Grohs, Evan, Gualtieri, Riccardo, Guarino, Victor, Gudmundsson, Jon E., Habib, Salman, Haller, Gunther, Halpern, Mark, Halverson, Nils W., Hanany, Shaul, Harrington, Kathleen, Hasegawa, Masaya, Hasselfield, Matthew, Hazumi, Masashi, Heitmann, Katrin, Henderson, Shawn, Henning, Jason W., Hill, J. Colin, Hlozek, Renée, Holder, Gil, Holzapfel, William, Hubmayr, Johannes, Huffenberger, Kevin M., Huffer, Michael, Hui, Howard, Irwin, Kent, Johnson, Bradley R., Johnstone, Doug, Jones, William C., Karkare, Kirit, Katayama, Nobuhiko, Kerby, James, Kernovsky, Sarah, Keskitalo, Reijo, Kisner, Theodore, Knox, Lloyd, Kosowsky, Arthur, Kovac, John, Kovetz, Ely D., Kuhlmann, Steve, Kuo, Chao-lin, Kurita, Nadine, Kusaka, Akito, Lahteenmaki, Anne, Lawrence, Charles R., Lee, Adrian T., Lewis, Antony, Li, Dale, Linder, Eric, Loverde, Marilena, Lowitz, Amy, Madhavacheril, Mathew S., Mantz, Adam, Matsuda, Frederick, Mauskopf, Philip, McMahon, Jeff, McQuinn, Matthew, Meerburg, P. Daniel, Melin, Jean-Baptiste, Meyers, Joel, Millea, Marius, Mohr, Joseph, Moncelsi, Lorenzo, Mroczkowski, Tony, Mukherjee, Suvodip, Münchmeyer, Moritz, Nagai, Daisuke, Nagy, Johanna, Namikawa, Toshiya, Nati, Federico, Natoli, Tyler, Negrello, Mattia, Newburgh, Laura, Niemack, Michael D., Nishino, Haruki, Nordby, Martin, Novosad, Valentine, O'Connor, Paul, Obied, Georges, Padin, Stephen, Pandey, Shivam, Partridge, Bruce, Pierpaoli, Elena, Pogosian, Levon, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Raghunathan, Srinivasan, Rahlin, Alexandra, Rajagopalan, Srini, Raveri, Marco, Reichanadter, Mark, Reichardt, Christian L., Remazeilles, Mathieu, Rocha, Graca, Roe, Natalie A., Roy, Anirban, Ruhl, John, Salatino, Maria, Saliwanchik, Benjamin, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel M., Scott, Douglas, Sehgal, Neelima, Shandera, Sarah, Sheehy, Christopher, Sherwin, Blake D., Shirokoff, Erik, Simon, Sara M., Slosar, Anze, Somerville, Rachel, Spergel, David, Staggs, Suzanne T., Stark, Antony, Stompor, Radek, Story, Kyle T., Stoughton, Chris, Suzuki, Aritoki, Tajima, Osamu, Teply, Grant P., Thompson, Keith, Timbie, Peter, Tomasi, Maurizio, Treu, Jesse I., Tristram, Matthieu, Tucker, Gregory, Umiltà, Caterina, van Engelen, Alexander, Vieira, Joaquin D., Vieregg, Abigail G., Vogelsberger, Mark, Wang, Gensheng, Watson, Scott, White, Martin, Whitehorn, Nathan, Wollack, Edward J., Wu, W. L. Kimmy, Xu, Zhilei, Yasini, Siavash, Yeck, James, Yoon, Ki Won, Young, Edward, and Zonca, Andrea
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies ,High Energy Physics - Experiment - Abstract
We present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4., Comment: 287 pages, 82 figures
- Published
- 2019
37. Planck 2018 results. VII. Isotropy and Statistics of the CMB
- Author
-
Planck Collaboration, Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Chiang, H. C., Colombo, L. P. L., Combet, C., Contreras, D., Crill, B. P., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meinhold, P. R., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Natoli, P., Pagano, L., Paoletti, D., Partridge, B., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Shellard, E. P. S., Sirignano, C., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., Zibin, J. P., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Analysis of the Planck 2018 data set indicates that the statistical properties of the cosmic microwave background (CMB) temperature anisotropies are in excellent agreement with previous studies using the 2013 and 2015 data releases. In particular, they are consistent with the Gaussian predictions of the $\Lambda$CDM cosmological model, yet also confirm the presence of several so-called "anomalies" on large angular scales. The novelty of the current study, however, lies in being a first attempt at a comprehensive analysis of the statistics of the polarization signal over all angular scales, using either maps of the Stokes parameters, $Q$ and $U$, or the $E$-mode signal derived from these using a new methodology (which we describe in an appendix). Although remarkable progress has been made in reducing the systematic effects that contaminated the 2015 polarization maps on large angular scales, it is still the case that residual systematics (and our ability to simulate them) can limit some tests of non-Gaussianity and isotropy. However, a detailed set of null tests applied to the maps indicates that these issues do not dominate the analysis on intermediate and large angular scales (i.e., $\ell \lesssim 400$). In this regime, no unambiguous detections of cosmological non-Gaussianity, or of anomalies corresponding to those seen in temperature, are claimed. Notably, the stacking of CMB polarization signals centred on the positions of temperature hot and cold spots exhibits excellent agreement with the $\Lambda$CDM cosmological model, and also gives a clear indication of how Planck provides state-of-the-art measurements of CMB temperature and polarization on degree scales., Comment: Paper VII of the Planck 2018 release, revised to closely match version published in Astronomy and Astrophysics
- Published
- 2019
- Full Text
- View/download PDF
38. Planck 2018 results. IX. Constraints on primordial non-Gaussianity
- Author
-
Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo, L. P. L., Combet, C., Crill, B. P., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Delouis, J. -M., Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X., Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Jones, W. C., Jung, G., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Jeune, M. Le, Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Meerburg, P. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Moss, A., Münchmeyer, M., Natoli, P., Oppizzi, F., Pagano, L., Paoletti, D., Partridge, B., Patanchon, G., Perrotta, F., Pettorino, V., Piacentini, F., Polenta, G., Puget, J. -L., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Rubiño-Martín, J. A., Ruiz-Granados, B., Salvati, L., Savelainen, M., Scott, D., Shellard, E. P. S., Shiraishi, M., Sirignano, C., Sirri, G., Smith, K., Spencer, L. D., Stanco, L., Sunyaev, R., Suur-Uski, A. -S., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti, T., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., and Zonca, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal bispectrum estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization analysis produces the following results: f_NL^local = -0.9 +\- 5.1; f_NL^equil = -26 +\- 47; and f_NL^ortho = - 38 +\- 24 (68%CL, statistical). These results include the low-multipole (4 <= l < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests, and are stable with respect to our 2015 measurements. Polarization bispectra display a significant improvement in robustness; they can now be used independently to set NG constraints. We consider a large number of additional cases, e.g. scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is detected with an improved significance compared to 2015, excluding the null hypothesis at 3.5 sigma. We present model-independent reconstructions and analyses of the CMB bispectrum. Our final constraint on the local trispectrum shape is g_NLl^local = (-5.8 +\-6.5) x 10^4 (68%CL, statistical), while constraints for other trispectra are also determined. We constrain the parameter space of different early-Universe scenarios, including general single-field models of inflation, multi-field and axion field parity-breaking models. Our results provide a high-precision test for structure-formation scenarios, in complete agreement with the basic picture of the LambdaCDM cosmology regarding the statistics of the initial conditions (abridged)., Comment: 50 pages, 20 figures
- Published
- 2019
39. Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from POLARBEAR and Cosmic Shear from Subaru Hyper Suprime-Cam
- Author
-
Namikawa, Toshiya, Chinone, Yuji, Miyatake, Hironao, Oguri, Masamune, Takahashi, Ryuichi, Kusaka, Akito, Katayama, Nobuhiko, Adachi, Shunsuke, Aguilar, Mario, Aihara, Hiroaki, Ali, Aamir, Armstrong, Robert, Arnold, Kam, Baccigalupi, Carlo, Barron, Darcy, Beck, Dominic, Beckman, Shawn, Bianchini, Federico, Boettger, David, Borrill, Julian, Cheung, Kolen, Corbett, Lance, Crowley, Kevin T., Bouhargani, Hamza El, Elleflot, Tucker, Errard, Josquin, Fabbian, Giulio, Feng, Chang, Galitzki, Nicholas, Goeckner-Wald, Neil, Groh, John, Hamada, Takaho, Hasegawa, Masaya, Hazumi, Masashi, Hill, Charles, Howe, Logan, Jeong, Oliver, Kaneko, Daisuke, Keating, Brian, Lee, Adrian T., Leon, David, Linder, Eric, Lowry, Lindsay Ng, Mangu, Aashrita, Matsuda, Frederick, Minami, Yuto, Miyazaki, Satoshi, Murayama, Hitoshi, Navaroli, Martin, Nishino, Haruki, Nishizawa, Atsushi J., Pham, Anh Thi Phuong, Poletti, Davide, Puglisi, Giuseppe, Reichardt, Christian L., Sherwin, Blake D., Silva-Feaver, Maximiliano, Siritanasak, Praween, Speagle, Joshua S., Stompor, Radek, Suzuki, Aritoki, Tait, Philip J., Tajima, Osamu, Takada, Masahiro, Takakura, Satoru, Takatori, Sayuri, Tanabe, Daiki, Tanaka, Masayuki, Teply, Grant P., Tsai, Calvin, Verges, Clara, Westbrook, Ben, Zhou, Yuyang, Collaboration, The POLARBEAR, and Collaboration, the Subaru HSC SSP
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the first measurement of cross-correlation between the lensing potential, reconstructed from cosmic microwave background (CMB) {\it polarization} data, and the cosmic shear field from galaxy shapes. This measurement is made using data from the POLARBEAR CMB experiment and the Subaru Hyper Suprime-Cam (HSC) survey. By analyzing an 11~deg$^2$ overlapping region, we reject the null hypothesis at 3.5$\sigma$\ and constrain the amplitude of the {\bf cross-spectrum} to $\widehat{A}_{\rm lens}=1.70\pm 0.48$, where $\widehat{A}_{\rm lens}$ is the amplitude normalized with respect to the Planck~2018{} prediction, based on the flat $\Lambda$ cold dark matter cosmology. The first measurement of this {\bf cross-spectrum} without relying on CMB temperature measurements is possible due to the deep POLARBEAR map with a noise level of ${\sim}$6\,$\mu$K-arcmin, as well as the deep HSC data with a high galaxy number density of $n_g=23\,{\rm arcmin^{-2}}$. We present a detailed study of the systematics budget to show that residual systematics in our results are negligibly small, which demonstrates the future potential of this cross-correlation technique., Comment: 16 pages, 5 figures, Accepted for publication in ApJ
- Published
- 2019
- Full Text
- View/download PDF
40. Inflation and Dark Energy from spectroscopy at $z > 2$
- Author
-
Ferraro, Simone, Wilson, Michael J., Abidi, Muntazir, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Avelino, Arturo, Baccigalupi, Carlo, Bandura, Kevin, Battaglia, Nicholas, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Blanc, Guillermo A., Blazek, Jonathan, Bolton, Adam S., Borrill, Julian, Frye, Brenda, Buckley-Geer, Elizabeth, Bull, Philip, Burgess, Cliff, Byrnes, Christian T., Cai, Zheng, Castander, Francisco J, Castorina, Emanuele, Chang, Tzu-Ching, Chaves-Montero, Jonás, Chen, Shi-Fan, Chen, Xingang, Balland, Christophe, Yèche, Christophe, Cohn, J. D., Coulton, William, Courtois, Helene, Croft, Rupert A. C., Cyr-Racine, Francis-Yan, D'Amico, Guido, Dawson, Kyle, Delabrouille, Jacques, Dey, Arjun, Doré, Olivier, Douglass, Kelly A., Yutong, Duan, Dvorkin, Cora, Eggemeier, Alexander, Eisenstein, Daniel, Fan, Xiaohui, Ferreira, Pedro G., Font-Ribera, Andreu, Foreman, Simon, García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Green, Daniel, Guy, Julien, Hahn, ChangHoon, Hanany, Shaul, Handley, Will, Hathi, Nimish, Hawken, Adam J., Hernández-Aguayo, César, Hložek, Renée, Huterer, Dragan, Ishak, Mustapha, Kamionkowski, Marc, Karagiannis, Dionysios, Keeley, Ryan E., Kehoe, Robert, Khatri, Rishi, Kim, Alex, Kneib, Jean-Paul, Kollmeier, Juna A., Kovetz, Ely D., Krause, Elisabeth, Krolewski, Alex, L'Huillier, Benjamin, Landriau, Martin, Levi, Michael, Liguori, Michele, Linder, Eric, Lukić, Zarija, de la Macorra, Axel, Plazas, Andrés A., Marshall, Jennifer L., Martini, Paul, Masui, Kiyoshi, McDonald, Patrick, Meerburg, P. Daniel, Meyers, Joel, Mirbabayi, Mehrdad, Moustakas, John, Myers, Adam D., Palanque-Delabrouille, Nathalie, Newburgh, Laura, Newman, Jeffrey A., Niz, Gustavo, Padmanabhan, Hamsa, Palunas, Povilas, Percival, Will J., Piacentini, Francesco, Pieri, Matthew M., Piro, Anthony L., Prakash, Abhishek, Rhodes, Jason, Ross, Ashley J., Rossi, Graziano, Rudie, Gwen C., Samushia, Lado, Sasaki, Misao, Schaan, Emmanuel, Schlegel, David J., Schmittfull, Marcel, Schubnell, Michael, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Simon, Joshua D., Simon, Sara, Slepian, Zachary, Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Escoffier, Stephanie, Switzer, Eric R., Tarlé, Gregory, Trodden, Mark, Uhlemann, Cora, Urenña-López, L. Arturo, Di Valentino, Eleonora, Vargas-Magaña, M., Wang, Yi, Watson, Scott, White, Martin, Xu, Weishuang, Yu, Byeonghee, Zhao, Gong-Bo, Zheng, Yi, and Zhu, Hong-Ming
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of Inflation and much more recently, at $z < 1$, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. The large cosmological volume at $2 < z < 5$, together with the ability to efficiently target high-$z$ galaxies with known techniques, enables large gains in the study of Inflation and Dark Energy. A future spectroscopic survey can test the Gaussianity of the initial conditions up to a factor of ~50 better than our current bounds, crossing the crucial theoretical threshold of $\sigma(f_{NL}^{\rm local})$ of order unity that separates single field and multi-field models. Simultaneously, it can measure the fraction of Dark Energy at the percent level up to $z = 5$, thus serving as an unprecedented test of the standard model and opening up a tremendous discovery space., Comment: Science white paper submitted to the Astro2020 Decadal Survey
- Published
- 2019
41. Cross-correlation of POLARBEAR CMB Polarization Lensing with High-$z$ Sub-mm Herschel-ATLAS galaxies
- Author
-
Faundez, M. Aguilar, Arnold, K., Baccigalupi, C., Barron, D., Beck, D., Bianchini, F., Boettger, D., Borrill, J., Carron, J., Cheung, K., Chinone, Y., Bouhargani, H. El, Elleflot, T., Errard, J., Fabbian, G., Feng, C., Galitzki, N., Goeckner-Wald, N., Hasegawa, M., Hazumi, M., Howe, L., Kaneko, D., Katayama, N., Keating, B., Krachmalnicoff, N., Kusaka, A., Lee, A. T., Leon, D., Linder, E., Lowry, L. N., Matsuda, F., Minami, Y., Navaroli, M., Nishino, H., Pham, A. T. P., Poletti, D., Puglisi, G., Reichardt, C. L., Sherwin, B. D., Silva-Feaver, M., Stompor, R., Suzuki, A., Tajima, O., Takakura, S., Takatori, S., Teply, G. P., Tsai, C., and Verges, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We report a 4.8$\sigma$ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the POLARBEAR experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of $b = 5.76 \pm 1.25$, corresponding to a host halo mass of $\log_{10}(M_h/M_\odot) =13.5^{+0.2}_{-0.3}$ at an effective redshift of $z \sim 2$ from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the sub-mm galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extra-galactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments., Comment: 14 pages, 6 figures, updated to match published version on ApJ
- Published
- 2019
- Full Text
- View/download PDF
42. Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics
- Author
-
Green, Daniel, Amin, Mustafa A., Meyers, Joel, Wallisch, Benjamin, Abazajian, Kevork N., Abidi, Muntazir, Adshead, Peter, Ahmed, Zeeshan, Ansarinejad, Behzad, Armstrong, Robert, Baccigalupi, Carlo, Bandura, Kevin, Barron, Darcy, Battaglia, Nicholas, Baumann, Daniel, Bechtol, Keith, Bennett, Charles, Benson, Bradford, Beutler, Florian, Bischoff, Colin, Bleem, Lindsey, Bond, J. Richard, Borrill, Julian, Buckley-Geer, Elizabeth, Burgess, Cliff, Carlstrom, John E., Castorina, Emanuele, Challinor, Anthony, Chen, Xingang, Cooray, Asantha, Coulton, William, Craig, Nathaniel, Crawford, Thomas, Cyr-Racine, Francis-Yan, D'Amico, Guido, Demarteau, Marcel, Doré, Olivier, Yutong, Duan, Dunkley, Joanna, Dvorkin, Cora, Ellison, John, van Engelen, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fabbian, Giulio, Filippini, Jeffrey, Flauger, Raphael, Foreman, Simon, Fuller, George, Garcia, Marcos A. G., García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Górski, Krzysztof M., Grin, Daniel, Grohs, Evan, Gudmundsson, Jon E., Hanany, Shaul, Handley, Will, Hill, J. Colin, Hirata, Christopher M., Hložek, Renée, Holder, Gilbert, Horiuchi, Shunsaku, Huterer, Dragan, Kadota, Kenji, Kamionkowski, Marc, Keeley, Ryan E., Khatri, Rishi, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Lin, Tongyan, Loverde, Marilena, Madhavacheril, Mathew, Masui, Kiyoshi, McMahon, Jeff, McQuinn, Matthew, Meerburg, P. Daniel, Mirbabayi, Mehrdad, Motloch, Pavel, Mukherjee, Suvodip, Munõz, Julian B., Nagy, Johanna, Newburgh, Laura, Niemack, Michael D., Nomerotski, Andrei, Page, Lyman, Piacentni, Francesco, Pierpaoli, Elena, Pogosian, Levon, Pryke, Clement, Puglisi, Giuseppe, Stompor, Radek, Raveri, Marco, Reichardt, Christian L., Rose, Benjamin, Rossi, Graziano, Ruhl, John, Schaan, Emmanuel, Schubnell, Michael, Schutz, Katelin, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Sherwin, Blake D., Simon, Sara, Slosar, Anže, Staggs, Suzanne, Stebbins, Albert, Suzuki, Aritoki, Switzer, Eric R., Timbie, Peter, Tristram, Matthieu, Trodden, Mark, Tsai, Yu-Dai, Umiltà, Caterina, Di Valentino, Eleonora, Vargas-Magaña, M., Vieregg, Abigail, Watson, Scott, Weiler, Thomas, Whitehorn, Nathan, Wu, W. L. K., Xu, Weishuang, Xu, Zhilei, Yasini, Siavash, Zaldarriaga, Matias, Zhao, Gong-Bo, Zhu, Ningfeng, and Zuntz, Joe
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Phenomenology - Abstract
The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later., Comment: 5 pages + references; 1 figure; science white paper submitted to the Astro2020 decadal survey
- Published
- 2019
43. Dark Matter Science in the Era of LSST
- Author
-
Bechtol, Keith, Drlica-Wagner, Alex, Abazajian, Kevork N., Abidi, Muntazir, Adhikari, Susmita, Ali-Haïmoud, Yacine, Annis, James, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Baccigalupi, Carlo, Banerjee, Arka, Banik, Nilanjan, Bennett, Charles, Beutler, Florian, Bird, Simeon, Birrer, Simon, Biswas, Rahul, Biviano, Andrea, Blazek, Jonathan, Boddy, Kimberly K., Bonaca, Ana, Borrill, Julian, Bose, Sownak, Bovy, Jo, Frye, Brenda, Brooks, Alyson M., Buckley, Matthew R., Buckley-Geer, Elizabeth, Bulbul, Esra, Burchat, Patricia R., Burgess, Cliff, Calore, Francesca, Caputo, Regina, Castorina, Emanuele, Chang, Chihway, Chapline, George, Charles, Eric, Chen, Xingang, Clowe, Douglas, Cohen-Tanugi, Johann, Comparat, Johan, Croft, Rupert A. C., Cuoco, Alessandro, Cyr-Racine, Francis-Yan, D'Amico, Guido, Davis, Tamara M, Dawson, William A., de la Macorra, Axel, Di Valentino, Eleonora, Rivero, Ana Díaz, Digel, Seth, Dodelson, Scott, Doré, Olivier, Dvorkin, Cora, Eckner, Christopher, Ellison, John, Erkal, Denis, Farahi, Arya, Fassnacht, Christopher D., Ferreira, Pedro G., Flaugher, Brenna, Foreman, Simon, Friedrich, Oliver, Frieman, Joshua, García-Bellido, Juan, Gawiser, Eric, Gerbino, Martina, Giannotti, Maurizio, Gill, Mandeep S. S., Gluscevic, Vera, Golovich, Nathan, Gontcho, Satya Gontcho A, González-Morales, Alma X., Grin, Daniel, Gruen, Daniel, Hearin, Andrew P., Hendel, David, Hezaveh, Yashar D., Hirata, Christopher M., Hložek, Renee, Horiuchi, Shunsaku, Jain, Bhuvnesh, Jee, M. James, Jeltema, Tesla E., Kamionkowski, Marc, Kaplinghat, Manoj, Keeley, Ryan E., Keeton, Charles R., Khatri, Rishi, Koposov, Sergey E., Koushiappas, Savvas M., Kovetz, Ely D., Lahav, Ofer, Lam, Casey, Lee, Chien-Hsiu, Li, Ting S., Liguori, Michele, Lin, Tongyan, Lisanti, Mariangela, LoVerde, Marilena, Lu, Jessica R., Mandelbaum, Rachel, Mao, Yao-Yuan, McDermott, Samuel D., McNanna, Mitch, Medford, Michael, Meerburg, P. Daniel, Meyer, Manuel, Mirbabayi, Mehrdad, Mishra-Sharma, Siddharth, Marc, Moniez, More, Surhud, Moustakas, John, Muñoz, Julian B., Murgia, Simona, Myers, Adam D., Nadler, Ethan O., Necib, Lina, Newburgh, Laura, Newman, Jeffrey A., Nord, Brian, Nourbakhsh, Erfan, Nuss, Eric, O'Connor, Paul, Pace, Andrew B., Padmanabhan, Hamsa, Palmese, Antonella, Peiris, Hiranya V., Peter, Annika H. G., Piacentni, Francesco, Piacentini, Francesco, Plazas, Andrés, Polin, Daniel A., Prakash, Abhishek, Prescod-Weinstein, Chanda, Read, Justin I., Ritz, Steven, Robertson, Brant E., Rose, Benjamin, Rosenfeld, Rogerio, Rossi, Graziano, Samushia, Lado, Sánchez, Javier, Sánchez-Conde, Miguel A., Schaan, Emmanuel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Shipp, Nora, Simon, Joshua D., Simon, Sara, Slatyer, Tracy R., Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Straniero, Oscar, Strigari, Louis E., Tait, Tim M. P., Tollerud, Erik, Troxel, M. A., Tyson, J. Anthony, Uhlemann, Cora, Urenña-López, L. Arturo, Verma, Aprajita, Vilalta, Ricardo, Walter, Christopher W., Wang, Mei-Yu, Watson, Scott, Wechsler, Risa H., Wittman, David, Xu, Weishuang, Yanny, Brian, Young, Sam, Yu, Hai-Bo, Zaharijas, Gabrijela, Zentner, Andrew R., and Zuntz, Joe
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Experiment - Abstract
Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter parameter space. This white paper summarizes astrophysical observations that can constrain the fundamental physics of dark matter in the era of LSST. We describe how astrophysical observations will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational interactions with the Standard Model, and compact object abundances. Additionally, we highlight theoretical work and experimental/observational facilities that will complement LSST to strengthen our understanding of the fundamental characteristics of dark matter., Comment: 11 pages, 2 figures, Science Whitepaper for Astro 2020, more information at https://lsstdarkmatter.github.io
- Published
- 2019
44. Primordial Non-Gaussianity
- Author
-
Meerburg, P. Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A., Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Avila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E., Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, D'Amico, Guido, de Bernardis, Paolo, de la Macorra, Axel, Doré, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M., Gudmundsson, Jon E., Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J., Hill, J. Colin, Hirata, Christopher M., Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S., Keeley, Ryan E., Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, M. C. David, Masui, Kiyoshi, Matarrese, Sabino, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, Dizgah, Azadeh Moradinezhad, Motloch, Pavel, Mukherjee, Suvodip, Muñoz, Julian B., Myers, Adam D., Nagy, Johanna, Naselsky, Pavel, Nati, Federico, Newburgh, Nicolis, Alberto, Niemack, Michael D., Niz, Gustavo, Nomerotski, Andrei, Page, Lyman, Pajer, Enrico, Padmanabhan, Hamsa, Palma, Gonzalo A., Peiris, Hiranya V., Percival, Will J., Piacentni, Francesco, Pimentel, Guilherme L., Pogosian, Levon, Prescod-Weinstein, Chanda, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Stompor, Radek, Raveri, Marco, Remazeilles, Mathieu, Rocha, Gracca, Ross, Ashley J., Rossi, Graziano, Ruhl, John, Sasaki, Misao, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shan, Huanyuan, Shandera, Sarah, Sherwin, Blake D., Silverstein, Eva, Simon, Sara, Slosar, Anže, Staggs, Suzanne, Starkman, Glenn, Stebbins, Albert, Suzuki, Aritoki, Switzer, Eric R., Timbie, Peter, Tolley, Andrew J., Tomasi, Maurizio, Tristram, Matthieu, Trodden, Mark, Tsai, Yu-Dai, Uhlemann, Cora, Umilta, Caterina, van Engelen, Alexander, Vargas-Magaña, M., Vieregg, Abigail, Wallisch, Benjamin, Wands, David, Wandelt, Benjamin, Wang, Yi, Watson, Scott, Wise, Mark, Wu, W. L. K., Xianyu, Zhong-Zhi, Xu, Weishuang, Yasini, Siavash, Young, Sam, Yutong, Duan, Zaldarriaga, Matias, Zemcov, Michael, Zhao, Gong-Bo, Zheng, Yi, and Zhu, Ningfeng
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Theory - Abstract
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale., Comment: 5 pages + references; Submitted to the Astro2020 call for science white papers. This version: fixed author list
- Published
- 2019
45. Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey
- Author
-
Sehgal, Neelima, Nguyen, Ho Nam, Meyers, Joel, Munchmeyer, Moritz, Mroczkowski, Tony, Di Mascolo, Luca, Baxter, Eric, Cyr-Racine, Francis-Yan, Madhavacheril, Mathew, Beringue, Benjamin, Holder, Gil, Nagai, Daisuke, Dicker, Simon, Dvorkin, Cora, Ferraro, Simone, Fuller, George M., Gluscevic, Vera, Han, Dongwon, Jain, Bhuvnesh, Johnson, Bradley, Klaassen, Pamela, Meerburg, Daan, Motloch, Pavel, Spergel, David N., van Engelen, Alexander, Adshead, Peter, Armstrong, Robert, Baccigalupi, Carlo, Barron, Darcy, Basu, Kaustuv, Benson, Bradford, Beutler, Florian, Bond, J. Richard, Borrill, Julian, Calabrese, Erminia, Darwish, Omar, Denny, S. Lucas, Douglass, Kelly A., Essinger-Hileman, Tom, Foreman, Simon, Frayer, David, Gerbino, Martina, Gontcho, Satya Gontcho A, Grohs, Evan B., Gupta, Nikhel, Hill, J. Colin, Hirata, Christopher M., Hotinli, Selim, Johnson, Matthew C., Kamionkowski, Marc, Kovetz, Ely D., Lau, Erwin T., Liguori, Michele, Namikawa, Toshiya, Newburgh, Laura, Partridge, Bruce, Piacentni, Francesco, Rose, Benjamin, Rossi, Graziano, Saliwanchik, Benjamin, Schaan, Emmanuel, Shan, Huanyuan, Simon, Sara, Slosar, Anže, Switzer, Eric R., Trac, Hy, Xu, Weishuang, Zaldarriaga, Matias, and Zemcov, Michael
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,High Energy Physics - Phenomenology - Abstract
Opening up a new window of millimeter-wave observations that span frequency bands in the range of 30 to 500 GHz, survey half the sky, and are both an order of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10 arcseconds) than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. In particular, such a survey would allow for major advances in measuring the distribution of dark matter and gas on small-scales, and yield needed insight on 1.) dark matter particle properties, 2.) the evolution of gas and galaxies, 3.) new light particle species, 4.) the epoch of inflation, and 5.) the census of bodies orbiting in the outer Solar System., Comment: 5 pages + references; Submitted to the Astro2020 call for science white papers
- Published
- 2019
46. LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Hazumi, M, Ade, PAR, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, AJ, Banjeri, R, Barreiro, RB, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, FJ, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, JF, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, JM, Ebisawa, K, Elleflot, T, Eriksen, HK, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, JR, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, ML, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, JE, de Haan, T, Halverson, NW, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, CA, Hilton, G, Hirota, Y, Hivon, E, Hlozek, RA, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, and Kato, A
- Subjects
Particle and High Energy Physics ,Physical Sciences ,LiteBIRD ,cosmic inflation ,cosmic microwave background ,B-mode polarization ,primordial gravitational waves ,quantum gravity ,space telescope ,astro-ph.IM ,astro-ph.CO ,gr-qc ,hep-ex ,hep-ph ,Communications engineering ,Electronics ,sensors and digital hardware ,Atomic ,molecular and optical physics - Abstract
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
- Published
- 2020
47. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Sekimoto, Yutaro, Ade, Peter, Adler, Alexandre, Allys, Erwan, Arnold, Kam, Auguste, Didier, Aumont, Jonathan, Aurlien, Ragnhild, Austermann, Jason, Baccigalupi, Carlo, Banday, Anthony, Banerji, Ranajoy, Barreiro, Rita, Basak, Soumen, Beall, Jim, Beck, Dominic, Beckman, Shawn, Bermejo, Juan, de Bernardis, Paolo, Bersanelli, Marco, Bonis, Julien, Borrill, Julian, Boulanger, Francois, Bounissou, Sophie, Brilenkov, Maksym, Brown, Michael, Bucher, Martin, Calabrese, Erminia, Campeti, Paolo, Carones, Alessandro, Casas, Francisco, Challinor, Anthony, Chan, Victor, Cheung, Kolen, Chinone, Yuji, Cliche, Jean, Colombo, Loris, Columbro, Fabio, Cubas, Javier, Cukierman, Ari, Curtis, David, D'Alessandro, Giuseppe, Dachlythra, Nadia, De Petris, Marco, Dickinson, Clive, Diego-Palazuelos, Patricia, Dobbs, Matt, Dotani, Tadayasu, Duband, Lionel, Duff, Shannon, Duval, Jean, Ebisawa, Ken, Elleflot, Tucker, Eriksen, Hans, Errard, Josquin, Essinger-Hileman, Thomas, Finelli, Fabio, Flauger, Raphael, Franceschet, Cristian, Fuskeland, Unni, Galloway, Mathew, Ganga, Ken, Gao, Jian, Genova-Santos, Ricardo, Gerbino, Martina, Gervasi, Massimo, Ghigna, Tommaso, Gjerløw, Eirik, Gradziel, Marcin, Grain, Julien, Grupp, Frank, Gruppuso, Alessandro, Gudmundsson, Jon, de Haan, Tijmen, Halverson, Nils, Hargrave, Peter, Hasebe, Takashi, Hasegawa, Masaya, Hattori, Makoto, Hazumi, Masashi, Henrot-Versillé, Sophie, Herman, Daniel, Herranz, Diego, Hill, Charles, Hilton, Gene, Hirota, Yukimasa, hivon, Eric, Hlozek, Renee, Hoshino, Yurika, de la Hoz, Elena, Hubmayr, Johannes, Ichiki, Kiyotomo, iida, Teruhito, Imada, Hiroaki, Ishimura, Kosei, Ishino, Hirokazu, Jaehnig, Greg, Kaga, Tooru, Kashima, Shingo, and Katayama, Nobuhiko
- Subjects
Cosmic microwave background ,space program ,millimeter-wave polarization ,cryogenic telescope ,astro-ph.IM ,astro-ph.CO ,Communications engineering ,Electronics ,sensors and digital hardware ,Atomic ,molecular and optical physics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
- Published
- 2020
48. Overview of the medium and high frequency telescopes of the LiteBIRD space mission
- Author
-
Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, JE, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, KL, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, PAR, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, AJ, Banerji, R, Barreiro, RB, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, FJ, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, JF, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, JM, Ebisawa, K, Elleflot, T, Eriksen, HK, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, JR, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, ML, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, NW, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, CA, Hilton, G, Hirota, Y, and Hivon, E
- Subjects
Astronomical Sciences ,Physical Sciences ,LiteBIRD ,cosmic microwave background ,polarization measurements ,space telescopes ,astro-ph.IM ,astro-ph.CO ,Communications engineering ,Electronics ,sensors and digital hardware ,Atomic ,molecular and optical physics - Abstract
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD.
- Published
- 2020
49. Planck intermediate results
- Author
-
Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, J-P, Bersanelli, M, Bielewicz, P, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Carvalho, P, Chiang, HC, Crill, BP, Cuttaia, F, de Rosa, A, de Zotti, G, Delabrouille, J, Delouis, J-M, Di Valentino, E, Diego, JM, Dupac, X, Dusini, S, Efstathiou, G, Elsner, F, Enßlin, TA, Eriksen, HK, Fernandez-Cobos, R, Finelli, F, Fraisse, AA, Franceschi, E, Frolov, A, Galeotta, S, Ganga, K, Gerbino, M, González-Nuevo, J, Górski, KM, Gratton, S, Gruppuso, A, Gudmundsson, JE, Handley, W, Hansen, FK, Herranz, D, Hivon, E, Hobson, M, Huang, Z, Jones, WC, Keihänen, E, Keskitalo, R, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, J-M, Lasenby, A, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Lilje, PB, Lindholm, V, López-Caniego, M, Ma, Y-Z, Macías-Pérez, JF, Maggio, G, Mandolesi, N, Marcos-Caballero, A, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, Migliaccio, M, Molinari, D, Moneti, A, Montier, L, Morgante, G, Natoli, P, Paoletti, D, Partridge, B, Perrotta, F, Pettorino, V, Piacentini, F, Polenta, G, Puget, J-L, Rachen, JP, Reinecke, M, Remazeilles, M, Renzi, A, Rocha, G, and Roudier, G
- Subjects
Astronomical Sciences ,Physical Sciences ,catalogs ,cosmology: observations ,submillimeter: general ,astro-ph.GA ,astro-ph.CO ,astro-ph.IM ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution (SED), which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Planck's three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeeP's data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. This parameter can be used to extract sub-samples of high-frequency sources with statistically well-understood properties. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1% of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. We describe the characteristics of this specific high-quality subset of PCCS2 and its validation against other data sets, specifically for: the sub-sample of PCCS2 located in low-cirrus areas; the Planck Catalogue of Galactic Cold Clumps; the Herschel GAMA15-field catalogue; and the temperature-and spectral-index-reconstructed dust maps obtained with Planck's Generalized Needlet Internal Linear Combination method. The results of the BeeP extension of PCCS2, which are made publicly available via the Planck Legacy Archive, will enable the study of the thermal properties of well-defined samples of compact Galactic and extragalactic dusty sources.
- Published
- 2020
50. Planck intermediate results: LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II
- Author
-
Akrami, Y, Ashdown, M, Aumont, J, Baccigalupi, C, Ballardini, M, Banday, AJ, Barreiro, RB, Bartolo, N, Basak, S, Benabed, K, Bernard, JP, Bersanelli, M, Bielewicz, P, Bond, JR, Borrill, J, Bouchet, FR, Burigana, C, Calabrese, E, Cardoso, JF, Casaponsa, B, Chiang, HC, Combet, C, Contreras, D, Crill, BP, Cuttaia, F, De Bernardis, P, De Rosa, A, De Zotti, G, Delabrouille, J, Di Valentino, E, Diego, JM, Doré, O, Douspis, M, Dupac, X, Enßlin, TA, Eriksen, HK, Fernandez-Cobos, R, Finelli, F, Frailis, M, Franceschi, E, Frolov, A, Galeotta, S, Galli, S, Ganga, K, Génova-Santos, RT, Gerbino, M, González-Nuevo, J, Górski, KM, Gruppuso, A, Gudmundsson, JE, Handley, W, Herranz, D, Hivon, E, Huang, Z, Jaffe, AH, Jones, WC, Keihänen, E, Keskitalo, R, Kiiveri, K, Kim, J, Kisner, TS, Krachmalnicoff, N, Kunz, M, Kurki-Suonio, H, Lamarre, JM, Lattanzi, M, Lawrence, CR, Le Jeune, M, Levrier, F, Liguori, M, Lilje, PB, Lindholm, V, López-Caniego, M, Maciás-Pérez, JF, Maino, D, Mandolesi, N, Marcos-Caballero, A, Maris, M, Martin, PG, Martínez-González, E, Matarrese, S, Mauri, N, McEwen, JD, Mennella, A, Migliaccio, M, Molinari, D, Moneti, A, Montier, L, Morgante, G, Moss, A, Natoli, P, Pagano, L, Paoletti, D, Perrotta, F, Pettorino, V, Piacentini, F, Polenta, G, Rachen, JP, Reinecke, M, and Remazeilles, M
- Subjects
cosmic background radiation ,cosmology: observations ,relativistic processes ,reference systems ,astro-ph.CO ,Astronomy & Astrophysics ,Astronomical and Space Sciences - Abstract
The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first, and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum, noting that it contributes negligible noise to the bispectrum at relevant scales.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.