79 results on '"Boris Vauzeilles"'
Search Results
2. Rapid and Specific Enrichment of Culturable Gram Negative Bacteria Using Non-Lethal Copper-Free Click Chemistry Coupled with Magnetic Beads Separation.
- Author
-
Emilie Fugier, Audrey Dumont, Annie Malleron, Enora Poquet, Jordi Mas Pons, Aurélie Baron, Boris Vauzeilles, and Sam Dukan
- Subjects
Medicine ,Science - Abstract
Currently, identification of pathogenic bacteria present at very low concentration requires a preliminary culture-based enrichment step. Many research efforts focus on the possibility to shorten this pre-enrichment step which is needed to reach the minimal number of cells that allows efficient identification. Rapid microbiological controls are a real public health issue and are required in food processing, water quality assessment or clinical pathology. Thus, the development of new methods for faster detection and isolation of pathogenic culturable bacteria is necessary. Here we describe a specific enrichment technique for culturable Gram negative bacteria, based on non-lethal click chemistry and the use of magnetic beads that allows fast detection and isolation. The assimilation and incorporation of an analog of Kdo, an essential component of lipopolysaccharides, possessing a bio-orthogonal azido function (Kdo-N3), allow functionalization of almost all Gram negative bacteria at the membrane level. Detection can be realized through strain-promoted azide-cyclooctyne cycloaddition, an example of click chemistry, which interestingly does not affect bacterial growth. Using E. coli as an example of Gram negative bacterium, we demonstrate the excellent specificity of the technique to detect culturable E. coli among bacterial mixtures also containing either dead E. coli, or live B. subtilis (as a model of microorganism not containing Kdo). Finally, in order to specifically isolate and concentrate culturable E. coli cells, we performed separation using magnetic beads in combination with click chemistry. This work highlights the efficiency of our technique to rapidly enrich and concentrate culturable Gram negative bacteria among other microorganisms that do not possess Kdo within their cell envelope.
- Published
- 2015
- Full Text
- View/download PDF
3. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.
- Author
-
Michael A Djordjevic, Anna Bezos, Susanti, Laurence Marmuse, Hugues Driguez, Eric Samain, Boris Vauzeilles, Jean-Marie Beau, Farzaneh Kordbacheh, Barry G Rolfe, Ralf Schwörer, Alison M Daines, Peter M Gresshoff, and Christopher R Parish
- Subjects
Medicine ,Science - Abstract
Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the potential to be a new, carbohydrate-based class of therapeutics for modulating angiogenesis.
- Published
- 2014
- Full Text
- View/download PDF
4. Mutually Rewarding Academia‐Industry Collaborations in the Field of Chemical Biology
- Author
-
Yves P. Auberson, Uwe Grether, Boris Vauzeilles, and Olalla Vázquez
- Subjects
Organic Chemistry ,Molecular Medicine ,Molecular Biology ,Biochemistry - Published
- 2023
5. SCF‐ChemBio: Chemical Biology Tour de France
- Author
-
Marie Lopez, Yung‐Sing Wong, Christophe Biot, and Boris Vauzeilles
- Subjects
Organic Chemistry ,Molecular Medicine ,Molecular Biology ,Biochemistry - Published
- 2023
6. PSL Chemical Biology Symposia Third Edition: A Branch of Science in its Explosive Phase
- Author
-
Leeroy Baron, Justine Hadjerci, Leishemba Thoidingjam, Marina Plays, Romain Bucci, Nolwenn Morris, Sebastian Müller, Fabien Sindikubwabo, Stéphanie Solier, Tatiana Cañeque, Ludovic Colombeau, Cedric M. Blouin, Christophe Lamaze, Alain Puisieux, Yannick Bono, Christine Gaillet, Luca Laraia, Boris Vauzeilles, Frédéric Taran, Sébastien Papot, Philippe Karoyan, Romain Duval, Florence Mahuteau‐Betzer, Paola Arimondo, Kevin Cariou, Gilles Guichard, Laurent Micouin, Mélanie Ethève‐Quelquejeu, Daniela Verga, Antoine Versini, Gilles Gasser, Cong Tang, Philippe Belmont, Andreas Linkermann, Claudia Bonfio, Dennis Gillingham, Thomas Poulsen, Marco Di Antonio, Marie Lopez, Dominique Guianvarc'h, Christophe Thomas, Géraldine Masson, Arnaud Gautier, Ludger Johannes, and Raphaël Rodriguez
- Subjects
Organic Chemistry ,Molecular Medicine ,Molecular Biology ,Biochemistry - Published
- 2023
7. ICBS 2021: Looking Toward the Next Decade of Chemical Biology
- Author
-
Clinton G. L. Veale, Arindam Talukdar, and Boris Vauzeilles
- Subjects
Molecular Medicine ,General Medicine ,Biochemistry - Published
- 2022
8. Dynamic imaging of cell wall polysaccharides by metabolic click‐mediated labeling of pectins in living elongating cells
- Author
-
Marc Ropitaux, Quentin Hays, Aurélie Baron, Laura Fourmois, Isabelle Boulogne, Boris Vauzeilles, Patrice Lerouge, Jean‐Claude Mollet, and Arnaud Lehner
- Subjects
Cell Wall ,Polysaccharides ,Arabidopsis ,Genetics ,Pectins ,Click Chemistry ,Cell Biology ,Plant Science - Abstract
Protein tracking in living plant cells has become routine with the emergence of reporter genes encoding fluorescent tags. Unfortunately, this imaging strategy is not applicable to glycans because they are not directly encoded by the genome. Indeed, complex glycans result from sequential additions and/or removals of monosaccharides by the glycosyltransferases and glycosidases of the cell's biosynthetic machinery. Currently, the imaging of cell wall polymers mainly relies on the use of antibodies or dyes that exhibit variable specificities. However, as immunolocalization typically requires sample fixation, it does not provide access to the dynamics of living cells. The development of click chemistry in plant cell wall biology offers an alternative for live-cell labeling. It consists of the incorporation of a carbohydrate containing a bio-orthogonal chemical reporter into the target polysaccharide using the endogenous biosynthetic machinery of the cell. Once synthesized and deposited in the cell wall, the polysaccharide containing the analog monosaccharide is covalently coupled to an exogenous fluorescent probe. Here, we developed a metabolic click labeling approach which allows the imaging of cell wall polysaccharides in living and elongating cells without affecting cell viability. The protocol was established using the pollen tube, a useful model to follow cell wall dynamics due to its fast and tip-polarized growth, but was also successfully tested on Arabidopsis root cells and root hairs. This method offers the possibility of imaging metabolically incorporated sugars of viable and elongating cells, allowing the study of the long-term dynamics of labeled extracellular polysaccharides.
- Published
- 2022
9. EFMC: Trends in Medicinal Chemistry and Chemical Biology
- Author
-
Yves P. Auberson, Paola B. Arimondo, Maria Duca, Sebastian Essig, Uwe Grether, Arne C. Rufer, Gianluca Sbardella, Ulrich Schopfer, Antoni Torrens, Mario van der Stelt, Boris Vauzeilles, Olalla Vázquez, and Andrew X. Zhang
- Subjects
Organic Chemistry ,Molecular Medicine ,Molecular Biology ,Biochemistry - Published
- 2023
10. Hydrogen Peroxide‐Responsive Triggers Based on Borinic Acids: Molecular Insights into the Control of Oxidative Rearrangement
- Author
-
Blaise Gatin‐Fraudet, Mathilde Pucher, Thomas Le Saux, Gilles Doisneau, Yann Bourdreux, Ludovic Jullien, Boris Vauzeilles, Dominique Guianvarc'h, and Dominique Urban
- Subjects
Oxidative Stress ,Organic Chemistry ,Hydrogen Peroxide ,General Chemistry ,Borinic Acids ,Oxidation-Reduction ,Boronic Acids ,Catalysis - Abstract
Arylborinic acids represent new, efficient, and underexplored hydrogen peroxide-responsive triggers. In contrast to boronic acids, two concomitant oxidative rearrangements are involved in the complete oxidation of these species, which might represent a major limitation for an efficient effector (drug or fluorophore) release. Herein, a comprehensive study of H
- Published
- 2022
11. Synthesis of chemical tools to label the mycomembrane of corynebacteria using modified iron( iii ) chloride-mediated protection of trehalose
- Author
-
Mathieu Carlier, Emilie Lesur, Aurélie Baron, Aurélie Lemétais, Karine Guitot, Loïc Roupnel, Christiane Dietrich, Gilles Doisneau, Dominique Urban, Nicolas Bayan, Jean-Marie Beau, Dominique Guianvarc'h, Boris Vauzeilles, Yann Bourdreux, Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chlorides ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,Cell Membrane ,Trehalose ,[CHIM]Chemical Sciences ,Microbial Sensitivity Tests ,Physical and Theoretical Chemistry ,Corynebacterium ,[CHIM.OTHE]Chemical Sciences/Other ,Biochemistry ,Ferric Compounds ,Anti-Bacterial Agents - Abstract
Trehalose-based probes are useful tools that allow the detection of the mycomembrane of mycobacteria through the metabolic labeling approach. Trehalose analogues conjugated to fluorescent probes can be used, and other probes are functionalized with a bioorthogonal chemical reporter for a two-step labeling approach. The synthesis of such trehalose-based probes mainly relies on the desymmetrization of natural trehalose using a large number of regioselective protection-deprotection steps to differentiate the eight hydroxyl groups. Herein, in order to avoid these time-consuming steps, we reinvestigated our previously reported tandem protocol mediated by FeCl
- Published
- 2022
12. Evaluation of borinic acids as new, fast hydrogen peroxide–responsive triggers
- Author
-
Blaise Gatin-Fraudet, Roxane Ottenwelter, Thomas Le Saux, Stéphanie Norsikian, Mathilde Pucher, Thomas Lombès, Aurélie Baron, Philippe Durand, Gilles Doisneau, Yann Bourdreux, Bogdan I. Iorga, Marie Erard, Ludovic Jullien, Dominique Guianvarc’h, Dominique Urban, and Boris Vauzeilles
- Subjects
Multidisciplinary ,Physical Sciences - Abstract
Significance Hydrogen peroxide plays an important role in the fine balance between physiological and pathological processes. To detect this diffusible small molecule, we expanded the scope of organic triggers in developing borinic acids as an alternative and more sensitive trigger than the most conventional boronate-based sensors. We discovered that borinic acid is 10,000-fold more reactive than its boronic counterpart toward H 2 O 2 -mediated oxidation. An accurate determination of oxidation kinetic constants and computational experiments corroborate this higher reactivity. This improvement also proved effective for in-cell detection of exogenously as well as endogenously produced H 2 O 2 . We believe borinic acids represent a new and efficient tool allowing for the development of new devices for a better understanding of H 2 O 2 -mediated signaling processes.
- Published
- 2021
13. The Chemical Biology-Medicinal Chemistry continuum: EFMC's vision
- Author
-
Dennis Gillingham, Mario van der Stelt, Philip R. Skaanderup, Yves Auberson, Christian A. Olsen, Boris Vauzeilles, Gianluca Sbardella, Maria Duca, Olalla Vázquez, Université Côte d'Azur (UCA), Institut de Chimie des Substances Naturelles (ICSN), and Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Engineering ,Dynamic field ,chemical biology ,EFMC ,medicinal chemistry ,Chemistry, Pharmaceutical ,Chemical biology ,Biologically active chemical ,Biochemistry ,Medicinal chemistry ,03 medical and health sciences ,Humans ,[CHIM]Chemical Sciences ,Molecular Biology ,Scientific disciplines ,030304 developmental biology ,0303 health sciences ,Scope (project management) ,business.industry ,030302 biochemistry & molecular biology ,Organic Chemistry ,3. Good health ,Europe ,Pharmaceutical Preparations ,Molecular Medicine ,business - Abstract
International audience; The European Federation for Medicinal chemistry and Chemical biology (EFMC) is a federation of learned societies. It groups organizations of European scientists working in a dynamic field spanning chemical biology and medicinal chemistry. New ideas, tools, and technologies emerging from a wide array of scientific disciplines continuously energize this rapidly evolving area. Medicinal chemistry is the design, synthesis, and optimization of biologically active molecules aimed at discovering new drug candidatesa mission that in many ways overlaps with the scope of chemical biology. Chemical biology is by now a mature field of science for which a more precise definition of what it englobes, in the frame of EFMC, is timely. This article discusses chemical biology as currently understood by EFMC, including all activities dealing with the design and synthesis of biologically active chemical tools and their use to probe, characterize, or influence biological systems.
- Published
- 2021
14. CPCN - BILAN DE MANDATURE 2016 – 2021
- Author
-
Olivier Coutard, Pierre-Olivier Amblard, Claude Amra, Brigitte Bacroix, Pascal Barone, Yannick Barthe, Isabelle Berbezier, Monique Bernard, Marc Billaud, Gudrun Bornette, Didier Bresch, Philippe Cardin, Philippe Claudin, Hubert Comon-Lundh, Didier Demazière, Claude Diebolt, Philippe Faure, Yves Gaudin, Julie Gavard, Raphael Granier De Cassagnac, Anne-Marie Haghiri-Gosnet, Philippe Hapiot, Nabil Hathout, Philippe Hoffmann, Peter Holdsworth, Laurent Kodjabachian, Catherine Leblanc, Francois Lott, Nathalie Luca, Emmanuel Magnier, Antoine Maignan, Eric Marechal, Françoise Massines, Benoit Mosser, Francois Ozanam, Dimitri Peaucelle, Franck Picard, Laurence Pruvost, Laure Quennouëlle-Corre, Hugues Roest Crollius, Jay Rowell, Véronique Schmitt, Laurent Schneider, Isabelle Théry-Parisot, François Trottein, Boris Vauzeilles, Fabrice Vavre, Laboratoire Techniques, Territoires et Sociétés (LATTS), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre de recherche cerveau et cognition (CERCO), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de sociologie des organisations (Sciences Po, CNRS) (CSO), Sciences Po (Sciences Po)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), and CNRS
- Subjects
[STAT]Statistics [stat] ,[PHYS]Physics [physics] ,[SPI]Engineering Sciences [physics] ,[SCCO]Cognitive science ,[QFIN]Quantitative Finance [q-fin] ,[SDU]Sciences of the Universe [physics] ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[CHIM]Chemical Sciences ,[INFO]Computer Science [cs] ,[NLIN]Nonlinear Sciences [physics] ,[MATH]Mathematics [math] ,[SHS]Humanities and Social Sciences - Abstract
National audience; Le présent bilan de mandature 2016-2021 de la CPCN (Conférence des présidentes et présidents de sections et de commissions interdisciplinaires du Comité national de la recherche scientifique) a une triple finalité. Il constitue d’abord une forme d’autoévaluation de l’action de la CPCN et, à travers elle, de l’action coordonnée des sections et commissions interdisciplinaires (CID), au cours de cette mandature, en rappelant autant que de besoin le contexte dans lequel cette action s’est inscrite. Il vise également à rendre compte de cette action auprès de la communauté scientifique française à travers une diffusion la plus large possible. Il doit enfin permettre un passage de relais avec les sections et CID et avec la CPCN qui seront mises en place à l’automne 2021.
- Published
- 2021
15. Combining 3D single molecule localization strategies for reproducible bioimaging
- Author
-
Emmanuel Fort, Boris Vauzeilles, Nicolas Bourg, Christophe Leterrier, Sandrine Lévêque-Fort, Clément Cabriel, Pierre Jouchet, Guillaume Dupuis, Marie-Ange Badet-Denisot, Aurélie Baron, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Photonique Biomédicale (CPBM), Centre Laser Université Paris Sud, Institut de neurophysiopathologie (INP), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut Langevin - Ondes et Images (UMR7587) (IL), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), European Project: 654148,H2020,H2020-INFRAIA-2014-2015,LASERLAB-EUROPE(2015), Centre Laser de l'Université Paris Sud (CLUPS), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Sud - Paris 11 (UP11), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Institut Langevin - Ondes et Images, Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-10-IDEX-0001-02/10-LABX-0024,WIFI,Institut Langevin : Ondes et Images, du Fondamental à l'Innovation(2010), and ANR-11-IDEX-0003-02/10-LABX-0032,LaSIPS,LABORATORY FOR SYSTEMS AND ENGINEERING OF PARIS SACLAY(2011)
- Subjects
Single molecule localization ,0301 basic medicine ,Point spread function ,Fluorescence-lifetime imaging microscopy ,Materials science ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Science ,General Physics and Astronomy ,02 engineering and technology ,Article ,Fluorescence imaging ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,03 medical and health sciences ,Imaging, Three-Dimensional ,Optics ,law ,Microscopy ,Nanotechnology ,Super-resolution microscopy ,lcsh:Science ,Anisotropy ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,business.industry ,Resolution (electron density) ,General Chemistry ,021001 nanoscience & nanotechnology ,Fluorescence ,3. Good health ,030104 developmental biology ,Achromatic lens ,lcsh:Q ,0210 nano-technology ,business ,Algorithms ,3d localization - Abstract
Here, we present a 3D localization-based super-resolution technique providing a slowly varying localization precision over a 1 μm range with precisions down to 15 nm. The axial localization is performed through a combination of point spread function (PSF) shaping and supercritical angle fluorescence (SAF), which yields absolute axial information. Using a dual-view scheme, the axial detection is decoupled from the lateral detection and optimized independently to provide a weakly anisotropic 3D resolution over the imaging range. This method can be readily implemented on most homemade PSF shaping setups and provides drift-free, tilt-insensitive and achromatic results. Its insensitivity to these unavoidable experimental biases is especially adapted for multicolor 3D super-resolution microscopy, as we demonstrate by imaging cell cytoskeleton, living bacteria membranes and axon periodic submembrane scaffolds. We further illustrate the interest of the technique for biological multicolor imaging over a several-μm range by direct merging of multiple acquisitions at different depths., 3D single molecule localization microscopy suffers from several experimental biases that degrade the resolution or localization precision. Here the authors present a dual-view detection scheme combining supercritical angle fluorescence and astigmatic imaging to obtain precise and unbiased 3D super resolution images.
- Published
- 2019
16. Tracking Charge Accumulation in a Functional Triazole‐Linked Ruthenium‐Rhenium Dyad Towards Photocatalytic Carbon Dioxide Reduction
- Author
-
Thu-Trang Tran, Boris Vauzeilles, Zakaria Halime, Christophe Lefumeux, Ally Aukauloo, Aurélie Baron, Philipp Gotico, Winfried Leibl, Thomas Pino, Annamaria Quaranta, Minh-Huong Ha-Thi, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and ANR-19-CE05-0020,LOCO,Processus Photoinduit d'Activation à 2 Electrons du CO2(2019)
- Subjects
010405 organic chemistry ,Organic Chemistry ,Supramolecular chemistry ,Triazole ,chemistry.chemical_element ,[CHIM.CATA]Chemical Sciences/Catalysis ,Rhenium ,010402 general chemistry ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,Ruthenium ,chemistry.chemical_compound ,Electron transfer ,chemistry ,13. Climate action ,Carbon dioxide ,Photocatalysis ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,Electrochemical reduction of carbon dioxide - Abstract
International audience; The [Re(bpy)(CO)3Cl] catalyst pioneered by Lehn for the two-electron reduction of CO2 has constantly revealed unique facets in the mechanistic understanding of the selective transformation of CO2. A novel triazole-linked ruthenium photosensitizer and a rhenium catalyst dyad was synthesized and investigated for photo-induced charge accumulation using time-resolved absorption spectroscopy. The triazole bridging ligand promoted weak electronic communication between the two units, resulting in an anodic shift of the reduction potentials of the Re moiety. Upon excitation of the photosensitizer, the first reduction of the catalyst occurred with a fast apparent rate of >5×107 s−1. Using a double-excitation nanosecond pump-pump-probe setup to track the second electron accumulation on the catalytic unit was not conclusive as no observable absorption changes occurred upon the second excitation, suggesting a pathway for an efficient intramolecular reverse electron transfer preventing the two-electron accumulation at the catalyst under our experimental conditions. Nevertheless, under continuous irradiation and with the use of sacrificial electron donors, photocatalytic CO2 reduction assays showed good turnover numbers, hinting at the non-innocent role of byproducts in solution.
- Published
- 2021
17. Metabolic Labeling of Bacterial Glycans
- Author
-
Yann Bourdreux, Boris Vauzeilles, Dominique Guianvarc'h, Christophe Biot, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE07-0042,NEURAPROBE,Ingénierie des acides sialiques: une nouvelle stratégie pour la découverte alternative d'antibactériens.(2018), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, CNRS, and Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) - UMR 8576
- Subjects
Chemical reporter strategy ,Glycan ,Bioorthogonal chemistry ,[SDV]Life Sciences [q-bio] ,Lipopolysaccharide ,Computational biology ,Peptidoglycan ,010402 general chemistry ,In situ visualization ,01 natural sciences ,03 medical and health sciences ,Synthesis ,Bacterial cell envelope ,030304 developmental biology ,Glycoproteins ,Chemical biology ,Click chemistry ,Glycan imaging ,In vivo chemistry ,Metabolic glycan labeling ,Molecular probes ,Mycomembrane ,0303 health sciences ,biology ,Chemistry ,Biocompatible material ,0104 chemical sciences ,carbohydrates (lipids) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Bioorthogonal chemical reporter ,Metabolic labeling ,biology.protein - Abstract
International audience; Although their impact in biology and cellular communication are now well established, in situ visualization of glycans has long remained elusive due to the lack of suitable and general imaging techniques. Twenty years ago, the bioorthogonal chemical reporter strategy based on chemoselective and biocompatible reactions has emerged to become the state-of-the-art labeling technology for studying glycans. In this chapter, after providing an update on recent developments in bioorthogonal chemistry, we review how this strategy can be implemented to the visualization and biochemical analysis of different glycans in the bacterial cell envelope.
- Published
- 2021
18. Combining 3D single molecule localization strategies and sprectral demultiplexing for bioimaging (Conference Presentation)
- Author
-
Guillaume Dupuis, Emmanuel Fort, Nicolas Bourg, Cyndelia Guillaume, Aurélie Baron, Clément Cabriel, Sandrine Lévêque-Fort, Pierre Jouchet, Christophe Leterrier, Boris Vauzeilles, and Marie-Ange Badet-Denisot
- Subjects
Single molecule localization ,Point spread function ,Physics ,Optics ,Field (physics) ,business.industry ,medicine ,Lateral resolution ,Sensitivity (control systems) ,Astigmatism ,business ,medicine.disease ,Multiplexing - Abstract
DAISY combined Supercritical Angle Fluorescence (SAF) detection in order to provide an absolute axial reference to a point spread function engineering approach . The dual view optical setup permits to introduce a strong astigmatism and decouple lateral and axial information, thus extending the axial performances without degrading the lateral precision. This technique provides 3D absolute information over a 1-µm capture range above the glass coverslip and an axial localization precision down to 15 nm with minimal loss of lateral resolution and little sensitivity to field aberrations. We will present sequential and simultaneous up to 3 color 3D imaging in cells.
- Published
- 2020
19. Borinic acids as new fast-responsive triggers for hydrogen peroxide detection
- Author
-
Yann Bourdreux, Thomas Lombès, Gilles Doisneau, Thomas Le Saux, Aurélie Baron, Stéphanie Norsikian, Marie Erard, Philippe Durand, Boris Vauzeilles, Roxane Ottenwelter, Ludovic Jullien, Dominique Guianvarc'h, Blaise Gatin-Fraudet, Dominique Urban, Norsikian, Stéphanie, Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)
- Subjects
chemistry.chemical_compound ,chemistry ,Kinetics ,[CHIM] Chemical Sciences ,[CHIM]Chemical Sciences ,Context (language use) ,Reactivity (chemistry) ,Hydrogen peroxide ,Borinic acid ,Combinatorial chemistry ,Fluorescence ,First generation - Abstract
Detection of hydrogen peroxide (H2O2), which is responsible for numerous damages when overproduced, is crucial for a better understanding of H2O2-mediated signalling in physiological and pathological processes. For this purpose, various“off-on” small fluorescent probes relying on a boronate trigger have been developed. However, they suffer from low kinetics and do not allow forH2O2-detectionwith a short response time. Therefore, more reactive sensors are still awaited. To address this issue, we have successfully developed the first generation of borinic-based fluorescent probes containing a coumarin-scaffold. We determined the in vitrokinetic constants of the probe toward H2O2-promotedoxidation. We measured 1.9x104m-1.s-1as a second order rate constant, which is 10 000 faster than its boronic counterpart (1.8 m-1.s-1). This remarkable reactivity was also effective in a cellular context, rendering the borinic trigger an advantageous new tool for H2O2detection.
- Published
- 2020
20. One‐pot Multistep Regioselective Protection of Carbohydrates Catalyzed by Acids
- Author
-
Guillaume Despras, Boris Vauzeilles, Alexandra Gouasmat, Dominique Urban, Géraldine San Jose, Jean-Marie Beau, and Yann Bourdreux
- Subjects
Chemistry ,Regioselectivity ,Organic chemistry ,Lewis acids and bases ,Catalysis - Published
- 2018
21. First access to a mycolic acid-based bioorthogonal reporter for the study of the mycomembrane and mycoloyltransferases in Corynebacteria
- Author
-
Jean-Marie Beau, Marie Buchotte, Aurélie Baron, Emilie Lesur, Nicolas Bayan, Gilles Doisneau, Yann Bourdreux, Boris Vauzeilles, Christiane Dietrich, Dominique Guianvarc'h, Dominique Urban, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Biologie Moléculaire des Corynébactéries et Mycobactéries (CORYNE), Département Microbiologie (Dpt Microbio), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV]Life Sciences [q-bio] ,Alkyne ,Corynebacterium ,010402 general chemistry ,01 natural sciences ,Catalysis ,Mycolic acid ,Materials Chemistry ,Fluorescent Dyes ,chemistry.chemical_classification ,Molecular Structure ,010405 organic chemistry ,Chemistry ,Cell Membrane ,Metals and Alloys ,Fatty acid ,Trehalose monomycolate ,General Chemistry ,Mycomembrane ,0104 chemical sciences ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Mycolic Acids ,Biochemistry ,Ceramics and Composites ,Bioorthogonal chemistry ,Acyltransferases - Abstract
In this study, we report the first synthesis of an alkyne-based trehalose monomycolate probe containing a β-hydroxylated fatty acid and an α-branched chain similar to those of the natural mycolic acid. We demonstrate its utility for the labeling of the mycomembrane of Corynebacteria as well as for the study of mycoloyltransferases.
- Published
- 2019
22. Synthesis of lipo-chitooligosaccharide analogues and their interaction with LYR3, a high affinity binding protein for Nod factors and Myc-LCOs
- Author
-
Antoine Brossay, Nathan Berthelot, François-Didier Boyer, Aurélie Baron, Jean-Jacques Bono, Boris Vauzeilles, Dominique Urban, Jean-Marie Beau, Virginie Gasciolli, Université Paris Saclay (COmUE), Laboratoire des interactions plantes micro-organismes (LIPM), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut de Chimie des Substances Naturelles (ICSN) - Centre National de la Recherche Scientifique (CNRS), CHARM3AT Labex program : ANR-11-LABX-39, and Labex Saclay Plant Sciences-SPS : ANR-10-LABX-0040-SPS
- Subjects
Stereochemistry ,Triazole ,Oligosaccharides ,Chitin ,010402 general chemistry ,01 natural sciences ,Biochemistry ,chemistry.chemical_compound ,Residue (chemistry) ,Medicago truncatula ,Physical and Theoretical Chemistry ,Receptor ,Plant Proteins ,Chitosan ,biology ,010405 organic chemistry ,Depolymerization ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Ligand binding assay ,Organic Chemistry ,fungi ,food and beverages ,biology.organism_classification ,Cycloaddition ,3. Good health ,0104 chemical sciences ,chemistry - Abstract
International audience; Lipo-chitotetrasaccharide analogues where one central GlcNAc residue was replaced by a triazole unit have been synthesized from a derivative obtained by chitin depolymerization and a functionalized N-acetyl-glucosamine via the copper-catalyzed azide-alkyne cycloaddition. Their evaluation in a binding assay using LYR3, a putative lipo-chitooligosaccharide receptor in Medicago truncatula, shows a complete loss of binding.
- Published
- 2017
23. Identification of LivingLegionella pneumophilaUsing Species-Specific Metabolic Lipopolysaccharide Labeling
- Author
-
Jordi Mas Pons, Audrey Dumont, Grégory Sautejeau, Emilie Fugier, Aurélie Baron, Sam Dukan, and Boris Vauzeilles
- Subjects
General Medicine - Published
- 2014
24. Synthesis of the Fungal Lipo-Chitooligosaccharide Myc-IV (C16:0, S), Symbiotic Signal of Arbuscular Mycorrhiza
- Author
-
Boris Vauzeilles, Jean-Marie Beau, Arnaud Stévenin, Isabelle Schmitz-Afonso, François-Didier Boyer, and Laura Gillard
- Subjects
Glycosylation ,biology ,010405 organic chemistry ,fungi ,Organic Chemistry ,Glycosyl acceptor ,Acetal ,010402 general chemistry ,biology.organism_classification ,01 natural sciences ,0104 chemical sciences ,Arbuscular mycorrhiza ,chemistry.chemical_compound ,chemistry ,Biochemistry ,lipids (amino acids, peptides, and proteins) ,Stereoselectivity ,Physical and Theoretical Chemistry ,Oxidative cleavage - Abstract
A new synthesis of the fungal lipo-chitooligosaccharide Myc-IV (C16:0, S), which was recently reported to be a major symbiotic signalling molecule in arbuscular mycorrhiza, is described. Key steps include the oxidative cleavage of a 4,6-O-benzylidene acetal to prepare a disaccharidic glycosyl acceptor, and stereoselective glycosylations with 2-methyl-5-tert-butylphenyl thioglycosyl donors.
- Published
- 2013
25. Conformational Selection in Glycomimetics: Human Galectin-1 Only Recognizessyn-Ψ-Type Conformations of β-1,3-Linked Lactose and ItsC-Glycosyl Derivative
- Author
-
Hans-Joachim Gabius, Jesús Jiménez-Barbero, F. Javier Cañada, María del Carmen Fernández-Alonso, Paloma Vidal, Virginia Roldós, Sabine André, Juan Felix Espinosa, Sonsoles Martín-Santamaría, Boris Vauzeilles, Yves Blériot, Ctr Invest Lilly, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), CIB-CSIC, CNRS, F-91405 Orsay, France, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Synthèse et réactivité des substances naturelles (SRSN), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München (LMU)-Faculty of Veterinary Medicine, München, Department of Information and Telecommunication Systems [Madrid], and University San Pablo CEU
- Subjects
Galectin 1 ,Molecular model ,Stereochemistry ,Molecular Conformation ,Disaccharide ,Lactose ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,Catalysis ,Substrate Specificity ,Molecular dynamics ,chemistry.chemical_compound ,Molecular recognition ,Humans ,Glycosyl ,Glycosides ,Glycomics ,Conformational isomerism ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Organic Chemistry ,Hydrogen Bonding ,[CHIM.CATA]Chemical Sciences/Catalysis ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,0104 chemical sciences ,Crystallography ,chemistry ,Docking (molecular) ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; The human lectin galectin-1 (hGal-1) translates sugar signals, that is, beta-galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound-state conformations of Gal beta-C-(1 -> 3)-Glc beta-OMe (1) and its beta Gal-(1 -> 3)-beta Glc-OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)-NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C-glycoside access four distinct conformers in solution, hGal-1 recognizes shape of a local minimum of compound 1, the syn-Phi/syn-Psi conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex
- Published
- 2013
26. Light-induced tryptophan radical generation in a click modular assembly of a sensitiser-tryptophan residue
- Author
-
Christian Herrero, Sujitraj Sheth, Boris Vauzeilles, Aurélie Baron, Winfried Leibl, Ally Aukauloo, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Free Radicals ,Light ,Protonation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Redox ,Ruthenium ,law.invention ,Electron Transport ,Electron transfer ,Deprotonation ,law ,Physical and Theoretical Chemistry ,Electron paramagnetic resonance ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Chemistry ,Electron Spin Resonance Spectroscopy ,Tryptophan ,Chromophore ,0104 chemical sciences ,Click chemistry ,Click Chemistry ,Protons ,Oxidation-Reduction - Abstract
International audience; Click chemistry was used as an efficient method to covalently attach a chromophore to an amino acid. Such easily prepared model systems allow for time-resolved studies of one-electron oxidation reactions by the excitation of the chromophore by a laser flash. The model complex ruthenium-tryptophan (Ru-Trp) has been synthesised and studied for its photophysical and electrochemical properties. Despite a small driving force of less than 100 meV, excitation with a laser flash results in fast internal electron transfer leading to the formation of the protonated radical (Trp˙H(+)). At neutral pH electron transfer is followed by deprotonation to form the neutral Trp˙ radical with the rate depending on the concentration of water acting as the proton acceptor. The formation of the tryptophan radical was confirmed by EPR.
- Published
- 2013
27. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy- d - manno -oct-2-ulosonic acid
- Author
-
Aurélie Baron, Bruno Linclau, Jean-Claude Mollet, Patrice Lerouge, Alan Marchant, Damien Schapman, Arnaud Lehner, Julien Malassis, Ludovic Galas, Boris Vauzeilles, Charles T. Anderson, Jordi Mas Pons, Kevin M. Smyth, Marie Dumont, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), University of Southampton, Pennsylvania State University (Penn State), Penn State System, Plate-Forme de Recherche en Imagerie Cellulaire de Haute-Normandie (PRIMACEN), Normandie Université (NU)-Normandie Université (NU)-Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0106 biological sciences ,0301 basic medicine ,Azides ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Pulse labelling ,3-Deoxy-D-manno-oct-2-ulosonic acid ,Cell ,Arabidopsis ,Plant Science ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Calcofluor-white ,Biology ,Plant Roots ,01 natural sciences ,Cell wall ,03 medical and health sciences ,chemistry.chemical_compound ,Cell Wall ,Labelling ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Tobacco ,[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] ,Genetics ,medicine ,Monosaccharide ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Cells, Cultured ,ComputingMilieux_MISCELLANEOUS ,[SDV.BDD.GAM]Life Sciences [q-bio]/Development Biology/Gametogenesis ,chemistry.chemical_classification ,Staining and Labeling ,Sugar Acids ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular Networks [q-bio.MN] ,Cell Biology ,Nucleotidyltransferases ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,030104 developmental biology ,medicine.anatomical_structure ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Biochemistry ,Seedlings ,Click chemistry ,Pectins ,010606 plant biology & botany - Abstract
In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.
- Published
- 2016
28. Click-Mediated Labeling of Bacterial Membranes through Metabolic Modification of the Lipopolysaccharide Inner Core
- Author
-
Sam Dukan, Annie Malleron, Monzer Awwad, Boris Vauzeilles, and Audrey Dumont
- Subjects
Lipopolysaccharides ,Glycan ,biology ,Staining and Labeling ,Chemistry ,Bacterial polysaccharide ,General Chemistry ,General Medicine ,Catalysis ,Fucose ,carbohydrates (lipids) ,Lipid A ,chemistry.chemical_compound ,Metabolic pathway ,Biochemistry ,Neuraminic acid ,Gram-Negative Bacteria ,biology.protein ,Escherichia coli ,Click Chemistry ,Peptidoglycan ,Bacterial outer membrane ,Fluorescent Dyes - Abstract
Metabolic glycan labeling has recently emerged as a very powerful method for studying cell-surface glycans, which has applications that range from imaging glycans in living multicellular organisms, such as zebrafish or mice, to the identification of metastasis-associated cell-surface sialoglycoproteins. This strategy relies on the cellular biosynthetic machinery assimilating a modified monosaccharide that contains a bioorthogonal chemical reporter. The metabolic incorporation of this reporter into glycans can be further visualized by chemical ligation with a label, such as a fluorescent probe. Somewhat surprisingly, previous studies have mainly focused on the labeling of vertebrate glycans by using derivatives of common monosaccharides, such as Nacetyl neuraminic acid (or its N-acetylmannosamine precursor), N-acetylglucosamine, N-acetylgalactosamine, and fucose. In spite of a much higher degree of diversity in their monosaccharide building blocks as well as an essential role in bacterium–host interactions and bacterial virulence, bacterial polysaccharides have been poorly explored in terms of in vivo structural modifications. Bacteria are divided into Grampositive and Gram-negative bacteria. Whereas Gram-positive bacteria are surrounded by a peptidoglycan cell wall, Gramnegative bacteria are covered by a dense layer of lipopolysaccharides that are embedded in their outer membrane. These lipopolysaccharides are involved in the structural integrity of the cell and are often considered as determinants of pathogenicity. Although lipopolysaccharides appear to be an interesting target for specific and well-defined glycan metabolic labeling in Gram-negative bacteria, attempts to achieve this goal have been limited to the introduction of modified l-fucose derivatives into a customized, genetically engineered strain of Escherichia coli. Although it is a very interesting proof of concept, this l-fucose-based approach has some limitations as l-fucose is not generally present within the lipopolysaccharides of all Gram-negative bacteria, but is found in the O-antigens of specific strains. Secondly, free lfucose is not an intermediate in the normal E. coli “de novo” pathway and, therefore, should not be directly activable into a nucleotide-sugar donor without the introduction of an alternative pathway, known as the “salvage pathway”, into the organism of interest by genetic engineering (metabolic pathway engineering). Furthermore, once activated in the form of a modified guanosine-5’-diphosphate–fucose (GDP– Fuc), the l-fucose analogue might be transformed into a correspondingly modified GDP–mannose (GDP–Man) by the reverse de novo pathway, and potentially further metabolized into various other compounds, a process which could result in the chemical reporter being spread through other pathways of sugar metabolism or beyond. As a result of all of these limitations, and as our goal was labeling the lipopolysaccharides of bacteria with no genetic modification, we investigated whether another sugar could be used as a target for the metabolic modification of glycans. From all of the potential targets, 3-deoxy-d-mannooctulosonic acid (KDO) appears to be a very attractive candidate. Indeed, KDO is a specific and essential component of the inner core of lipopolysaccharides, and has long been considered as being present in the lipopolysaccharides of almost all Gram-negative species (as well as higher plants and algae), in which at least one residue is directly connected to lipid A (Scheme 1a). Because of its vital importance, KDO has been considered as a determinant for the characterization of Gram-negative bacteria, and the KDO pathway as a potential target for the development of new antibacterial compounds. In the KDO pathway (Scheme 1b), arabinose5-phosphate (arabinose-5-P) is condensed with phosphoenolpyruvate (PEP) to give KDO-8-phosphate (KDO-8-P), which is then transformed into free KDO, and further activated to form the cytidine monophosphate (CMP)–KDO donor prior to lipopolysaccharide elaboration. For all of these reasons, we hypothesized that the KDO pathway, as a lipopolysaccharidespecific pathway, may be tolerant enough to incorporate a modified analogue of KDO, such as 8-azido-8-deoxy-KDO (1, Scheme 2), into the core of E. coli lipopolysaccharides, and potentially other Gram-negative bacteria. Given the presence of free KDO as an intermediate in the pathway, we postulated that if the cell penetration of this analogue of KDO was sufficient, it could then be directly activated, partially replace endogenous KDO in lipopolysaccharides, and be detected on the cell surface by azide–alkyne click chemistry (Figure S1 in the Supporting Information). Moreover, modification of the C8-position of KDOwith a bioorthogonal azido group should prevent reverse metabolism by KDO-8-P [*] Dr. A. Dumont, Dr. S. Dukan Aix Marseille Universit , Laboratoire de Chimie Bact rienne (UMR 7283), Institut de Microbiologie de la M diterran e (IMM), CNRS, 31 Chemin Joseph Aiguier 13402 Marseille (France) E-mail: sdukan@imm.cnrs.fr
- Published
- 2012
29. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy- l -fucose induces defects in root cell elongation
- Author
-
Marie Dumont, Carole Burel, Jean-Claude Mollet, Muriel Bardor, Olivier Lerouxel, Patrice Lerouge, Boris Vauzeilles, Charles T. Anderson, Arnaud Lehner, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Pennsylvania State University (Penn State), and Penn State System
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Cell division ,Arabidopsis thaliana ,Arabidopsis ,Plant Science ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Biology ,Polysaccharide ,Nucleotide sugar ,Plant Roots ,Fucose ,Cell wall ,chemistry.chemical_compound ,Cell Wall ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Glycosyltransferase ,[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] ,Genetics ,rhamnogalacturonan‐II ,cell elongation ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Cell Shape ,Fucosylation ,[SDV.BDD.GAM]Life Sciences [q-bio]/Development Biology/Gametogenesis ,2. Zero hunger ,chemistry.chemical_classification ,2‐fluoro 2‐deoxy‐ l‐fucose ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular Networks [q-bio.MN] ,Cell Biology ,biology.organism_classification ,root ,[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Biochemistry ,Seedlings ,Mutation ,biology.protein ,boron - Abstract
International audience; Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.
- Published
- 2015
30. NMR and molecular modeling reveal key structural features of synthetic nodulation factors
- Author
-
Maria Morando, F. Javier Cañada, Jean-Marie Beau, Anne Imberty, Boris Vauzeilles, Alessandra Nurisso, Jesús Jiménez-Barbero, Nathalie Grenouillat, inconnu, Inconnu, Centre de Recherches sur les Macromolécules Végétales (CERMAV), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Lipopolysaccharides ,Models, Molecular ,0106 biological sciences ,Magnetic Resonance Spectroscopy ,Molecular model ,Stereochemistry ,Molecular Dynamics Simulation ,Biology ,Plant Root Nodulation ,01 natural sciences ,Biochemistry ,Nod factor ,03 medical and health sciences ,Molecular dynamics ,chemistry.chemical_compound ,Carbohydrate Conformation ,Water environment ,Phenyl group ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Biological activity ,Glycosidic bond ,chemistry ,Rhizosphere ,Function (biology) ,010606 plant biology & botany - Abstract
Nod factors are lipochitoligosaccharides originally produced by the soil bacteria Rhizobia that are involved in the symbiotic process with leguminous plants. Some synthetic analogs of the Nod factors present a strong biological activity, and the conformational behavior of these molecules is of interest for structure/function studies. Nod factor analogs containing an insertion of a phenyl group in the acyl chain at the oligosaccharidic non-reducing end were previously synthesized (Grenouillat N, Vauzeilles B, Bono J-J, Samain E, Beau J-M. 2004. Simple synthesis of nodulation-factor analogues exhibiting high affinity towards a specific binding protein. Angew Chem Int Ed Engl. 43:4644). Conformational studies of natural compounds and synthetic analogs have been performed combining molecular dynamics simulations in explicit water and NMR. Data revealed that the glycosidic head group can adopt only restricted conformations, whereas chemical modifications of the lipid chains, highly flexible in a water environment, influence the global shape of the molecules. Collected structural data could be used in the future to rationalize and understand their biological activity and affinity toward a putative receptor.
- Published
- 2011
31. Design and synthesis by click triazole formation of paclitaxel mimics with simplified core and side-chain structures
- Author
-
Régis Guillot, Boris Vauzeilles, Jean-Marie Beau, Claire Le Manach, Aurélie Baron, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Taxane ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,010405 organic chemistry ,Stereochemistry ,Chemistry ,Organic Chemistry ,Triazole ,Rational design ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Combinatorial chemistry ,Chemical synthesis ,0104 chemical sciences ,3. Good health ,chemistry.chemical_compound ,Paclitaxel ,Drug Discovery ,Side chain ,Click chemistry ,Combinatorial search ,ComputingMilieux_MISCELLANEOUS - Abstract
A library of paclitaxel (taxol) mimics was obtained by a straightforward strategy involving rational design and an efficient synthesis of a simplified taxane core substitute, together with a click-chemistry combinatorial search for phenylisoserine side-chain surrogates.
- Published
- 2011
32. Conformational behaviour of glycomimetics: NMR and molecular modelling studies of the C-glycoside analogue of the disaccharide methyl β-d-galactopyranosyl-(1→3)-β-d-glucopyranoside
- Author
-
Boris Vauzeilles, Yves Blériot, Jesús Jiménez-Barbero, Paloma Vidal, Juan Felix Espinosa, Pierre Sinaÿ, and Matthieu Sollogoub
- Subjects
Models, Molecular ,C glycosides ,Magnetic Resonance Spectroscopy ,Stereochemistry ,Chemistry ,Organic Chemistry ,Disaccharide ,Galactose ,General Medicine ,Nuclear magnetic resonance spectroscopy ,Disaccharides ,Biochemistry ,Molecular mechanics ,Analytical Chemistry ,chemistry.chemical_compound ,Glucose ,Biomimetics ,Carbohydrate Conformation ,Glycosides ,Carbohydrate conformation - Abstract
The conformational behaviour of the C-glycoside beta-C-Gal-(1-->3)-beta-Glc-OMe (1) has been studied using a combination of molecular mechanics and NMR spectroscopy (proton-proton coupling constants and nuclear Overhauser effects). It is shown that the C-disaccharide populates two distinctive conformational families in solution, the normal syn-psi conformation, which is the predominating conformation of parent O-glycoside 2, and the anti-psi conformation, which has not been detected for the O-disaccharide.
- Published
- 2007
33. Efficient chemoenzymatic synthesis of lipo-chitin oligosaccharides as plant growth promoters
- Author
-
Guillaume Despras, A. Brossay, Rémi Chambon, Jean-Marie Beau, Sébastien Fort, Dominique Urban, Sylvie Armand, Boris Vauzeilles, Sylvain Cottaz, Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Bordeaux (UB), Centre de Recherches sur les Macromolécules Végétales (CERMAV), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
chemistry.chemical_classification ,0303 health sciences ,010405 organic chemistry ,Stereochemistry ,Periplasmic space ,Oligosaccharide ,medicine.disease_cause ,01 natural sciences ,Pollution ,Chemical synthesis ,In vitro ,0104 chemical sciences ,Chitin deacetylase ,03 medical and health sciences ,chemistry.chemical_compound ,Enzyme ,chemistry ,Chitin ,Biochemistry ,Vibrio cholerae ,medicine ,Environmental Chemistry ,[CHIM]Chemical Sciences ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology - Abstract
Lipo-chitin oligosaccharides (Nod and Myc LCOs) are molecules involved in symbiotic phenomena in the plant kingdom. They play a major role in the process of atmospheric nitrogen fixation and mineral soil nutrients uptake both in legumes and in non-legumes, and are active at extremely low concentrations down to the nano- and even picomolar range. These compounds contain various substitutions along the oligosaccharide backbone of the molecule including an essential fatty acid on the non-reducing unit and are considered as environmentally-friendly fertilizers. Currently, chemical synthesis cannot produce precursors of Nod and Myc LCOs at a large scale and an in vitro chemoenzymatic pathway is presented here as a new and efficient method for preparing quantities of these high-value oligosaccharides. VC1280 (Vibrio cholerae) is a chitin deacetylase (CD) capable of regioselectively cleaving an acetate from the non-reducing penultimate N-acetyl-D-glucosaminyl (GlcNAc) unit of chitin oligosaccharides (COs). This provides a free amino group which can be further N-acylated with a fatty-acid chain to give analogues of LCOs. Alternatively, the non-reducing GlcNAc unit can be removed by β-N-acetylglucosaminidase treatment, followed by N-acylation to give natural LCOs. VC1280 CD was produced in the periplasm of E. coli. Under the conditions used, 120 mg of the pure enzyme was recovered from 1 L of culture medium. For the first time, in vitro production of a library of natural LCOs as well as their analogues has been carried out at a preparative scale from biosourced chitin oligosaccharides constituting an approach of major interest for sustainable agriculture.
- Published
- 2015
34. Direct Composition Analysis of a Dynamic Library of Imines in an Aqueous Medium
- Author
-
Boris Vauzeilles, Jean-Marie Beau, and Sandrine Zameo
- Subjects
Hplc analysis ,Molecular recognition ,Aqueous medium ,Chemistry ,Computational chemistry ,Drop (liquid) ,Organic Chemistry ,Dynamic combinatorial chemistry ,Composition analysis ,Self-assembly ,Physical and Theoretical Chemistry ,Combinatorial chemistry - Abstract
Dynamic Combinatorial Chemistry: Direct detection of imines in water and their adaptive re-equilibration in the presence of a target are possible by simple HPLC analysis. The equilibrating mixture is fixed by a fast drop in the pH during the analytical step. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
- Published
- 2006
35. ChemInform Abstract: Recent Results in Synthetic Glycochemistry with Iron Salts at Orsay-Gif
- Author
-
Jean-Marie Beau, Yann Bourdreux, Francois-Didier Boyer, Stephanie Norsikian, Dominique Urban, Gilles Doisneau, Boris Vauzeilles, Alexandra Gouasmat, Aurelie Lemetais, Aurelie Mathieu, and et al. et al.
- Subjects
General Medicine - Published
- 2014
36. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin
- Author
-
Boris Vauzeilles, Jean-Marie Beau, Dominique Urban, Guillaume Despras, Aurélien Alix, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Lipopolysaccharides ,Glycosylation ,Glycoconjugate ,Dimer ,Chitin ,Oxazoline ,010402 general chemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Glycolipid ,Sugar Alcohols ,Organic chemistry ,[CHIM]Chemical Sciences ,Biomass ,chemistry.chemical_classification ,Trifluoromethyl ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,General Medicine ,General Chemistry ,0104 chemical sciences ,chemistry ,Conjugate - Abstract
International audience; The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases.
- Published
- 2014
37. ChemInform Abstract: One-Pot Synthesis of D-Glucosamine and Chitobiosyl Building Blocks Catalyzed by Triflic Acid on Molecular Sieves
- Author
-
Dominique Urban, Jean-Marie Beau, Boris Vauzeilles, and Guillaume Despras
- Subjects
chemistry.chemical_compound ,chemistry ,Organocatalysis ,One-pot synthesis ,Organic chemistry ,General Medicine ,Molecular sieve ,Triflic acid ,D-Glucosamine ,Catalysis - Abstract
The method is developed to prepare the building blocks for the construction of oligosaccharides.
- Published
- 2014
38. Carbon dioxide reduction via light activation of a ruthenium-Ni(cyclam) complex
- Author
-
Christian Herrero, Annamaria Quaranta, Ally Aukauloo, Sanae El Ghachtouli, Winfried Leibl, Boris Vauzeilles, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Spectrometry, Mass, Electrospray Ionization ,Magnetic Resonance Spectroscopy ,Light ,General Physics and Astronomy ,chemistry.chemical_element ,Electron donor ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Ruthenium ,Catalysis ,chemistry.chemical_compound ,Electron transfer ,Heterocyclic Compounds ,Nickel ,Cyclam ,Physical and Theoretical Chemistry ,Electrochemical reduction of carbon dioxide ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Chromophore ,Carbon Dioxide ,0104 chemical sciences ,chemistry ,13. Climate action ,Flash photolysis ,Oxidation-Reduction - Abstract
International audience; In this paper we report the synthesis of a chromophore-catalyst assembly designed for the photoreduction of carbon dioxide. The chromophore unit is made up of a ruthenium trisbipyridyl-like unit covalently attached to a nickel cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) via a triazole ring. The intramolecular electron transfer activation of the catalyst unit by visible light was studied by nanosecond flash photolysis and EPR spectroscopy. In aqueous solutions (pH = 6.5), activation of the Ru(II)-Ni(II) modular assembly with 450 nm visible light in the presence of a sacrificial electron donor accomplishes the reduction of CO2 into CO and H2 in a ratio of 2.7 to 1.
- Published
- 2014
39. Identification of living Legionella pneumophila using species-specific metabolic lipopolysaccharide labeling
- Author
-
Sam Dukan, Boris Vauzeilles, Grégory Sautejeau, Audrey Dumont, Jordi Mas Pons, Emilie Fugier, Aurélie Baron, Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie bactérienne (LCB), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Lipopolysaccharides ,Lipopolysaccharide ,010402 general chemistry ,01 natural sciences ,Legionella pneumophila ,Catalysis ,Microbiology ,chemistry.chemical_compound ,Environmental water ,Serotyping ,Fluorescent Dyes ,Microscopy, Confocal ,biology ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Monosaccharides ,Outbreak ,O Antigens ,General Chemistry ,biology.organism_classification ,bacterial infections and mycoses ,3. Good health ,0104 chemical sciences ,respiratory tract diseases ,chemistry ,Biochemistry ,bacteria ,Identification (biology) ,Click Chemistry ,Legionella species ,Bacteria - Abstract
International audience; Legionella pneumophila is a pathogenic bacterium involved in regular outbreaks characterized by a relatively high fatality rate and an important societal impact. Frequent monitoring of the presence of this bacterium in environmental water samples is necessary to prevent these epidemic events, but the traditional culture-based detection and identification method requires up to 10 days. Reported herein is a method allowing identification of Legionella pneumophila by metabolic lipopolysaccharide labeling which targets, for the first time, a precursor to monosaccharides that are specifically present within the O-antigen of the bacterium. This new approach allows easy detection of living Legionella pneumophila, while other Legionella species are not labeled.
- Published
- 2014
40. One-pot synthesis of d-glucosamine and chitobiosyl building blocks catalyzed by triflic acid on molecular sieves
- Author
-
Jean-Marie Beau, Dominique Urban, Boris Vauzeilles, Guillaume Despras, Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
inorganic chemicals ,Glycosylation ,One-pot synthesis ,010402 general chemistry ,Molecular sieve ,Ring (chemistry) ,01 natural sciences ,Benzylidene Compounds ,Catalysis ,chemistry.chemical_compound ,Acetals ,Materials Chemistry ,Organic chemistry ,Mesylates ,Glucosamine ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Acetal ,Metals and Alloys ,Stereoisomerism ,General Chemistry ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Ceramics and Composites ,Triflic acid ,D-Glucosamine - Abstract
International audience; Combining triflic acid-catalyzed acetalation, benzylation, reductive ring opening of benzylidene acetal and glycosylation in one-pot transformations leads to a wide range of d-glucosamine building blocks for assembling oligomers.
- Published
- 2014
41. Chapter 7. Recent results in synthetic glycochemistry with iron salts at Orsay-Gif
- Author
-
Amandine Xolin, Gilles Doisneau, Aurélie Mathieu, Aurélie Lemétais, Jean-François Soulé, Jean-Marie Beau, Boris Vauzeilles, François-Didier Boyer, Stephanie Norsikian, Dominique Urban, Arnaud Stévenin, Alexandra Gouasmat, and Yann Bourdreux
- Subjects
chemistry.chemical_classification ,Glycosylation ,Double bond ,010405 organic chemistry ,Chemistry ,Dihydropyran ,Regioselectivity ,Oxazoline ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,Electrophile ,Organic chemistry ,Lewis acids and bases ,Trifluoromethanesulfonate - Abstract
This review particularly emphasizes synthetic applications resulting from cascade or one-pot transformations and a glycosylation reaction promoted by ferric salts. These easy to handle, cheap and environment-friendly salts have been examined for their ability to induce, as a Lewis acid, fast carbohydrate-based modifications in our laboratories at Orsay and Gif sur Yvette. A short synthetic route to the dihydropyran framework of anti-influenza constructs is reported by coupling the Petasis three-component condensation to an iron(iii)-promoted one-pot cascade of deprotection – C–C double bond isomerization – cyclization - oxazoline formation. We also show that iron(iii) chloride hexahydrate is most appropriate to catalyze a one-pot regioselective protection of mono- and disaccharides. This iron(iii) catalysis renders multi-step routes, such as chemical oligosaccharide syntheses, faster. In the last section, we report a catalytic glycosylation method particularly simple and straightforward leading to the important β-d-GlcNAc motif, in which the more electrophilic iron(iii) triflate activates the readily available peracetate of N-acetyl-β-d-glucosamine. This glycosylation does not necessarily require the formation of the mandatory oxazolinium intermediate.
- Published
- 2014
42. A one-step β-selective glycosylation of N -acetyl glucosamine and recombinant chitooligosaccharides
- Author
-
Jean-Marie Beau, Bruno Dausse, Boris Vauzeilles, and Sara Palmier
- Subjects
Glycosylation ,Anomer ,Stereochemistry ,Lithium bromide ,Organic Chemistry ,chemistry.chemical_element ,Alkylation ,Biochemistry ,chemistry.chemical_compound ,Monomer ,chemistry ,Glucosamine ,Drug Discovery ,Lithium ,Stereoselectivity - Abstract
N-Acetyl glucosamine and chitooligosaccharides are selectively converted into β-glycosides without protection of the other hydroxyl groups by alkylation of the anomeric alkoxides in N,N-dimethylformamide containing lithium bromide. Addition of the lithium salt notably improves the stereoselectivity of the glycosylation of the monomer and the efficiency of the process with higher oligomers.
- Published
- 2001
43. Selective radical synthesis of β- C -disaccharides
- Author
-
Boris Vauzeilles and Pierre Sinaÿ
- Subjects
chemistry.chemical_classification ,Anomer ,Hydrogen ,Chemistry ,Stereochemistry ,Radical ,Organic Chemistry ,chemistry.chemical_element ,Nanotechnology ,Biochemistry ,Radical cyclization ,Intramolecular force ,Drug Discovery ,Monosaccharide - Abstract
Several β-C-disaccharides have been selectively synthesized by radical cyclization of two temporarily tethered functionalized monosaccharides. In this process, intramolecular addition of a carbohydrate-derived radical onto an anomeric exomethylene group, followed by axial hydrogen addition, resulted in β stereochemistry.
- Published
- 2001
44. Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula
- Author
-
Judith Fliegmann, Eric Samain, Boris Vauzeilles, Jean-Marie Beau, Clare Gough, Michel Rossignol, Delphine Pitorre, Sébastien Fort, Jean-Jacques Bono, Christophe Lachaud, Julie V. Cullimore, Carole Pichereaux, Charles Rosenberg, Sophie Canova, Virginie Gasciolli, Anne Imberty, Alessandra Nurisso, Hugues Driguez, Sandra Uhlenbroich, Benoit Lefebvre, Marie Cumener, Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and ANR
- Subjects
0106 biological sciences ,Models, Molecular ,Molecular Sequence Data ,Lysin ,Oligosaccharides ,Sequence alignment ,Chitin ,Proteomics ,01 natural sciences ,Biochemistry ,03 medical and health sciences ,Arabidopsis ,Medicago truncatula ,Homology modeling ,Amino Acid Sequence ,Binding site ,Symbiosis ,030304 developmental biology ,Plant Proteins ,0303 health sciences ,biology ,Photoaffinity labeling ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,fungi ,food and beverages ,Membrane Proteins ,General Medicine ,biology.organism_classification ,Lipids ,Molecular Medicine ,Sequence Alignment ,010606 plant biology & botany - Abstract
International audience; : While chitooligosaccharides (COs) derived from fungal chitin are potent elicitors of defense reactions, structurally related signals produced by certain bacteria and fungi, called lipo-chitooligosaccharides (LCOs), play important roles in the establishment of symbioses with plants. Understanding how plants distinguish between friend and foe through the perception of these signals is a major challenge. We report the synthesis of a range of COs and LCOs, including photoactivatable probes, to characterize a membrane protein from the legume Medicago truncatula. By coupling photoaffinity labeling experiments with proteomics and transcriptomics, we identified the likely LCO-binding protein as LYR3, a lysin motif receptor-like kinase (LysM-RLK). LYR3, expressed heterologously, exhibits high-affinity binding to LCOs but not COs. Homology modeling, based on the Arabidopsis CO-binding LysM-RLK AtCERK1, suggests that LYR3 could accommodate the LCO in a conserved binding site. The identification of LYR3 opens up ways for the molecular characterization of LCO/CO discrimination.
- Published
- 2013
45. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate Mammalian angiogenesis in vitro
- Author
-
Peter M. Gresshoff, Michael A. Djordjevic, Susanti, Christopher R. Parish, Alison M. Daines, Farzaneh Kordbacheh, Laurence Marmuse, Ralf Schwörer, Boris Vauzeilles, Barry G. Rolfe, Eric Samain, Anna Bezos, Hugues Driguez, Jean-Marie Beau, Brunet, Jocelyne, Nano-H SAS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Chimie des Substances Naturelles (ICSN), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Lipopolysaccharides ,Integrins ,Angiogenesis ,Acylation ,lcsh:Medicine ,Plant Science ,Disaccharides ,0302 clinical medicine ,Cell Movement ,[CHIM] Chemical Sciences ,Medicine and Health Sciences ,lcsh:Science ,Aorta ,Mammals ,0303 health sciences ,Multidisciplinary ,biology ,Pharmaceutics ,Biological activity ,Acetylation ,Agriculture ,Extracellular Matrix ,Biochemistry ,030220 oncology & carcinogenesis ,Signal transduction ,Signal Transduction ,Research Article ,Biotechnology ,Cell signaling ,Integrin ,Neovascularization, Physiologic ,In Vitro Techniques ,Microbiology ,03 medical and health sciences ,Cell Adhesion ,Animals ,Humans ,[CHIM]Chemical Sciences ,Cell adhesion ,Symbiosis ,Molecular Biology ,030304 developmental biology ,Innate immune system ,lcsh:R ,fungi ,Endothelial Cells ,Biology and Life Sciences ,Cell Biology ,In vitro ,Rats, Inbred F344 ,biology.protein ,lcsh:Q ,Soybeans ,Developmental Biology - Abstract
International audience; Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the potential to be a new, carbohydrate-based class of therapeutics for modulating angiogenesis.
- Published
- 2013
46. Click chemistry as a convenient tool for the incorporation of a ruthenium chromophore and a nickel-salen monomer into a visible-light-active assembly
- Author
-
Sujitraj Sheth, Luke J. Batchelor, Régis Guillot, Marie Sircoglou, Ally Aukauloo, Winfried Leibl, Aurélie Baron, Boris Vauzeilles, Talal Mallah, Christian Herrero, Sanae El Ghachtouli, Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Hétérochimie fondamentale et appliquée ( HFA ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de chimie inorganique ( LCI ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Service de Bioénergétique, Biologie Stucturale, et Mécanismes ( SB2SM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Laboratoire de chimie inorganique (LCI), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Service de Bioénergétique, Biologie Stucturale, et Mécanismes (SB2SM), Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,chemistry.chemical_element ,Chromophore ,010402 general chemistry ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Ruthenium ,Inorganic Chemistry ,chemistry.chemical_compound ,Nickel ,Electron transfer ,Monomer ,chemistry ,[ CHIM.ORGA ] Chemical Sciences/Organic chemistry ,Intramolecular force ,Click chemistry ,ComputingMilieux_MISCELLANEOUS ,Visible spectrum - Abstract
Click chemistry was used to assemble a trimetallic RuII–NiII–RuII complex made up of two tris(bipyridyl)ruthenium(II)-based photosensitisers and a nickel(II)–salen complex. The electrochemical and photophysical properties of the resulting photosensitiser–metal complex are discussed. Photoinduced activation triggered by visible light absorption induces a fast intramolecular charge shift from one of the chromophores to the salen cavity to generate a nickel(III)–salen species.
- Published
- 2013
47. Cyclodextrins selectively modified on both rims using an O-3-debenzylative post-functionalisation, a consequence of the Sorrento meeting
- Author
-
Matthieu Sollogoub, Ségolène Adam de Beaumais, Boris Vauzeilles, Mickaël Ménand, Maxime Guitet, Yves Blériot, Yongmin Zhang, Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC), Synthèse Organique (E5), Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), CNRS, F-91405 Orsay, France, and Centre National de la Recherche Scientifique (CNRS)
- Subjects
alpha-Cyclodextrins ,Magnetic Resonance Spectroscopy ,Stereoisomerism ,010402 general chemistry ,Disaccharides ,01 natural sciences ,Biochemistry ,Analytical Chemistry ,Molecule ,Organic chemistry ,chemistry.chemical_classification ,Cyclodextrin ,Molecular Structure ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,Monosaccharides ,Regioselectivity ,General Medicine ,Nuclear magnetic resonance spectroscopy ,[CHIM.CATA]Chemical Sciences/Catalysis ,Silanes ,0104 chemical sciences ,chemistry ,[CHIM.OTHE]Chemical Sciences/Other ,Iodine - Abstract
International audience; A de-O-benzylation reaction induced by I-2-Et3SiH and developed by Iadonisi et al. on mono- and disaccharides was applied to per- or polybenzylated alpha-cyclodextrins to furnish compounds deprotected at position 3 of all sugar units. This methodology allows the straightforward post-functionalisation of the secondary rim of cyclodextrins already functionalised on their primary rim.
- Published
- 2012
48. Click chemistry on a ruthenium polypyridine complex. An efficient and versatile synthetic route for the synthesis of photoactive modular assemblies
- Author
-
Ally Aukauloo, Marie-France Charlot, Winfried Leibl, Boris Vauzeilles, Christian Herrero, Aurélie Baron, and Annamaria Quaranta
- Subjects
Models, Molecular ,Polypyridine complex ,Light ,Pyridines ,chemistry.chemical_element ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Ruthenium ,Inorganic Chemistry ,Electron Transport ,Electron transfer ,Coordination Complexes ,Physical and Theoretical Chemistry ,Photolysis ,010405 organic chemistry ,Photodissociation ,Synthon ,Chromophore ,Combinatorial chemistry ,0104 chemical sciences ,chemistry ,Click chemistry ,Flash photolysis ,Click Chemistry - Abstract
In this Communication, we present the synthesis and use of [Ru(bpy)(2)(bpy-CCH)](2+), a versatile synthon for the construction of more sophisticated dyads by means of click chemistry. The resulting chromophore-acceptor or -donor complexes have been studied by flash photolysis and are shown to undergo efficient electron transfer to/from the chromophore. Additionally, the photophysical and chemical properties of the original chromophore remain intact, making it a very useful component for the preparation of visible-light-active dyads.
- Published
- 2012
49. Selection of the biological activity of DNJ neoglycoconjugates through click length variation of the side chain
- Author
-
Yousuke Shimada, Caroline Norez, Shinpei Nakagawa, Boris Vauzeilles, Atsushi Kato, Frédéric Becq, Terry D. Butters, Gabriele Reinkensmeier, Yves Blériot, Dominic S. Alonzi, Matthieu Sollogoub, Nicolas Ardes-Guisot, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Oxford Glycobiology Institute, University of Oxford [Oxford], Institut de physiologie et biologie cellulaires (IPBC), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Department of Hospital Pharmacy [Toyama], University of Toyama, Synthèse et réactivité des substances naturelles (SRSN), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, and Université de Poitiers-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
1-Deoxynojirimycin ,Stereochemistry ,Adamantane ,Glucosylceramide synthase ,HL-60 Cells ,[CHIM.THER]Chemical Sciences/Medicinal Chemistry ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Antiviral Agents ,Cell Line ,Length variation ,Small Molecule Libraries ,chemistry.chemical_compound ,Inhibitory Concentration 50 ,Side chain ,Animals ,Humans ,Glycoside hydrolase ,Physical and Theoretical Chemistry ,Enzyme Inhibitors ,Chromatography, High Pressure Liquid ,Molecular Structure ,010405 organic chemistry ,Organic Chemistry ,Biological activity ,3. Good health ,0104 chemical sciences ,Rats ,Enzyme Activation ,chemistry ,[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology ,Click Chemistry ,Glycoconjugates - Abstract
(IF : 3,45); International audience; A series of neoglycoconjugates derived from deoxynojirimycin has been prepared by click connection with functionalised adamantanes. They have been assayed as glycosidase inhibitors, as inhibitors of the glycoenzymes relevant to the treatment of Gaucher disease, as well as correctors of the defective ion-transport protein involved in cystic fibrosis. We have demonstrated that it is possible to selectively either strongly inhibit ER-α-glucosidases and ceramide glucosyltransferase or restore the activity of CFTR in CF-KM4 cells by varying the length of the alkyl chain linking DNJ and adamantane.
- Published
- 2011
50. ChemInform Abstract: Novel Reactions of Samarium(II) Iodide at the Anomeric Center of Carbohydrates. Preliminary Results
- Author
-
Jean-Maurice Mallet, Pierre Sinaÿ, P. De Pouilly, and Boris Vauzeilles
- Subjects
chemistry.chemical_compound ,Anomer ,chemistry ,Stereochemistry ,Samarium(II) iodide ,Center (algebra and category theory) ,General Medicine ,Medicinal chemistry - Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.