Nina Farrell, Marta Gut, Bongsoo Park, Sophie Chantalat, Fayçal Boussouar, Lucie Carrière, Arnaud Depaux, Soizick Berlivet, Hélène Humbertclaude, Isabelle Hmitou, Robert Olaso, Maud de Dieuleveult, Jean-Christophe Aude, Ivo Gut, Kuangyu Yen, Matthieu Gérard, Daria Bou Dargham, B. Franklin Pugh, Céline Keime, Céline Baulard, Michel Werner, Florence Ribierre, Sylvie Jounier, Jean-François Deleuze, Institut de Biologie et de Technologies de Saclay ( IBITECS ), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Sud - Paris 11 ( UP11 ), Center for Eukaryotic Gene Regulation, PennState University [Pennsylvania] ( PSU ), Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Southern Medical University, Guangzhou, INSERM U823, Institut Albert Bonniot, Centre National de Génotypage ( CNG ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Génétique et de Biologie Moléculaire et Cellulaire ( IGBMC ), Université de Strasbourg ( UNISTRA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre Nacional D'Anàlisi Genómica, Parc Cientific de Barcelona, Institut de Biologie et de Technologies de Saclay (IBITECS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Pennsylvania State University (Penn State), Penn State System-Penn State System, Southern Medical University [Guangzhou], Centre National de Génotypage (CNG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
International audience; ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.