11 results on '"Bombardier Aerospace"'
Search Results
2. Challenges of Aircraft Design Integration
- Author
-
BOMBARDIER AEROSPACE DORVAL (QUEBEC) ADVANCED AERODYNAMICS, Kafyeke, F., Abdo, M., Pepin, F., Piperni, P., Laurendeau, E., BOMBARDIER AEROSPACE DORVAL (QUEBEC) ADVANCED AERODYNAMICS, Kafyeke, F., Abdo, M., Pepin, F., Piperni, P., and Laurendeau, E.
- Abstract
The design of a modern airplane brings together many disciplines: structures, aerodynamics, controls, systems, propulsion with complex interdependencies and many variables. Recent aircraft programs, such as Bombardier's Continental Jet program use participants located around the world and selected for their cost, quality and delivery capability. These participants share the risk on the program and must therefore be fully implicated in the design. A big challenge is to provide information on current design configuration simultaneously to all disciplines and all participants in the appropriate format. Another challenge of multidisciplinary optimization is to bring together technologies and methodologies of various disciplines in a way that is both practical and inclusive of the expertise that must accompany these individual technologies. This paper discusses progress made to address these challenges, streamline the aircraft design process and implement multidisciplinary optimization in an effective manner. Initiatives include: implementation of the Bombardier Engineering System (BES) and of an MDO software environment (VADOR), linking of aerodynamic and structural design and analysis codes, validation of advanced wing design methods and calibration of viscous flow analysis and drag prediction methods., Presented at RTO Applied Vehicle Technology Panel (AVT) Symposium held in Paris, France on 22-25 Apr 2002. The original document contains color images. ISBN 92-837-0027-9. Text in English; p48-1/48-11. This article is from ADA415759 Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation (La reduction des couts et des delais d'acquisition des vehicules militaires par la modelisation avancee et la simulation de produit virtuel)
- Published
- 2003
3. Design Optimization using Life Cycle Cost Analysis for Low Operating Costs
- Author
-
BOMBARDIER AEROSPACE DOWNSVIEW (ONTARIO), Khan, Khalid A., Houston, Graeme D., BOMBARDIER AEROSPACE DOWNSVIEW (ONTARIO), Khan, Khalid A., and Houston, Graeme D.
- Abstract
With the increase competition among airlines to capture the customer base, more and more airlines demanding the aerospace industry to produce aircraft with high reliability and low maintenance costs. Similarly, aircraft manufacturers that once had the monopoly in various sectors, that is, small & large jets, propellers, business jet are now facing fierce competition. In response to airline industry, manufacturers are increasingly paying more attention to optimize new and current designs to improve reliability while low operating cost aircraft. This paper covers one of several methodologies available to optimize the design of an aircraft. The Life Cycle Cost (LCC) analysis is a powerful tool that has been used extensively on two new designs at Bombardier Aerospace. Several publications are available in public domain covering theoretical aspects of Engineering Economics, including Life Cycle Cost. The Life Cycle Cost analysis is a systematic approach in applying engineering economics to determine the best solution for a design over the useful life of the aircraft, from an economic standpoint., Presented at the Applied Vehicle Technology Panel (AVT) Specialists' Meeting, held in Ottawa, Canada, 21-22 October 1999. This article is from ADA388024 Design for Low Cost Operation and Support (la Conception en vue d'une exploitation et d'un soutien a cout reduit)
- Published
- 2000
4. The Influence of Strain Rate Variations on the Appearance of Serrated Yielding in 2024-T3 Al-Clad Aluminium Alloy
- Author
-
Poston, Ken [Bombardier Aerospace, Airport Road, Co. Antrim, N. Ireland, BT3 9DZ (United Kingdom)]
- Published
- 2007
- Full Text
- View/download PDF
5. Modelling EM-Coupling on a Massively Composite Aircraft Barrel
- Author
-
Parmantier, Jean-Philippe, Junqua, Isabelle, Bertuol, Solange, Volpert, Thibault, Quenum Possy Berry, Wilfrid, Barka, Youssef-Andre, Dyab, W., Laurin, J.J., Wu, K., Girard, Christian, Prin, G., Guidoni, A., Samarone, G., Moupfouma, F., Elsharkawi, M., Nuyten, K., Blommers, A., ONERA / DEMR, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, École Polytechnique de Montréal (EPM), AxesSim, IDS, Bombardier Aerospace, Fokker Elmo, and André, Cécile
- Subjects
GROUNDING ,FULL COMPOSITE AIRCRAFT ,AVION TOUT COMPOSITE ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism ,component ,EM MODELING ,MISE À LA MASSE ,MODELISATION ELECTROMAGNETIQUE ,COUPLAGE ÉLECTROMAGNÉTIQUE ,EM-coupling - Abstract
International audience; EM coupling analysis on massively composite aircraft requires specific modelling techniques matching the frequency range under study. In particular, usual modeling techniques used for metallic structures have to be adapted and sometimes revised. In this paper, we present the challenges of such modelling strategies as they are addressed in an EU-Canada cooperative project called “EPICEA”.
- Published
- 2018
6. Electrochemical Oxidation as Treatment for Contaminated Wastewaters by Carbamazepine: Process Optimization Through Response Surface Methodology
- Author
-
Jean-François Blais, Antonin Azaïs, François Zaviska, Patrick Drogui, B. Gourich, Léa Guitaya, Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Centre Eau Terre Environnement [Québec] (INRS - ETE), Institut National de la Recherche Scientifique [Québec] (INRS), Bombardier Aerospace, and Université Hassan II [Casablanca] (UH2MC)
- Subjects
Environmental Engineering ,Central composite design ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,7. Clean energy ,Matrix (chemical analysis) ,Environmental Chemistry ,[CHIM]Chemical Sciences ,Process optimization ,Response surface methodology ,Effluent ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Water Science and Technology ,Chromatography ,Chemistry ,Ecological Modeling ,Environmental engineering ,Factorial experiment ,021001 nanoscience & nanotechnology ,Pollution ,6. Clean water ,Anode ,Wastewater ,0210 nano-technology - Abstract
The electrochemical oxidation (ECO) of carbamazepine (CBZ), an antiepileptic drug, has been carried out in this study. A response surface methodology approach (RSM) was used in order to optimize the treatment process for CBZ removal on synthetic effluent. Four different operating parameters (current intensity, treatment time, recycling flow rate, and anode type) were chosen as key factors while a single response (CBZ removal) was considered. In the first part of the study, a factorial design (FD) methodology was carried out in order to evaluate the effects and interactions between the selected factors. Results showed that anode type is the most important parameters affecting CBZ degradation (with 67% of the overall effect) followed by the treatment time, the current intensity, and then the recirculation flow rate. Subsequently, a central composite design (CCD) was conducted in order to optimize the overall process taking into account efficiency (CBZ removal) and energy consumption. The contribution of direct and indirect effects of CBZ electro-oxidation was also investigated. As expected, direct oxidation was the most dominant mechanism during ECO with approximately 66% whereas indirect oxidation contributed with only 12%. Finally, the determined optimal conditions were applied on real pharmaceutical wastewater. Despite the effect matrix, 84% of CBZ was obtained after only 100 min of treatment with 23% of mineralization. Finally, CBZ by-products such as salicylic acid, catechol, and anthranilic have been detected during the oxidation process.
- Published
- 2017
- Full Text
- View/download PDF
7. Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation
- Author
-
Xu, Hui, Mughal, Shahid M., Gowree, Erwin Ricky, Atkin, Chris J., Sherwin, Spencer J., Imperial College London, University of London [London], University of London (UNITED KINGDOM), Imperial College London (UNITED KINGDOM), Engineering & Physical Science Research Council (E, Royal Academy Of Engineering, and Bombardier Aerospace
- Subjects
Physics::Fluid Dynamics ,TA ,Fluids & Plasmas ,Mécanique des fluides ,Identation ,Transition ,Tollmien-Schlichting waves ,01 Mathematical Sciences ,09 Engineering ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] - Abstract
International audience; We consider the influence of a smooth three-dimensional (3-D) indentation on the instability of an incompressible boundary layer by linear and nonlinear analyses. The numerical work was complemented by an experimental study to investigate indentations of approximately $11\unicode[STIX]{x1D6FF}_{99}$ and $22\unicode[STIX]{x1D6FF}_{99}$ width at depths of 45 %, 52 % and 60 % of $\unicode[STIX]{x1D6FF}_{99}$ , where $\unicode[STIX]{x1D6FF}_{99}$ indicates 99% boundary layer thickness. For these indentations a separation bubble confined within the indentation arises. Upstream of the indentation, spanwise-uniform Tollmien–Schlichting (TS) waves are assumed to exist, with the objective to investigate how the 3-D surface indentation modifies the 2-D TS disturbance. Numerical corroboration against experimental data reveals good quantitative agreement. Comparing the structure of the 3-D separation bubble to that created by a purely 2-D indentation, there are a number of topological changes particularly in the case of the widest indentation; more rapid amplification and modification of the upstream TS waves along the symmetry plane of the indentation is observed. For the shortest indentations, beyond a certain depth there are then no distinct topological changes of the separation bubbles and hence on flow instability. The destabilising mechanism is found to be due to the confined separation bubble and is attributed to the inflectional instability of the separated shear layer. Finally for the widest width indentation investigated ( $22\unicode[STIX]{x1D6FF}_{99}$ ), results of the linear analysis are compared with direct numerical simulations. A comparison with the traditional criteria of using $N$ -factors to assess instability of properly 3-D disturbances reveals that a general indication of flow destabilisation and development of strongly nonlinear behaviour is indicated as $N=6$ values are attained. However $N$ -factors, based on linear models, can only be used to provide indications and severity of the destabilisation, since the process of disturbance breakdown to turbulence is inherently nonlinear and dependent on the magnitude and scope of the initial forcing.
- Published
- 2017
- Full Text
- View/download PDF
8. TandEM: Titan and Enceladus mission
- Author
-
J. E. Blamont, Tobias Owen, Michael Küppers, Xenophon Moussas, Robert H. Brown, Nicole Schmitz, Sascha Kempf, C. Menor Salvan, T. W. Haltigin, Olivier Grasset, Roger V. Yelle, Wayne H. Pollard, Daniel Gautier, Paul R. Mahaffy, Joe Pitman, Iannis Dandouras, Daphne Stam, John C. Zarnecki, Bruno Sicardy, Georges Durry, Jesús Martínez-Frías, Norbert Krupp, S. Le Mouélic, Matthias Grott, Sébastien Lebonnois, T. Krimigis, Elizabeth P. Turtle, Alain Herique, Linda Spilker, Ralph D. Lorenz, Maria Teresa Capria, M. Combes, John F. Cooper, O. Mousis, Joachim Saur, Wlodek Kofman, J. Bouman, M. Paetzold, Hojatollah Vali, C. Dunford, Sushil K. Atreya, Eric Chassefière, I. de Pater, T. B. McCord, Bruno Bézard, Gabriel Tobie, Catherine D. Neish, M. Ruiz Bermejo, Sergei Pogrebenko, Kim Reh, Athena Coustenis, Ralf Jaumann, Angioletta Coradini, Leonid I. Gurvits, Andrew J. Coates, Tibor S. Balint, H. Hussmann, E. Choi, Ioannis A. Daglis, Edward C. Sittler, Emmanuel Lellouch, Robert A. West, L. Boireau, E.F. Young, Timothy A. Livengood, Cesar Bertucci, Martin G. Tomasko, M. Fujimoto, Ingo Müller-Wodarg, Yves Bénilan, Wing-Huen Ip, Marina Galand, Darrell F. Strobel, Cyril Szopa, Pascal Rannou, D. G. Mitchell, Mark Leese, Véronique Vuitton, P. Annan, Tetsuya Tokano, Caitlin A. Griffith, Conor A. Nixon, Stephen A. Ledvina, Karoly Szego, Andrew Morse, Panayotis Lavvas, Luisa Lara, C. de Bergh, Jonathan I. Lunine, R. A. Gowen, Katrin Stephan, Jianping Li, Glenn S. Orton, Michel Blanc, Esa Kallio, Ronan Modolo, M. Hirtzig, Helmut Lammer, Nicholas Achilleos, D. Nna Mvondo, Frank Sohl, M. Nakamura, Andrew Steele, C. C. Porco, Marcello Fulchignoni, Gordon L. Bjoraker, Olga Prieto-Ballesteros, J. J. López-Moreno, Andrew Dominic Fortes, Rafael Rodrigo, Patrice Coll, Francesca Ferri, François Raulin, Tom Spilker, F. J. Crary, J. H. Waite, Dirk Schulze-Makuch, Thomas E. Cravens, Kevin H. Baines, C. P. McKay, L. Richter, D. Luz, David H. Atkinson, Martin Knapmeyer, Robert E. Johnson, D. Fairbrother, F. M. Flasar, Roland Thissen, Paul N. Romani, Sebastien Rodriguez, Urs Mall, Paul M. Schenk, Franck Hersant, R. Koop, Odile Dutuit, I. Vardavas, T. Kostiuk, Ricardo Amils, Konrad Schwingenschuh, Robert V. Frampton, Fritz M. Neubauer, Jan-Erik Wahlund, L. A. Soderblom, Michele K. Dougherty, Anna Milillo, Frank T. Robb, Bernard Schmitt, Christophe Sotin, Michel Cabane, A. Selig, Bernard Marty, Yves Langevin, Rosaly M. C. Lopes, Emmanuel T. Sarris, E. De Angelis, D. Toublanc, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Space and Atmospheric Physics Group [London], Blackett Laboratory, Imperial College London-Imperial College London, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Università degli Studi di Padova = University of Padua (Unipd), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Joint Institute for VLBI in Europe (JIVE ERIC), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), NASA Ames Research Center (ARC), Department of Physics [Athens], National and Kapodistrian University of Athens (NKUA), University of Cologne, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Swedish Institute of Space Physics [Uppsala] (IRF), Space Science Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), Centre National d'Études Spatiales [Toulouse] (CNES), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Academy of Athens, Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Bombardier Aerospace, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Sensors and Software, University of Idaho [Moscow, USA], SRON Netherlands Institute for Space Research (SRON), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Astrofisica (INAF), University of Kansas [Lawrence] (KU), National Observatory of Athens (NOA), Department of Astronomy [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), McGill University = Université McGill [Montréal, Canada], FORMATION STELLAIRE 2009, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), University of Virginia [Charlottesville], Finnish Meteorological Institute (FMI), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics [Beijing] (IAP), Chinese Academy of Sciences [Beijing] (CAS)-Chinese Academy of Sciences [Beijing] (CAS), National Center for Earth and Space Science Education (NCESSE), Observatório Astronómico de Lisboa, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bear Fight Center, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Lockheed Martin Space, Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Maryland Biotechnology Institute Baltimore, University of Maryland [Baltimore], Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Democritus University of Thrace (DUTH), Lunar and Planetary Institute [Houston] (LPI), School of Earth and Environmental Sciences [Pullman], Washington State University (WSU), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universita degli Studi di Padova, National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), IMPEC - LATMOS, University of California [Berkeley], University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), McGill University, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), University of Virginia, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Exploration of Saturn ,Solar System ,Cosmic Vision ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Computer science ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,TandEM ,01 natural sciences ,law.invention ,Astrobiology ,Enceladus ,Orbiter ,symbols.namesake ,law ,Saturnian system ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Spacecraft ,Tandem ,business.industry ,Astronomy and Astrophysics ,Landing probes ,Space and Planetary Science ,symbols ,Titan ,business ,Titan (rocket family) - Abstract
著者人数:156名, Accepted: 2008-05-27, 資料番号: SA1000998000
- Published
- 2009
- Full Text
- View/download PDF
9. A time-domain analysis of 3D non-uniform moving acoustic sources: application to source identification and absolute quantification via beamforming
- Author
-
Camier, Cédric, Blais, Jean-François, Lapointe, Robby, Berry, Alain, Département de génie mécanique [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS), Bombardier Aerospace, and Cédric, Camier
- Subjects
acoustic ,moving sources ,plane ,analytical formulation ,[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,Doppler effect ,beamforming ,acoustic imagery ,microphone array ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
International audience; When applying acoustical imaging techniques of wave fields produced by sources in arbitrary, high-speed motion and sampled by a fixed microphone array, it is necessary to de-dopplerise the microphone signals. A careful examination of the related literature reveals a confusion when applying Doppler formulation in term of sound pressure to a monopole source. The aim of this paper is first to carefully detail the analytical and explicit developments of the Doppler effect in term of acoustic pressure for the general case of a density distribution source in a non-uniform and non-rectilinear motion. In the case of arbi-trary motion, Lorentz transform is unapplicable and Green's function procedure seems to be the only mathematical tool. An original vectorial closed-form expression of Doppler effect in time-domain has been obtained. The acoustic pressure radiated by a moving monopole has been simulated. Back and forth propagations with other Green functions presented in the literature highlight the impact of the source signal de-dopplerisation on the recovered amplitude. The transfer function introduced in this paper is applied to Delay-And-Sum Beamforming. Although, with respect to the implemented methods, the localisation per-formances are unchanged. A significant effect on the amplitude is shown and studied with respect to different motion parameters.
- Published
- 2012
10. State-of-the-art review of the membrane bioreactor processes for urban and industrial wastewater treatment and reuse
- Author
-
Géraldo Buelna, Marc Heran, Patrick Droguil, Brahima Seyhi, Jean-François Blais, Bombardier Aerospace, Institut Européen des membranes (IEM), and Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
- Subjects
Social Sciences and Humanities ,fouling ,02 engineering and technology ,010501 environmental sciences ,Bioréacteur à membrane ,biotreatment ,01 natural sciences ,colmatage ,12. Responsible consumption ,020401 chemical engineering ,[CHIM]Chemical Sciences ,0204 chemical engineering ,refractory organic pollutant ,polluant inorganique ,eaux usées ,disinfection ,wastewater ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Water Science and Technology ,2. Zero hunger ,polluant organique réfractaire ,désinfection ,inorganic pollutant ,6. Clean water ,membrane immergée ,13. Climate action ,biotraitement ,Membrane bioreactor ,Sciences Humaines et Sociales ,immersed membrane - Abstract
Les effluents issus des stations d’épuration des eaux usées industrielles et municipales contiennent des quantités non négligeables de polluants organiques, inorganiques et microbiens, qui sont rejetés dans l’environnement par voie directe, ou en suivant la filière de réutilisation (irrigation ou arrosage, etc.). Ces eaux résiduaires constituent l’une des principales sources de contamination des eaux de surface et souterraines (augmentation de la demande chimique en oxygène (DCO), coloration et eutrophisation des cours d’eau, etc.). Dans l’optique de palier le déficit croissant des ressources en eau destinées à la consommation humaine, ces eaux résiduaires sont de plus en plus soumises à des traitements poussés en vue d’une réutilisation. Cette réutilisation doit toujours être réalisée dans l’objectif de fournir une eau présentant, en continu, une qualité spécifique liée à l’usage attendu (eau de production, eau de lavage, eau de refroidissement, eau d’irrigation ou d’arrosage, etc.). Les procédés conventionnels peuvent s’avérer non adaptés, notamment par leur manque de fiabilité dans la qualité des eaux traitées et le risque encouru de contamination microbiologique. Pour faire face à cette importante problématique, les techniques membranaires, notamment les bioréacteurs à membrane (BRM), peuvent constituer une avenue potentielle de traitement et de réutilisation de ces effluents. L’intérêt de ces procédés réside dans leur aspect non polluant, leur facilité d’automatisation et leur capacité à éliminer simultanément les différents polluants en une seule étape de traitement. Ces technologies offrent la possibilité de clarifier et de désinfecter simultanément les eaux sans risque de formation de composés organo-halogénés. Dans cet article, les BRM sont situés par rapport aux techniques conventionnelles de traitement biologique d’effluents. Par la suite, un accent particulier est mis sur la présentation des connaissances actuelles concernant les principes de base des BRM, les critères d’application et les conditions d’opération qui influencent les performances de ces technologies. Les développements récents portant sur la modélisation mathématique de fonctionnement et de colmatage de ces modules sont également présentés. Finalement, les applications industrielles et les coûts d’implantation et d’opération de ces technologies sont brièvement discutés., Effluents from urban and industrial wastewater treatment plants contain organic (e.g., COD, BOD, total suspended solids, endocrine disrupting compounds), inorganic (e.g., phosphorus, ammonia nitrogen, nitrites and nitrates, metals) and microbial pollutants (e.g., bacteria, viruses, parasites), which are either directly discharged into the environment or reused for agricultural purposes. These wastewaters are often responsible for pollution of surface and groundwater (increasing the COD, colour and eutrophication of water, for example). In the context of finding solutions for water shortages, wastewaters are more and more frequently subjected to tertiary treatment for water reuse. The treatment of wastewater for reuse must yield water that meets specific quality criteria and is adapted to be reused as washing water, cooling water, process water, irrigation water or sprinkling water, among other uses. Conventional processes can be inappropriate, notably because of their inability to provide a consistently good quality of treated-water and because of the associated risk of microbial contamination. An alternate method can be the application of membrane bioreactors (MBR) for wastewater treatment and reuse. MBR are characterized by ease of operation, ease of automation, negligible equipment requirements for adding chemicals and their capacity to remove simultaneously organic, inorganic and microbial pollutants in the same reactor. This technology offers the possibility to simultaneously clarify and disinfect wastewaters without any risk of forming organochlorinated compounds. In this paper, MBR are first compared to conventional biological treatments, followed by a particular emphasis on the present state of knowledge about MBR, criteria of application and operating conditions that greatly influence the performance of these technologies. Recent developments in the modelling of the operating process and membrane fouling are also presented. Finally, industrial applications and operating and implementation costs are briefly discussed.
- Published
- 2011
- Full Text
- View/download PDF
11. Impact of Occupational Exposure to Chemicals in Life Cycle Assessment: A Novel Characterization Model Based on Measured Concentrations and Labor Hours.
- Author
-
Kijko G, Margni M, Partovi-Nia V, Doudrich G, and Jolliet O
- Subjects
- Humans, Organic Chemicals analysis, Time Factors, Uncertainty, United States, Environmental Pollutants analysis, Models, Theoretical, Occupational Exposure analysis
- Abstract
According to Lim et al., based on World Health Organization (WHO) data, hazardous chemicals in the workplace are responsible for over 370,000 premature deaths annually. Despite these high figures, life cycle impact assessment (LCIA) does not yet include a fully operational method to consider occupational impacts in its scope over the entire supply chain. This paper describes a novel approach to account for occupational exposure to chemicals by inhalation in LCA. It combines labor statistics and measured occupational concentrations of chemicals from the OSHA database to calculate operational LCIA characterization factors (i.e., intakes per hour worked and impact intensities for 19,069 organic chemical/sector combinations with confidence intervals across the entire U.S. manufacturing industry). For the seven chemicals that most contribute to the global impact, measured workplace concentrations range between 5 × 10(-4) and 3 × 10(3) mg/m(3). Carcinogenic impacts range over 4 orders of magnitude, from 1.3 × 10(-8) and up to 3.4 × 10(-4) DALY per blue-collar worker labor hour. The innovative approach set out in this paper assesses health impacts from occupational exposure to chemicals with population exposure to outdoor emissions, making it possible to integrate occupational exposure within LCIA. It broadens the LCIA scope to analyze hotspots and avoid impact shifting.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.