233 results on '"Bollettini I"'
Search Results
2. Unsupervised neurobiology-driven stratification of clinical heterogeneity in depression
- Author
-
Colombo, F., primary, Calesella, F., additional, Bravi, B., additional, Fortaner-Uyà, L., additional, Monopoli, C., additional, Maggioni, E., additional, Tassi, E., additional, Zanardi, R., additional, Attanasio, F., additional, Bollettini, I., additional, Poletti, S., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Predicting Suicide Attempts among Major Depressive Disorder Patients with Structural Neuroimaging: A Machine Learning Approach
- Author
-
Fortaner-Uyà, L., primary, Monopoli, C., additional, Calesella, F., additional, Colombo, F., additional, Bravi, B., additional, Maggioni, E., additional, Tassi, E., additional, Poletti, S., additional, Bollettini, I., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Predicting unipolar and bipolar depression using inflammatory markers, neuroimaging and neuropsychological data: a machine learning study
- Author
-
Raffaelli, L., primary, Colombo, F., additional, Calesella, F., additional, Fortaner-Uya, L., additional, Bollettini, I., additional, Lorenzi, C., additional, Maggioni, E., additional, Tassi, E., additional, Poletti, S., additional, Zanardi, R., additional, Attanasio, F., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
5. Different effect of childhood trauma on white matter integrity between major depression and bipolar disorder.
- Author
-
Paolini, M., primary, Poletti, S., additional, Raffaelli, L., additional, Bettonagli, V., additional, Gulino, G., additional, Melloni, E., additional, Bollettini, I., additional, and Benedetti, F., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Cognitive distortions and structural neuroimaging data predict depression severity in unipolar and bipolar depression: a machine learning study
- Author
-
Perziani, S., primary, Colombo, F., additional, Calesella, F., additional, Fortaner-Uyà, L., additional, Monopoli, C., additional, Bravi, B., additional, Poletti, S., additional, Bollettini, I., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
7. Differential effect of childhood trauma on gray matter volumes in unipolar and bipolar depression
- Author
-
Raffaelli, L., primary, Paolini, M., additional, Bettonagli, V., additional, Melloni, E., additional, Bollettini, I., additional, Poletti, S., additional, and Benedetti, F., additional
- Published
- 2023
- Full Text
- View/download PDF
8. Unsupervised neurobiologically-driven stratification of clinical heterogeneity in treatment-resistant depression
- Author
-
Colombo, F., primary, Calesella, F., additional, Bravi, B., additional, Fortaner-Uyà, L., additional, Monopoli, C., additional, Carminati, M., additional, Zanardi, R., additional, Bollettini, I., additional, Poletti, S., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
9. Functional neuroimaging for the differentiation between healthy controls, depressed bipolar and major depressive patients: a machine learning study
- Author
-
Calesella, F., primary, Serra, E., additional, Colombo, F., additional, Fortaner-Uyà, L., additional, Monopoli, C., additional, Bravi, B., additional, Tassi, E., additional, Bollettini, I., additional, Brambilla, P., additional, Poletti, S., additional, Maggioni, E., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Combining clinical data, genetics, and adverse childhood experiences for suicidality prediction in mood disorders: a machine learning approach
- Author
-
Fortaner-Uyà, L., primary, Mazzilli, F., additional, Monopoli, C., additional, Calesella, F., additional, Colombo, F., additional, Bravi, B., additional, Fabbri, C., additional, Serretti, A., additional, Lorenzi, C., additional, Spadini, S., additional, Mascia, E., additional, Poletti, S., additional, Bollettini, I., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
11. Predicting cognitive impairment in depression: a machine learning approach on multimodal structural neuroimaging
- Author
-
Monopoli, C., primary, Calesella, F., additional, Verri, A., additional, Fortaner-Uyà, L., additional, Colombo, F., additional, Bravi, B., additional, Bollettini, I., additional, Poletti, S., additional, Benedetti, F., additional, and Vai, B., additional
- Published
- 2023
- Full Text
- View/download PDF
12. Abnormal cortico-limbic connectivity during emotional processing correlates with symptom severity in schizophrenia
- Author
-
Vai, B., Sferrazza Papa, G., Poletti, S., Radaelli, D., Donnici, E., Bollettini, I., Falini, A., Cavallaro, R., Smeraldi, E., and Benedetti, F.
- Published
- 2015
- Full Text
- View/download PDF
13. An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration
- Author
-
van den Heuvel, OA, Boedhoe, PSW, Bertolin, S, Bruin, WB, Francks, C, Ivanov, I, Jahanshad, N, Kong, X-Z, Kwon, JS, O'Neill, J, Paus, T, Patel, Y, Piras, F, Schmaal, L, Soriano-Mas, C, Spalletta, G, van Wingen, GA, Yun, J-Y, Vriend, C, Simpson, HB, van Rooij, D, Hoexter, MQ, Hoogman, M, Buitelaar, JK, Arnold, P, Beucke, JC, Benedetti, F, Bollettini, I, Bose, A, Brennan, BP, De Nadai, AS, Fitzgerald, K, Gruner, P, Gruenblatt, E, Hirano, Y, Huyser, C, James, A, Koch, K, Kvale, G, Lazaro, L, Lochner, C, Marsh, R, Mataix-Cols, D, Morgado, P, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, E, Pittenger, C, Reddy, YCJ, Sato, JR, Soreni, N, Stewart, SE, Taylor, SF, Tolin, D, Thomopoulos, SI, Veltman, DJ, Venkatasubramanian, G, Walitza, S, Wang, Z, Thompson, PM, Stein, DJ, van den Heuvel, OA, Boedhoe, PSW, Bertolin, S, Bruin, WB, Francks, C, Ivanov, I, Jahanshad, N, Kong, X-Z, Kwon, JS, O'Neill, J, Paus, T, Patel, Y, Piras, F, Schmaal, L, Soriano-Mas, C, Spalletta, G, van Wingen, GA, Yun, J-Y, Vriend, C, Simpson, HB, van Rooij, D, Hoexter, MQ, Hoogman, M, Buitelaar, JK, Arnold, P, Beucke, JC, Benedetti, F, Bollettini, I, Bose, A, Brennan, BP, De Nadai, AS, Fitzgerald, K, Gruner, P, Gruenblatt, E, Hirano, Y, Huyser, C, James, A, Koch, K, Kvale, G, Lazaro, L, Lochner, C, Marsh, R, Mataix-Cols, D, Morgado, P, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, E, Pittenger, C, Reddy, YCJ, Sato, JR, Soreni, N, Stewart, SE, Taylor, SF, Tolin, D, Thomopoulos, SI, Veltman, DJ, Venkatasubramanian, G, Walitza, S, Wang, Z, Thompson, PM, and Stein, DJ
- Abstract
Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.
- Published
- 2022
14. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from theENIGMABipolar Disorder Working Group
- Author
-
Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abe, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landen, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, L-L, Alda, M, Almeida, J, Alnaes, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Boen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodriguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Dima, D, Duchesnay, E, Elvsashagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knoechel, C, Kramer, B, Lafer, B, Lopez-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quide, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarro, S, Satterthwaite, TD, Schene, AH, Sim, K, Soares, JC, Staeblein, M, Stein, DJ, Tamnes, CK, Thomaidis, GV, Upegui, CV, Veltman, DJ, Wessa, M, Westlye, LT, Whalley, HC, Wolf, DH, Wu, M-J, Yatham, LN, Zarate, CA, Thompson, PM, Andreassen, OA, Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abe, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landen, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, L-L, Alda, M, Almeida, J, Alnaes, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Boen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodriguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Diaz-Zuluaga, AM, Dima, D, Duchesnay, E, Elvsashagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knoechel, C, Kramer, B, Lafer, B, Lopez-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quide, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarro, S, Satterthwaite, TD, Schene, AH, Sim, K, Soares, JC, Staeblein, M, Stein, DJ, Tamnes, CK, Thomaidis, GV, Upegui, CV, Veltman, DJ, Wessa, M, Westlye, LT, Whalley, HC, Wolf, DH, Wu, M-J, Yatham, LN, Zarate, CA, Thompson, PM, and Andreassen, OA
- Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Published
- 2022
15. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
- Author
-
Ching, C.R., Hibar, D.P., Gurholt, T.P., Nunes, A., Thomopoulos, S.I., Abé, C., Agartz, I., Brouwer, R.M., Cannon, D.M., Zwarte, S.M.C. de, Eyler, L.T., Favre, P., Hajek, T., Haukvik, U.K., Houenou, J., Landén, M., Lett, T.A., McDonald, C., Nabulsi, L., Patel, Y., Pauling, M.E., Paus, T., Radua, J., Soeiro-de-Souza, M.G., Tronchin, G., Haren, N.E.M. van, Vieta, E., Walter, H., Zeng, L.L., Alda, M., Almeida, J., Alnaes, D., Alonso-Lana, S., Altimus, C., Bauer, M, Baune, B.T., Bearden, C.E., Bellani, M., Benedetti, F. De, Berk, M., Bilderbeck, A.C., Blumberg, H.P., Bøen, E., Bollettini, I., Bonnin, C. Del Mar, Brambilla, P., Canales-Rodríguez, E.J., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Dima, D., Duchesnay, É., Elvsåshagen, T., Fears, S.C., Frangou, S., Fullerton, J.M., Glahn, D.C., Goikolea, J.M., Green, M.J., Grotegerd, D., Gruber, O., Haarman, B.C.M., Henry, C., Howells, F.M., Ives-Deliperi, V., Jansen, Andreas, Kircher, T.T.J., Knöchel, C., Kramer, B., Lafer, B., López-Jaramillo, C., Machado-Vieira, R., MacIntosh, B.J., Melloni, E.M.T., Mitchell, P.B., Nenadic, I., Nery, F., Nugent, A.C., Oertel, V., Ophoff, R.A., Ota, M., Overs, B.J., Pham, D.L., Phillips, M.L., Pineda-Zapata, J.A., Poletti, S., Polosan, M., Pomarol-Clotet, E., Pouchon, A., Quidé, Y., Rive, M.M., Roberts, G., Ruhe, H.G., Salvador, R., Sarró, S., Satterthwaite, T.D., Schene, A.H., Sim, K., Thompson, P.M., Andreassen, O.A., Ching, C.R., Hibar, D.P., Gurholt, T.P., Nunes, A., Thomopoulos, S.I., Abé, C., Agartz, I., Brouwer, R.M., Cannon, D.M., Zwarte, S.M.C. de, Eyler, L.T., Favre, P., Hajek, T., Haukvik, U.K., Houenou, J., Landén, M., Lett, T.A., McDonald, C., Nabulsi, L., Patel, Y., Pauling, M.E., Paus, T., Radua, J., Soeiro-de-Souza, M.G., Tronchin, G., Haren, N.E.M. van, Vieta, E., Walter, H., Zeng, L.L., Alda, M., Almeida, J., Alnaes, D., Alonso-Lana, S., Altimus, C., Bauer, M, Baune, B.T., Bearden, C.E., Bellani, M., Benedetti, F. De, Berk, M., Bilderbeck, A.C., Blumberg, H.P., Bøen, E., Bollettini, I., Bonnin, C. Del Mar, Brambilla, P., Canales-Rodríguez, E.J., Caseras, X., Dandash, O., Dannlowski, U., Delvecchio, G., Díaz-Zuluaga, A.M., Dima, D., Duchesnay, É., Elvsåshagen, T., Fears, S.C., Frangou, S., Fullerton, J.M., Glahn, D.C., Goikolea, J.M., Green, M.J., Grotegerd, D., Gruber, O., Haarman, B.C.M., Henry, C., Howells, F.M., Ives-Deliperi, V., Jansen, Andreas, Kircher, T.T.J., Knöchel, C., Kramer, B., Lafer, B., López-Jaramillo, C., Machado-Vieira, R., MacIntosh, B.J., Melloni, E.M.T., Mitchell, P.B., Nenadic, I., Nery, F., Nugent, A.C., Oertel, V., Ophoff, R.A., Ota, M., Overs, B.J., Pham, D.L., Phillips, M.L., Pineda-Zapata, J.A., Poletti, S., Polosan, M., Pomarol-Clotet, E., Pouchon, A., Quidé, Y., Rive, M.M., Roberts, G., Ruhe, H.G., Salvador, R., Sarró, S., Satterthwaite, T.D., Schene, A.H., Sim, K., Thompson, P.M., and Andreassen, O.A.
- Abstract
Contains fulltext : 252204.pdf (Publisher’s version ) (Open Access), MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Published
- 2022
16. Signature of psychotic features on white matter in bipolar disorder and schizophrenia
- Author
-
Bravi, B., Bollettini, I., Poletti, S., Spangaro, M., Cavallaro, R., Colombo, C., Zanardi, R., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
17. Machine learning signature in differentiating bipolar and unipolar depression with multimodal structural neuroimaging data and neuropsychology
- Author
-
Vai, B., Calesella, F., Colombo, F., Bollettini, I., Tassi, E., Maggioni, E., Zanardi, R., Poletti, S., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
18. Classification of bipolar disorder from multi-site regional-based cortical morphology features using support vector machine technique
- Author
-
Tassi, E., Cereda, G., Bellani, M., Nenadic, I., Benedetti, F., Crespo-Facorro, B., Gaser, C., Bollettini, I., Vai, B., Calesella, F., Poletti, S., Rossetti, M.G., Perlini, C., Yatham, L., Piras, F., Spalletta, G., Bianchi, A.M., Maggioni, E., and Brambilla, P.
- Published
- 2022
- Full Text
- View/download PDF
19. Identifying suicide attempters among bipolar depressed patients using structural neuroimaging: a machine learning study
- Author
-
Fortaner-Uyà, L., Monopoli, C., Calesella, F., Colombo, F., Bravi, B., Maggioni, E., Tassi, E., Poletti, S., Bollettini, I., Vai, B., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
20. Prediction of cognitive impairment in mood disorders using multimodal structural neuroimaging: a machine learning study
- Author
-
Monopoli, C., Fortaner-Uyà, L., Calesella, F., Colombo, F., Bravi, B., Maggioni, E., Tassi, E., Bollettini, I., Poletti, S., Vai, B., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
21. A machine learning pipeline for efficient differentiation between depressed bipolar disorder and major depressive disorder patients based on structural neuroimaging
- Author
-
Calesella, F., Colombo, F., Bravi, B., Fortaner-Uyà, L., Monopoli, C., Tassi, E., Maggioni, E., Bollettini, I., Poletti, S., Vai, B., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
22. Data-driven stratification of depressed patients based on structural neuroimaging signatures: a stability-based relative clustering validation approach
- Author
-
Colombo, F., Calesella, F., Bravi, B., Fortaner-Uyà, L., Monopoli, C., Maggioni, E., Tassi, E., Zanardi, R., Attanasio, F., Bollettini, I., Poletti, S., Vai, B., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
23. Role of microglia activation on white matter integrity in bipolar depression: a tract-based spatial statistics study
- Author
-
Bravi, B., Bollettini, I., Zanardi, R., Benedetti, F., and Poletti, S.
- Published
- 2022
- Full Text
- View/download PDF
24. Effects of childhood trauma and inflammation on white matter microstructure in bipolar disorder
- Author
-
Paolini, M., Poletti, S., Ernst, J., Melloni, E., Bollettini, I., Lorenzi, C., and Benedetti, F.
- Published
- 2022
- Full Text
- View/download PDF
25. White matter microstructure and its relation to clinical features of obsessive–compulsive disorder: findings from the ENIGMA OCD Working Group
- Author
-
Piras F., Abe Y., Agarwal S. M., Anticevic A., Ameis S., Arnold P., Banaj N., Bargallo N., Batistuzzo M. C., Benedetti F., Beucke J. -C., Boedhoe P. S. W., Bollettini I., Brem S., Calvo A., Cho K. I. K., Ciullo V., Dallaspezia S., Dickie E., Ely B. A., Fan S., Fouche J. -P., Gruner P., Gursel D. A., Hauser T., Hirano Y., Hoexter M. Q., Iorio M., James A., Reddy Y. C. J., Kaufmann C., Koch K., Kochunov P., Kwon J. S., Lazaro L., Lochner C., Marsh R., Nakagawa A., Nakamae T., Narayanaswamy J. C., Sakai Y., Shimizu E., Simon D., Simpson H. B., Soreni N., Stampfli P., Stern E. R., Szeszko P., Takahashi J., Venkatasubramanian G., Wang Z., Yun J. -Y., Assogna F., Calvo R., Wit S. J., Hough M., Kuno M., Miguel E. C., Morer A., Pittenger C., Poletti S., Smeraldi E., Sato J. R., Tsuchiyagaito A., Walitza S., van der Werf Y. D., Vecchio D., Zarei M., Stein D. J., Jahanshad N., Thompson P. M., van den Heuvel O. A., Spalletta G., Piras, F., Abe, Y., Agarwal, S. M., Anticevic, A., Ameis, S., Arnold, P., Banaj, N., Bargallo, N., Batistuzzo, M. C., Benedetti, F., Beucke, J. -C., Boedhoe, P. S. W., Bollettini, I., Brem, S., Calvo, A., Cho, K. I. K., Ciullo, V., Dallaspezia, S., Dickie, E., Ely, B. A., Fan, S., Fouche, J. -P., Gruner, P., Gursel, D. A., Hauser, T., Hirano, Y., Hoexter, M. Q., Iorio, M., James, A., Reddy, Y. C. J., Kaufmann, C., Koch, K., Kochunov, P., Kwon, J. S., Lazaro, L., Lochner, C., Marsh, R., Nakagawa, A., Nakamae, T., Narayanaswamy, J. C., Sakai, Y., Shimizu, E., Simon, D., Simpson, H. B., Soreni, N., Stampfli, P., Stern, E. R., Szeszko, P., Takahashi, J., Venkatasubramanian, G., Wang, Z., Yun, J. -Y., Assogna, F., Calvo, R., Wit, S. J., Hough, M., Kuno, M., Miguel, E. C., Morer, A., Pittenger, C., Poletti, S., Smeraldi, E., Sato, J. R., Tsuchiyagaito, A., Walitza, S., van der Werf, Y. D., Vecchio, D., Zarei, M., Stein, D. J., Jahanshad, N., Thompson, P. M., van den Heuvel, O. A., Spalletta, G., Anatomy and neurosciences, Psychiatry, Amsterdam Neuroscience - Compulsivity, Impulsivity & Attention, and Amsterdam Neuroscience - Neurodegeneration
- Subjects
Adult ,Obsessive-Compulsive Disorder ,medicine.medical_specialty ,Younger age ,Cross-sectional study ,Article ,lcsh:RC321-571 ,White matter ,neuroscience ,Cellular and Molecular Neuroscience ,Group differences ,Obsessive compulsive ,Internal medicine ,Fractional anisotropy ,medicine ,Humans ,100 Philosophie und Psychologie::150 Psychologie::150 Psychologie ,Child ,lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry ,Biological Psychiatry ,business.industry ,Brain ,White Matter ,White matter microstructure ,obsessive-compulsive disorder ,Psychiatry and Mental health ,Cross-Sectional Studies ,Diffusion Magnetic Resonance Imaging ,Diffusion Tensor Imaging ,medicine.anatomical_structure ,psychiatric disorders ,Anisotropy ,business ,Diffusion MRI - Abstract
Microstructural alterations in cortico-subcortical connections are thought to be present in obsessive–compulsive disorder (OCD). However, prior studies have yielded inconsistent findings, perhaps because small sample sizes provided insufficient power to detect subtle abnormalities. Here we investigated microstructural white matter alterations and their relation to clinical features in the largest dataset of adult and pediatric OCD to date. We analyzed diffusion tensor imaging metrics from 700 adult patients and 645 adult controls, as well as 174 pediatric patients and 144 pediatric controls across 19 sites participating in the ENIGMA OCD Working Group, in a cross-sectional case-control magnetic resonance study. We extracted measures of fractional anisotropy (FA) as main outcome, and mean diffusivity, radial diffusivity, and axial diffusivity as secondary outcomes for 25 white matter regions. We meta-analyzed patient-control group differences (Cohen’s d) across sites, after adjusting for age and sex, and investigated associations with clinical characteristics. Adult OCD patients showed significant FA reduction in the sagittal stratum (d = −0.21, z = −3.21, p = 0.001) and posterior thalamic radiation (d = −0.26, z = −4.57, p z = 2.71, p = 0.006), longer duration of illness (z = −2.086, p = 0.036), and a higher percentage of medicated patients in the cohorts studied (z = −1.98, p = 0.047). No significant association with symptom severity was found. Pediatric OCD patients did not show any detectable microstructural abnormalities compared to controls. Our findings of microstructural alterations in projection and association fibers to posterior brain regions in OCD are consistent with models emphasizing deficits in connectivity as an important feature of this disorder.
- Published
- 2021
26. P.0683 Effect of glutamate excitotoxicity on white matter integrity in bipolar disorder: a TBSS study
- Author
-
Bravi, B., primary, Bollettini, I., additional, Pasquasio, C. Di, additional, Conte, S., additional, Zanardi, R., additional, Benedetti, F., additional, and Poletti, S., additional
- Published
- 2021
- Full Text
- View/download PDF
27. White matter microstructure in bipolar disorder is influenced by the serotonin transporter gene polymorphism 5-HTTLPR1
- Author
-
Benedetti, F., Bollettini, I., Poletti, S., Locatelli, C., Lorenzi, C., Pirovano, A., Smeraldi, E., and Colombo, C.
- Published
- 2015
- Full Text
- View/download PDF
28. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders
- Author
-
Patel, Y, Parker, N, Shin, J, Howard, D, French, L, Thomopoulos, SI, Pozzi, E, Abe, Y, Abé, C, Anticevic, A, Alda, M, Aleman, A, Alloza, C, Alonso-Lana, S, Ameis, SH, Anagnostou, E, McIntosh, AA, Arango, C, Arnold, PD, Asherson, P, Assogna, F, Auzias, G, Ayesa-Arriola, R, Bakker, G, Banaj, N, Banaschewski, T, Bandeira, CE, Baranov, A, Bargalló, N, Bau, CHD, Baumeister, S, Baune, BT, Bellgrove, MA, Benedetti, F, Bertolino, A, Boedhoe, PSW, Boks, M, Bollettini, I, Del Mar Bonnin, C, Borgers, T, Borgwardt, S, Brandeis, D, Brennan, BP, Bruggemann, JM, Bülow, R, Busatto, GF, Calderoni, S, Calhoun, VD, Calvo, R, Canales-Rodríguez, EJ, Cannon, DM, Carr, VJ, Cascella, N, Cercignani, M, Chaim-Avancini, TM, Christakou, A, Coghill, D, Conzelmann, A, Crespo-Facorro, B, Cubillo, AI, Cullen, KR, Cupertino, RB, Daly, E, Dannlowski, U, Davey, CG, Denys, D, Deruelle, C, Di Giorgio, A, Dickie, EW, Dima, D, Dohm, K, Ehrlich, S, Ely, BA, Erwin-Grabner, T, Ethofer, T, Fair, DA, Fallgatter, AJ, Faraone, SV, Fatjó-Vilas, M, Fedor, JM, Fitzgerald, KD, Ford, JM, Frodl, T, Fu, CHY, Fullerton, JM, Gabel, MC, Glahn, DC, Roberts, G, Gogberashvili, T, Goikolea, JM, Gotlib, IH, Goya-Maldonado, R, Grabe, HJ, Green, MJ, Grevet, EH, Groenewold, NA, Grotegerd, D, Gruber, O, Gruner, P, Guerrero-Pedraza, A, Silk, Timothy, Patel, Y, Parker, N, Shin, J, Howard, D, French, L, Thomopoulos, SI, Pozzi, E, Abe, Y, Abé, C, Anticevic, A, Alda, M, Aleman, A, Alloza, C, Alonso-Lana, S, Ameis, SH, Anagnostou, E, McIntosh, AA, Arango, C, Arnold, PD, Asherson, P, Assogna, F, Auzias, G, Ayesa-Arriola, R, Bakker, G, Banaj, N, Banaschewski, T, Bandeira, CE, Baranov, A, Bargalló, N, Bau, CHD, Baumeister, S, Baune, BT, Bellgrove, MA, Benedetti, F, Bertolino, A, Boedhoe, PSW, Boks, M, Bollettini, I, Del Mar Bonnin, C, Borgers, T, Borgwardt, S, Brandeis, D, Brennan, BP, Bruggemann, JM, Bülow, R, Busatto, GF, Calderoni, S, Calhoun, VD, Calvo, R, Canales-Rodríguez, EJ, Cannon, DM, Carr, VJ, Cascella, N, Cercignani, M, Chaim-Avancini, TM, Christakou, A, Coghill, D, Conzelmann, A, Crespo-Facorro, B, Cubillo, AI, Cullen, KR, Cupertino, RB, Daly, E, Dannlowski, U, Davey, CG, Denys, D, Deruelle, C, Di Giorgio, A, Dickie, EW, Dima, D, Dohm, K, Ehrlich, S, Ely, BA, Erwin-Grabner, T, Ethofer, T, Fair, DA, Fallgatter, AJ, Faraone, SV, Fatjó-Vilas, M, Fedor, JM, Fitzgerald, KD, Ford, JM, Frodl, T, Fu, CHY, Fullerton, JM, Gabel, MC, Glahn, DC, Roberts, G, Gogberashvili, T, Goikolea, JM, Gotlib, IH, Goya-Maldonado, R, Grabe, HJ, Green, MJ, Grevet, EH, Groenewold, NA, Grotegerd, D, Gruber, O, Gruner, P, Guerrero-Pedraza, A, and Silk, Timothy
- Published
- 2021
29. Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders
- Author
-
Patel, Y., Parker, N., Shin, J., Howard, D., French, L., Thomopoulos, S.I., Pozzi, E., Abe, Y., Abé, C., Anticevic, A., Alda, M., Aleman, A., Alloza, C., Alonso-Lana, S., Ameis, S.H., Anagnostou, E., McIntosh, A.A., Arango, C., Arnold, P.D., Asherson, P., Assogna, F., Auzias, G., Ayesa-Arriola, R., Bakker, G., Banaj, N., Banaschewski, T., Bandeira, C.E., Baranov, A., Bargalló, N., Bau, C.H.D., Baumeister, S., Baune, B.T., Bellgrove, M.A., Benedetti, F., Bertolino, A., Boedhoe, P.S.W., Boks, M., Bollettini, I., Del Mar Bonnin, C., Borgers, T., Borgwardt, S., Brandeis, D., Brennan, B.P., Bruggemann, J.M., Bülow, R., Busatto, G.F., Calderoni, S., Calhoun, V.D., Calvo, R., Canales-Rodríguez, E.J., Cannon, D.M., Carr, V.J., Cascella, N., Cercignani, M., Chaim-Avancini, T.M., Christakou, A., Coghill, D., Conzelmann, A., Crespo-Facorro, B., Cubillo, A.I., Cullen, K.R., Cupertino, R.B., Daly, E., Dannlowski, U., Davey, C.G., Denys, D., Deruelle, C., Di Giorgio, A., Dickie, E.W., Dima, D., Dohm, K., Ehrlich, S., Ely, B.A., Erwin-Grabner, T., Ethofer, T., Fair, D.A., Fallgatter, A.J., Faraone, S.V., Fatjó-Vilas, M., Fedor, J.M., Fitzgerald, K.D., Ford, J.M., Frodl, T., Fu, C.H.Y., Fullerton, J.M., Gabel, M.C., Glahn, D.C., Roberts, G., Gogberashvili, T., Goikolea, J.M., Gotlib, I.H., Goya-Maldonado, R., Grabe, H.J., Green, M.J., Grevet, E.H., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Guerrero-Pedraza, A., Gur, R.E., Gur, R.C., Haar, S., Haarman, B.C.M., Haavik, J., Hahn, T., Hajek, T., Harrison, B.J., Harrison, N.A., Hartman, C.A., Whalley, H.C., Heslenfeld, D.J., Hibar, D.P., Hilland, E., Hirano, Y., Ho, T.C., Hoekstra, P.J., Hoekstra, L., Hohmann, S., Hong, L.E., Höschl, C., Høvik, M.F., Howells, F.M., Nenadic, I., Jalbrzikowski, M., James, A.C., Janssen, J., Jaspers-Fayer, F., Xu, J., Jonassen, R., Karkashadze, G., King, J.A., Kircher, T., Kirschner, M., Koch, K., Kochunov, P., Kohls, G., Konrad, K., Krämer, B., Krug, A., Kuntsi, J., Kwon, J.S., Landén, M., Landrø, N.I., Lazaro, L., Lebedeva, I.S., Leehr, E.J., Lera-Miguel, S., Lesch, K.-P., Lochner, C., Louza, M.R., Luna, B., Lundervold, A.J., Macmaster, F.P., Maglanoc, L.A., Malpas, C.B., Portella, M.J., Marsh, R., Martyn, F.M., Mataix-Cols, D., Mathalon, D.H., McCarthy, H., McDonald, C., McPhilemy, G., Meinert, S., Menchón, J.M., Minuzzi, L., Mitchell, P.B., Moreno, C., Morgado, P., Muratori, F., Murphy, C.M., Murphy, D., Mwangi, B., Nabulsi, L., Nakagawa, A., Nakamae, T., Namazova, L., Narayanaswamy, J., Jahanshad, N., Nguyen, D.D., Nicolau, R., O'Gorman Tuura, R.L., O'Hearn, K., Oosterlaan, J., Opel, N., Ophoff, R.A., Oranje, B., García De La Foz, V.O., Overs, B.J., Paloyelis, Y., Pantelis, C., Parellada, M., Pauli, P., Picó-Pérez, M., Picon, F.A., Piras, F., Plessen, K.J., Pomarol-Clotet, E., Preda, A., Puig, O., Quidé, Y., Radua, J., Ramos-Quiroga, J.A., Rasser, P.E., Rauer, L., Reddy, J., Redlich, R., Reif, A., Reneman, L., Repple, J., Retico, A., Richarte, V., Richter, A., Rosa, P.G.P., Rubia, K.K., Hashimoto, R., Sacchet, M.D., Salvador, R., Santonja, J., Sarink, K., Sarró, S., Satterthwaite, T.D., Sawa, A., Schall, U., Schofield, P.R., Schrantee, A., Seitz, J., Serpa, M.H., Setién-Suero, E., Shaw, P., Shook, D., Silk, T.J., Sim, K., Simon, S., Simpson, H.B., Singh, A., Skoch, A., Skokauskas, N., Soares, J.C., Soreni, N., Soriano-Mas, C., Spalletta, G., Spaniel, F., Lawrie, S.M., Stern, E.R., Stewart, S.E., Takayanagi, Y., Temmingh, H.S., Tolin, D.F., Tomecek, D., Tordesillas-Gutiérrez, D., Tosetti, M., Uhlmann, A., Van Amelsvoort, T., Van Der Wee, N.J.A., Van Der Werff, S.J.A., Van Haren, N.E.M., Van Wingen, G.A., Vance, A., Vázquez-Bourgon, J., Vecchio, D., Venkatasubramanian, G., Vieta, E., Vilarroya, O., Vives-Gilabert, Y., Voineskos, A.N., Völzke, H., Von Polier, G.G., Walton, E., Weickert, T.W., Weickert, C.S., Weideman, A.S., Wittfeld, K., Wolf, D.H., Wu, M.-J., Yang, T.T., Yang, K., Yoncheva, Y., Yun, J.-Y., Cheng, Y., Zanetti, M.V., Ziegler, G.C., Franke, B., Hoogman, M., Buitelaar, J.K., Van Rooij, D., Andreassen, O.A., Ching, C.R.K., Veltman, D.J., Schmaal, L., Stein, D.J., Van Den Heuvel, O.A., Turner, J.A., Van Erp, T.G.M., Pausova, Z., Thompson, P.M., Paus, T., Patel, Y., Parker, N., Shin, J., Howard, D., French, L., Thomopoulos, S.I., Pozzi, E., Abe, Y., Abé, C., Anticevic, A., Alda, M., Aleman, A., Alloza, C., Alonso-Lana, S., Ameis, S.H., Anagnostou, E., McIntosh, A.A., Arango, C., Arnold, P.D., Asherson, P., Assogna, F., Auzias, G., Ayesa-Arriola, R., Bakker, G., Banaj, N., Banaschewski, T., Bandeira, C.E., Baranov, A., Bargalló, N., Bau, C.H.D., Baumeister, S., Baune, B.T., Bellgrove, M.A., Benedetti, F., Bertolino, A., Boedhoe, P.S.W., Boks, M., Bollettini, I., Del Mar Bonnin, C., Borgers, T., Borgwardt, S., Brandeis, D., Brennan, B.P., Bruggemann, J.M., Bülow, R., Busatto, G.F., Calderoni, S., Calhoun, V.D., Calvo, R., Canales-Rodríguez, E.J., Cannon, D.M., Carr, V.J., Cascella, N., Cercignani, M., Chaim-Avancini, T.M., Christakou, A., Coghill, D., Conzelmann, A., Crespo-Facorro, B., Cubillo, A.I., Cullen, K.R., Cupertino, R.B., Daly, E., Dannlowski, U., Davey, C.G., Denys, D., Deruelle, C., Di Giorgio, A., Dickie, E.W., Dima, D., Dohm, K., Ehrlich, S., Ely, B.A., Erwin-Grabner, T., Ethofer, T., Fair, D.A., Fallgatter, A.J., Faraone, S.V., Fatjó-Vilas, M., Fedor, J.M., Fitzgerald, K.D., Ford, J.M., Frodl, T., Fu, C.H.Y., Fullerton, J.M., Gabel, M.C., Glahn, D.C., Roberts, G., Gogberashvili, T., Goikolea, J.M., Gotlib, I.H., Goya-Maldonado, R., Grabe, H.J., Green, M.J., Grevet, E.H., Groenewold, N.A., Grotegerd, D., Gruber, O., Gruner, P., Guerrero-Pedraza, A., Gur, R.E., Gur, R.C., Haar, S., Haarman, B.C.M., Haavik, J., Hahn, T., Hajek, T., Harrison, B.J., Harrison, N.A., Hartman, C.A., Whalley, H.C., Heslenfeld, D.J., Hibar, D.P., Hilland, E., Hirano, Y., Ho, T.C., Hoekstra, P.J., Hoekstra, L., Hohmann, S., Hong, L.E., Höschl, C., Høvik, M.F., Howells, F.M., Nenadic, I., Jalbrzikowski, M., James, A.C., Janssen, J., Jaspers-Fayer, F., Xu, J., Jonassen, R., Karkashadze, G., King, J.A., Kircher, T., Kirschner, M., Koch, K., Kochunov, P., Kohls, G., Konrad, K., Krämer, B., Krug, A., Kuntsi, J., Kwon, J.S., Landén, M., Landrø, N.I., Lazaro, L., Lebedeva, I.S., Leehr, E.J., Lera-Miguel, S., Lesch, K.-P., Lochner, C., Louza, M.R., Luna, B., Lundervold, A.J., Macmaster, F.P., Maglanoc, L.A., Malpas, C.B., Portella, M.J., Marsh, R., Martyn, F.M., Mataix-Cols, D., Mathalon, D.H., McCarthy, H., McDonald, C., McPhilemy, G., Meinert, S., Menchón, J.M., Minuzzi, L., Mitchell, P.B., Moreno, C., Morgado, P., Muratori, F., Murphy, C.M., Murphy, D., Mwangi, B., Nabulsi, L., Nakagawa, A., Nakamae, T., Namazova, L., Narayanaswamy, J., Jahanshad, N., Nguyen, D.D., Nicolau, R., O'Gorman Tuura, R.L., O'Hearn, K., Oosterlaan, J., Opel, N., Ophoff, R.A., Oranje, B., García De La Foz, V.O., Overs, B.J., Paloyelis, Y., Pantelis, C., Parellada, M., Pauli, P., Picó-Pérez, M., Picon, F.A., Piras, F., Plessen, K.J., Pomarol-Clotet, E., Preda, A., Puig, O., Quidé, Y., Radua, J., Ramos-Quiroga, J.A., Rasser, P.E., Rauer, L., Reddy, J., Redlich, R., Reif, A., Reneman, L., Repple, J., Retico, A., Richarte, V., Richter, A., Rosa, P.G.P., Rubia, K.K., Hashimoto, R., Sacchet, M.D., Salvador, R., Santonja, J., Sarink, K., Sarró, S., Satterthwaite, T.D., Sawa, A., Schall, U., Schofield, P.R., Schrantee, A., Seitz, J., Serpa, M.H., Setién-Suero, E., Shaw, P., Shook, D., Silk, T.J., Sim, K., Simon, S., Simpson, H.B., Singh, A., Skoch, A., Skokauskas, N., Soares, J.C., Soreni, N., Soriano-Mas, C., Spalletta, G., Spaniel, F., Lawrie, S.M., Stern, E.R., Stewart, S.E., Takayanagi, Y., Temmingh, H.S., Tolin, D.F., Tomecek, D., Tordesillas-Gutiérrez, D., Tosetti, M., Uhlmann, A., Van Amelsvoort, T., Van Der Wee, N.J.A., Van Der Werff, S.J.A., Van Haren, N.E.M., Van Wingen, G.A., Vance, A., Vázquez-Bourgon, J., Vecchio, D., Venkatasubramanian, G., Vieta, E., Vilarroya, O., Vives-Gilabert, Y., Voineskos, A.N., Völzke, H., Von Polier, G.G., Walton, E., Weickert, T.W., Weickert, C.S., Weideman, A.S., Wittfeld, K., Wolf, D.H., Wu, M.-J., Yang, T.T., Yang, K., Yoncheva, Y., Yun, J.-Y., Cheng, Y., Zanetti, M.V., Ziegler, G.C., Franke, B., Hoogman, M., Buitelaar, J.K., Van Rooij, D., Andreassen, O.A., Ching, C.R.K., Veltman, D.J., Schmaal, L., Stein, D.J., Van Den Heuvel, O.A., Turner, J.A., Van Erp, T.G.M., Pausova, Z., Thompson, P.M., and Paus, T.
- Abstract
Importance Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures Interregional profiles of group difference in cortical thickness between cases and controls. Results A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (exce
- Published
- 2021
- Full Text
- View/download PDF
30. Adverse childhood experiences influence white matter microstructure in patients with bipolar disorder
- Author
-
Benedetti, F., Bollettini, I., Radaelli, D., Poletti, S., Locatelli, C., Falini, A., Smeraldi, E., and Colombo, C.
- Published
- 2014
31. P.205 White matter integrity, clinical symptoms and quality of life in schizophrenia: a DTI study
- Author
-
Martini, F., primary, Bollettini, I., additional, Spangaro, M., additional, Agostoni, G., additional, Bechi, M., additional, Buonocore, M., additional, Cavallaro, R., additional, Benedetti, F., additional, and Bosia, M., additional
- Published
- 2021
- Full Text
- View/download PDF
32. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the ENIGMA ADHD, ASD, and OCD Working Groups
- Author
-
Boedhoe, P.S., Rooij, D. van, Hoogman, M., Twisk, J.W.R., Schmaal, L., Abe, Y., Alonso, P., Ameis, S.H., Anikin, A., Anticevic, A., Arango, C., Arnold, P.D., Asherson, P., Assogna, F., Auzias, G., Banaschewski, T., Baranov, A., Batistuzzo, M.C., Baumeister, S., Baur-Streubel, R., Behrmann, M., Bellgrove, M.A., Benedetti, F. De, Beucke, J.C., Biederman, J., Bollettini, I., Bose, A., Bralten, J., Bramati, I.E., Brandeis, D., Brem, S., Brennan, B.P., Busatto, G.F., Calderoni, S., Calvo, A., Calvo, R., Castellanos, F.X., Cercignani, M., Chaim-Avancini, T.M., Chantiluke, K.C., Cheng, Y., Cho, K.I.K., Christakou, A., Coghill, D., Conzelmann, A., Cubillo, A.I., Dale, A.M., Dallaspezia, S., Daly, E., Denys, D., Deruelle, C., Martino, A, Dinstein, I., Doyle, A.E., Durston, S., Earl, E.A., Ecker, C., Ehrlich, S., Ely, B.A., Epstein, J.N., Ethofer, T., Fair, D.A., Fallgatter, A.J., Faraone, S.V, Fedor, J., Feng, X., Feusner, J.D., Fitzgerald, J., Fitzgerald, K.D., Fouche, J.P., Freitag, C.M., Fridgeirsson, E.A., Frodl, T., Gabel, M.C., Gallagher, L., Gogberashvili, T., Gori, I., Gruner, P., Gürsel, D.A., Haar, S., Haavik, J., Hall, G.B., Harrison, N.A., Hartman, Catharina A., Heslenfeld, D.J., Hirano, Y., Hoekstra, P.J., Hoexter, M.Q., Hohmann, S., Høvik, M.F., Hu, H., Huyser, C., Jahanshad, N., Jalbrzikowski, M., James, A., Janssen, J, Jaspers-Fayer, F., Jernigan, T.L., Kapilushniy, D., Kardatzki, B., Buitelaar, J.K., Franke, B., Heuvel, O.A. van den, Boedhoe, P.S., Rooij, D. van, Hoogman, M., Twisk, J.W.R., Schmaal, L., Abe, Y., Alonso, P., Ameis, S.H., Anikin, A., Anticevic, A., Arango, C., Arnold, P.D., Asherson, P., Assogna, F., Auzias, G., Banaschewski, T., Baranov, A., Batistuzzo, M.C., Baumeister, S., Baur-Streubel, R., Behrmann, M., Bellgrove, M.A., Benedetti, F. De, Beucke, J.C., Biederman, J., Bollettini, I., Bose, A., Bralten, J., Bramati, I.E., Brandeis, D., Brem, S., Brennan, B.P., Busatto, G.F., Calderoni, S., Calvo, A., Calvo, R., Castellanos, F.X., Cercignani, M., Chaim-Avancini, T.M., Chantiluke, K.C., Cheng, Y., Cho, K.I.K., Christakou, A., Coghill, D., Conzelmann, A., Cubillo, A.I., Dale, A.M., Dallaspezia, S., Daly, E., Denys, D., Deruelle, C., Martino, A, Dinstein, I., Doyle, A.E., Durston, S., Earl, E.A., Ecker, C., Ehrlich, S., Ely, B.A., Epstein, J.N., Ethofer, T., Fair, D.A., Fallgatter, A.J., Faraone, S.V, Fedor, J., Feng, X., Feusner, J.D., Fitzgerald, J., Fitzgerald, K.D., Fouche, J.P., Freitag, C.M., Fridgeirsson, E.A., Frodl, T., Gabel, M.C., Gallagher, L., Gogberashvili, T., Gori, I., Gruner, P., Gürsel, D.A., Haar, S., Haavik, J., Hall, G.B., Harrison, N.A., Hartman, Catharina A., Heslenfeld, D.J., Hirano, Y., Hoekstra, P.J., Hoexter, M.Q., Hohmann, S., Høvik, M.F., Hu, H., Huyser, C., Jahanshad, N., Jalbrzikowski, M., James, A., Janssen, J, Jaspers-Fayer, F., Jernigan, T.L., Kapilushniy, D., Kardatzki, B., Buitelaar, J.K., Franke, B., and Heuvel, O.A. van den
- Abstract
Contains fulltext : 225388.pdf (Publisher’s version ) (Closed access), OBJECTIVE: Attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. The authors sought to directly compare these disorders using structural brain imaging data from ENIGMA consortium data. METHODS: Structural T(1)-weighted whole-brain MRI data from healthy control subjects (N=5,827) and from patients with ADHD (N=2,271), ASD (N=1,777), and OCD (N=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. The authors examined subcortical volume, cortical thickness, and cortical surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults, using linear mixed-effects models adjusting for age, sex, and site (and intracranial volume for subcortical and surface area measures). RESULTS: No shared differences were found among all three disorders, and shared differences between any two disorders did not survive correction for multiple comparisons. Children with ADHD compared with those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller intracranial volume than control subjects and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared with adult control subjects and other clinical groups. No OCD-specific differences were observed across different age groups and surface area differences among all disorders in childhood and adulthood. CONCLUSIONS: The study findings suggest robust but subtle differences across different age groups among ADHD, ASD, and OCD. ADHD-specific intracranial volume and hippocampal differences in children and adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults, support previous work emphasizing structural brain differences in these disorders.
- Published
- 2020
33. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
- Author
-
Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abé, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landén, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, LL, Alda, M, Almeida, J, Alnæs, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Bøen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodríguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Díaz-Zuluaga, AM, Dima, D, Duchesnay, É, Elvsåshagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knöchel, C, Kramer, B, Lafer, B, López-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quidé, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarró, S, Satterthwaite, TD, Schene, AH, Sim, K, Ching, CRK, Hibar, DP, Gurholt, TP, Nunes, A, Thomopoulos, SI, Abé, C, Agartz, I, Brouwer, RM, Cannon, DM, de Zwarte, SMC, Eyler, LT, Favre, P, Hajek, T, Haukvik, UK, Houenou, J, Landén, M, Lett, TA, McDonald, C, Nabulsi, L, Patel, Y, Pauling, ME, Paus, T, Radua, J, Soeiro-de-Souza, MG, Tronchin, G, van Haren, NEM, Vieta, E, Walter, H, Zeng, LL, Alda, M, Almeida, J, Alnæs, D, Alonso-Lana, S, Altimus, C, Bauer, M, Baune, BT, Bearden, CE, Bellani, M, Benedetti, F, Berk, M, Bilderbeck, AC, Blumberg, HP, Bøen, E, Bollettini, I, del Mar Bonnin, C, Brambilla, P, Canales-Rodríguez, EJ, Caseras, X, Dandash, O, Dannlowski, U, Delvecchio, G, Díaz-Zuluaga, AM, Dima, D, Duchesnay, É, Elvsåshagen, T, Fears, SC, Frangou, S, Fullerton, JM, Glahn, DC, Goikolea, JM, Green, MJ, Grotegerd, D, Gruber, O, Haarman, BCM, Henry, C, Howells, FM, Ives-Deliperi, V, Jansen, A, Kircher, TTJ, Knöchel, C, Kramer, B, Lafer, B, López-Jaramillo, C, Machado-Vieira, R, MacIntosh, BJ, Melloni, EMT, Mitchell, PB, Nenadic, I, Nery, F, Nugent, AC, Oertel, V, Ophoff, RA, Ota, M, Overs, BJ, Pham, DL, Phillips, ML, Pineda-Zapata, JA, Poletti, S, Polosan, M, Pomarol-Clotet, E, Pouchon, A, Quidé, Y, Rive, MM, Roberts, G, Ruhe, HG, Salvador, R, Sarró, S, Satterthwaite, TD, Schene, AH, and Sim, K
- Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Published
- 2020
34. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
- Author
-
Ching, C.R.K. (Christopher), Hibar, D.P. (Derrek P.), Gurholt, T.P. (Tiril P.), Nunes, A. (Abraham), Thomopoulos, S.I. (Sophia I.), Abé, C. (Christoph), Agartz, I. (Ingrid), Brouwer, R.M. (Rachel), Cannon, D.M. (Dara), de Zwarte, S.M.C. (Sonja M. C.), Eyler, L.T. (Lisa T.), Favre, P. (Pauline), Hajek, T. (Tomas), Haukvik, U.K. (Unn), Houenou, J. (Josselin), Landén, M. (Mikael), Lett, T.A. (Tristram A.), McDonald, C. (Colm), Nabulsi, L. (Leila), Patel, Y. (Yash), Pauling, M.E. (Melissa E.), Paus, T. (Tomas), Radua, J. (Joaquim), Soeiro-de-Souza, M.G. (Marcio G.), Tronchin, G. (Giulia), van Haren, N.E.M. (Neeltje E. M.), Vieta, E. (Eduard), Walter, H.J. (Henrik), Zeng, L.-L. (Ling-Li), Alda, M. (Martin), Almeida, J. (Jorge), Alnæs, D. (Dag), Alonso-Lana, S. (Silvia), Altimus, C. (Cara), Bauer, M. (Michael), Baune, B.T., Bearden, C.E. (Carrie), Bellani, M. (Marcella), Benedetti, F. (Francesco), Berk, M. (Michael), Bilderbeck, A.C. (Amy C.), Blumberg, H.P. (Hilary P.), Bøen, E. (Erlend), Bollettini, I. (Irene), del Mar Bonnin, C. (Caterina), Brambilla, P. (Paolo), Canales-Rodríguez, E.J. (Erick J.), Caseras, X. (Xavier), Dandash, O. (Orwa), Dannlowski, U. (Udo), Delvecchio, G. (Giuseppe), Díaz-Zuluaga, A.M. (Ana M.), Dima, D. (Danai), Duchesnay, É. (Édouard), Elvsåshagen, T. (Torbjørn), Fears, S. (Scott), Frangou, S. (Sophia), Fullerton, J.M. (Janice M.), Glahn, D.C. (David), Goikolea, J.M. (Jose M.), Green, M.J. (Melissa J.), Grotegerd, D. (Dominik), Gruber, O. (Oliver), Haarman, B.C.M. (Benno), Henry, C. (C.), Howells, F.M. (Fleur M.), Ives-Deliperi, V. (Victoria), Jansen, A. (Andreas), Kircher, T.T.J. (Tilo T. J.), Knöchel, C. (Christian), Kramer, B. (Bernd), Lafer, B. (Beny), López-Jaramillo, C. (Carlos), Machado-Vieira, R. (Rodrigo), MacIntosh, B.J. (Bradley J), Melloni, E.M.T. (Elisa M. T.), Mitchell, P.B. (Philip B.), Nenadic, I. (Igor), Nery, F. (Fabiano), Nugent, A.C. (Allison), Oertel, V. (Viola), Ophoff, R.A. (Roel), Ota, M. (Miho), Overs, B.J. (Bronwyn J.), Pham, D.L. (Daniel L.), Phillips, M.L. (Mary L.), Pineda-Zapata, J.A. (Julian A.), Poletti, S. (Sara), Polosan, M. (Mircea), Pomarol-Clotet, E. (Edith), Pouchon, A. (Arnaud), Quidé, Y. (Yann), Rive, M.M. (Maria M.), Roberts, G. (Gloria), Ruhé, H.G. (Henricus G.Eric), Salvador, R. (Raymond), Sarró, S. (Salvador), Satterthwaite, T.D. (Theodore), Schene, A.H. (Aart), Sim, K. (Kang), Soares, J.C. (Jair C.), Stäblein, M. (Michael), Stein, D.J. (Dan J.), Tamnes, C.K. (Christian K.), Thomaidis, G.V. (Georgios V.), Upegui, C.V. (Cristian Vargas), Veltman, D.J. (Dick), Wessa, M. (Michèle), Westlye, L.T. (Lars), Whalley, H.C. (Heather C.), Wolf, D.H. (Daniel H.), Wu, M.-J. (Mon-Ju), Yatham, L.N. (Lakshmi N.), Zarate, C.A. (Carlos A.), Thompson, P.M. (Paul), Andreassen, O.A. (Ole), Ching, C.R.K. (Christopher), Hibar, D.P. (Derrek P.), Gurholt, T.P. (Tiril P.), Nunes, A. (Abraham), Thomopoulos, S.I. (Sophia I.), Abé, C. (Christoph), Agartz, I. (Ingrid), Brouwer, R.M. (Rachel), Cannon, D.M. (Dara), de Zwarte, S.M.C. (Sonja M. C.), Eyler, L.T. (Lisa T.), Favre, P. (Pauline), Hajek, T. (Tomas), Haukvik, U.K. (Unn), Houenou, J. (Josselin), Landén, M. (Mikael), Lett, T.A. (Tristram A.), McDonald, C. (Colm), Nabulsi, L. (Leila), Patel, Y. (Yash), Pauling, M.E. (Melissa E.), Paus, T. (Tomas), Radua, J. (Joaquim), Soeiro-de-Souza, M.G. (Marcio G.), Tronchin, G. (Giulia), van Haren, N.E.M. (Neeltje E. M.), Vieta, E. (Eduard), Walter, H.J. (Henrik), Zeng, L.-L. (Ling-Li), Alda, M. (Martin), Almeida, J. (Jorge), Alnæs, D. (Dag), Alonso-Lana, S. (Silvia), Altimus, C. (Cara), Bauer, M. (Michael), Baune, B.T., Bearden, C.E. (Carrie), Bellani, M. (Marcella), Benedetti, F. (Francesco), Berk, M. (Michael), Bilderbeck, A.C. (Amy C.), Blumberg, H.P. (Hilary P.), Bøen, E. (Erlend), Bollettini, I. (Irene), del Mar Bonnin, C. (Caterina), Brambilla, P. (Paolo), Canales-Rodríguez, E.J. (Erick J.), Caseras, X. (Xavier), Dandash, O. (Orwa), Dannlowski, U. (Udo), Delvecchio, G. (Giuseppe), Díaz-Zuluaga, A.M. (Ana M.), Dima, D. (Danai), Duchesnay, É. (Édouard), Elvsåshagen, T. (Torbjørn), Fears, S. (Scott), Frangou, S. (Sophia), Fullerton, J.M. (Janice M.), Glahn, D.C. (David), Goikolea, J.M. (Jose M.), Green, M.J. (Melissa J.), Grotegerd, D. (Dominik), Gruber, O. (Oliver), Haarman, B.C.M. (Benno), Henry, C. (C.), Howells, F.M. (Fleur M.), Ives-Deliperi, V. (Victoria), Jansen, A. (Andreas), Kircher, T.T.J. (Tilo T. J.), Knöchel, C. (Christian), Kramer, B. (Bernd), Lafer, B. (Beny), López-Jaramillo, C. (Carlos), Machado-Vieira, R. (Rodrigo), MacIntosh, B.J. (Bradley J), Melloni, E.M.T. (Elisa M. T.), Mitchell, P.B. (Philip B.), Nenadic, I. (Igor), Nery, F. (Fabiano), Nugent, A.C. (Allison), Oertel, V. (Viola), Ophoff, R.A. (Roel), Ota, M. (Miho), Overs, B.J. (Bronwyn J.), Pham, D.L. (Daniel L.), Phillips, M.L. (Mary L.), Pineda-Zapata, J.A. (Julian A.), Poletti, S. (Sara), Polosan, M. (Mircea), Pomarol-Clotet, E. (Edith), Pouchon, A. (Arnaud), Quidé, Y. (Yann), Rive, M.M. (Maria M.), Roberts, G. (Gloria), Ruhé, H.G. (Henricus G.Eric), Salvador, R. (Raymond), Sarró, S. (Salvador), Satterthwaite, T.D. (Theodore), Schene, A.H. (Aart), Sim, K. (Kang), Soares, J.C. (Jair C.), Stäblein, M. (Michael), Stein, D.J. (Dan J.), Tamnes, C.K. (Christian K.), Thomaidis, G.V. (Georgios V.), Upegui, C.V. (Cristian Vargas), Veltman, D.J. (Dick), Wessa, M. (Michèle), Westlye, L.T. (Lars), Whalley, H.C. (Heather C.), Wolf, D.H. (Daniel H.), Wu, M.-J. (Mon-Ju), Yatham, L.N. (Lakshmi N.), Zarate, C.A. (Carlos A.), Thompson, P.M. (Paul), and Andreassen, O.A. (Ole)
- Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studi
- Published
- 2020
- Full Text
- View/download PDF
35. Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium
- Author
-
Kong, X-Z, Boedhoe, PSW, Abe, Y, Alonso, P, Ameis, SH, Arnold, PD, Assogna, F, Baker, JT, Batistuzzo, MC, Benedetti, F, Beucke, JC, Bollettini, I, Bose, A, Brem, S, Brennan, BP, Buitelaar, J, Calvo, R, Cheng, Y, Cho, KIK, Dallaspezia, S, Denys, D, Ely, BA, Feusner, J, Fitzgerald, KD, Fouche, J-P, Fridgeirsson, EA, Glahn, DC, Gruner, P, Gursel, DA, Hauser, TU, Hirano, Y, Hoexter, MQ, Hu, H, Huyser, C, James, A, Jaspers-Fayer, F, Kathmann, N, Kaufmann, C, Koch, K, Kuno, M, Kvale, G, Kwon, JS, Lazaro, L, Liu, Y, Lochner, C, Marques, P, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Medland, SE, Menchon, JM, Minuzzi, L, Moreira, PS, Morer, A, Morgado, P, Nakagawa, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, EL, O'Neill, J, Pariente, JC, Perriello, C, Piacentini, J, Piras, F, Pittenger, C, Reddy, YCJ, Rus-Oswald, OG, Sakai, Y, Sato, JR, Schmaal, L, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Szeszko, PR, Tolin, DF, Tsuchiyagaito, A, van Rooij, D, van Wingen, GA, Venkatasubramanian, G, Wang, Z, Yun, J-Y, Thompson, PM, Stein, DJ, van den Heuvel, OA, Francks, C, Kong, X-Z, Boedhoe, PSW, Abe, Y, Alonso, P, Ameis, SH, Arnold, PD, Assogna, F, Baker, JT, Batistuzzo, MC, Benedetti, F, Beucke, JC, Bollettini, I, Bose, A, Brem, S, Brennan, BP, Buitelaar, J, Calvo, R, Cheng, Y, Cho, KIK, Dallaspezia, S, Denys, D, Ely, BA, Feusner, J, Fitzgerald, KD, Fouche, J-P, Fridgeirsson, EA, Glahn, DC, Gruner, P, Gursel, DA, Hauser, TU, Hirano, Y, Hoexter, MQ, Hu, H, Huyser, C, James, A, Jaspers-Fayer, F, Kathmann, N, Kaufmann, C, Koch, K, Kuno, M, Kvale, G, Kwon, JS, Lazaro, L, Liu, Y, Lochner, C, Marques, P, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Medland, SE, Menchon, JM, Minuzzi, L, Moreira, PS, Morer, A, Morgado, P, Nakagawa, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, EL, O'Neill, J, Pariente, JC, Perriello, C, Piacentini, J, Piras, F, Pittenger, C, Reddy, YCJ, Rus-Oswald, OG, Sakai, Y, Sato, JR, Schmaal, L, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Szeszko, PR, Tolin, DF, Tsuchiyagaito, A, van Rooij, D, van Wingen, GA, Venkatasubramanian, G, Wang, Z, Yun, J-Y, Thompson, PM, Stein, DJ, van den Heuvel, OA, and Francks, C
- Abstract
BACKGROUND: Lateralized dysfunction has been suggested in obsessive-compulsive disorder (OCD). However, it is currently unclear whether OCD is characterized by abnormal patterns of brain structural asymmetry. Here we carried out what is by far the largest study of brain structural asymmetry in OCD. METHODS: We studied a collection of 16 pediatric datasets (501 patients with OCD and 439 healthy control subjects), as well as 30 adult datasets (1777 patients and 1654 control subjects) from the OCD Working Group within the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium. Asymmetries of the volumes of subcortical structures, and of measures of regional cortical thickness and surface areas, were assessed based on T1-weighted magnetic resonance imaging scans, using harmonized image analysis and quality control protocols. We investigated possible alterations of brain asymmetry in patients with OCD. We also explored potential associations of asymmetry with specific aspects of the disorder and medication status. RESULTS: In the pediatric datasets, the largest case-control differences were observed for volume asymmetry of the thalamus (more leftward; Cohen's d = 0.19) and the pallidum (less leftward; d = -0.21). Additional analyses suggested putative links between these asymmetry patterns and medication status, OCD severity, or anxiety and depression comorbidities. No significant case-control differences were found in the adult datasets. CONCLUSIONS: The results suggest subtle changes of the average asymmetry of subcortical structures in pediatric OCD, which are not detectable in adults with the disorder. These findings may reflect altered neurodevelopmental processes in OCD.
- Published
- 2020
36. Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups
- Author
-
Boedhoe, PSW, van Rooij, D, Hoogman, M, Twisk, JWR, Schmaal, L, Abe, Y, Alonso, P, Ameis, SH, Anikin, A, Anticevic, A, Arango, C, Arnold, PD, Asherson, P, Assogna, F, Auzias, G, Banaschewski, T, Baranov, A, Batistuzzo, MC, Baumeister, S, Baur-Streubel, R, Behrmann, M, Bellgrove, MA, Benedetti, F, Beucke, JC, Biederman, J, Bollettini, I, Bose, A, Bralten, J, Bramati, IE, Brandeis, D, Brem, S, Brennan, BP, Busatto, GF, Calderoni, S, Calvo, A, Calvo, R, Castellanos, FX, Cercignani, M, Chaim-Avancini, TM, Chantiluke, KC, Cheng, Y, Cho, KIK, Christakou, A, Coghill, D, Conzelmann, A, Cubillo, A, Dale, AM, Dallaspezia, S, Daly, E, Denys, D, Deruelle, C, Di Martino, A, Dinstein, I, Doyle, AE, Durston, S, Earl, EA, Ecker, C, Ehrlich, S, Ely, BA, Epstein, JN, Ethofer, T, Fair, DA, Fallgatter, AJ, Faraone, S, Fedor, J, Feng, X, Feusner, JD, Fitzgerald, J, Fitzgerald, KD, Fouche, J-P, Freitag, CM, Fridgeirsson, EA, Frodl, T, Gabel, MC, Gallagher, L, Gogberashvili, T, Gori, I, Gruner, P, Gursel, DA, Haar, S, Haavik, J, Hall, GB, Harrison, NA, Hartman, CA, Heslenfeld, DJ, Hirano, Y, Hoekstra, PJ, Hoexter, MQ, Hohmann, S, Hovik, MF, Hu, H, Huyser, C, Jahanshad, N, Jalbrzikowski, M, James, A, Janssen, J, Jaspers-Fayer, F, Jernigan, TL, Kapilushniy, D, Kardatzki, B, Karkashadze, G, Kathmann, N, Kaufmann, C, Kelly, C, Khadka, S, King, JA, Koch, K, Kohls, G, Konrad, K, Kuno, M, Kuntsi, J, Kvale, G, Kwon, JS, Lazaro, L, Lera-Miguel, S, Lesch, K-P, Hoekstra, L, Liu, Y, Lochner, C, Louza, MR, Luna, B, Lundervold, AJ, Malpas, CB, Marques, P, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Mattos, P, McCarthy, H, McGrath, J, Mehta, MA, Menchon, JM, Mennes, M, Martinho, MM, Moreira, PS, Morer, A, Morgado, P, Muratori, F, Murphy, CM, Murphy, DGM, Nakagawa, A, Nakamae, T, Nakao, T, Namazova-Baranova, L, Narayanaswamy, JC, Nicolau, R, Nigg, JT, Novotny, SE, Nurmi, EL, Weiss, EO, Tuura, RLO, O'Hearn, K, O'Neill, J, Oosterlaan, J, Oranje, B, Paloyelis, Y, Parellada, M, Pauli, P, Perriello, C, Piacentini, J, Piras, F, Plessen, KJ, Puig, O, Ramos-Quiroga, JA, Reddy, YCJ, Reif, A, Reneman, L, Retico, A, Rosa, PGP, Rubia, K, Rus, OG, Sakai, Y, Schrantee, A, Schwarz, L, Schweren, LJS, Seitz, J, Shaw, P, Shook, D, Silk, TJ, Simpson, HB, Skokauskas, N, Vila, JCS, Solovieva, A, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Sudre, G, Szeszko, PR, Tamm, L, Taylor, MJ, Tolin, DF, Tosetti, M, Tovar-Moll, F, Tsuchiyagaito, A, van Erp, TGM, van Wingen, GA, Vance, A, Venkatasubramanian, G, Vilarroya, O, Vives-Gilabert, Y, von Polier, GG, Walitza, S, Wallace, GL, Wang, Z, Wolfers, T, Yoncheva, YN, Yun, J-Y, Zanetti, M, Zhou, F, Ziegler, GC, Zierhut, KC, Zwiers, MP, Thompson, PM, Stein, DJ, Buitelaar, J, Franke, B, van den Heuvel, OA, Boedhoe, PSW, van Rooij, D, Hoogman, M, Twisk, JWR, Schmaal, L, Abe, Y, Alonso, P, Ameis, SH, Anikin, A, Anticevic, A, Arango, C, Arnold, PD, Asherson, P, Assogna, F, Auzias, G, Banaschewski, T, Baranov, A, Batistuzzo, MC, Baumeister, S, Baur-Streubel, R, Behrmann, M, Bellgrove, MA, Benedetti, F, Beucke, JC, Biederman, J, Bollettini, I, Bose, A, Bralten, J, Bramati, IE, Brandeis, D, Brem, S, Brennan, BP, Busatto, GF, Calderoni, S, Calvo, A, Calvo, R, Castellanos, FX, Cercignani, M, Chaim-Avancini, TM, Chantiluke, KC, Cheng, Y, Cho, KIK, Christakou, A, Coghill, D, Conzelmann, A, Cubillo, A, Dale, AM, Dallaspezia, S, Daly, E, Denys, D, Deruelle, C, Di Martino, A, Dinstein, I, Doyle, AE, Durston, S, Earl, EA, Ecker, C, Ehrlich, S, Ely, BA, Epstein, JN, Ethofer, T, Fair, DA, Fallgatter, AJ, Faraone, S, Fedor, J, Feng, X, Feusner, JD, Fitzgerald, J, Fitzgerald, KD, Fouche, J-P, Freitag, CM, Fridgeirsson, EA, Frodl, T, Gabel, MC, Gallagher, L, Gogberashvili, T, Gori, I, Gruner, P, Gursel, DA, Haar, S, Haavik, J, Hall, GB, Harrison, NA, Hartman, CA, Heslenfeld, DJ, Hirano, Y, Hoekstra, PJ, Hoexter, MQ, Hohmann, S, Hovik, MF, Hu, H, Huyser, C, Jahanshad, N, Jalbrzikowski, M, James, A, Janssen, J, Jaspers-Fayer, F, Jernigan, TL, Kapilushniy, D, Kardatzki, B, Karkashadze, G, Kathmann, N, Kaufmann, C, Kelly, C, Khadka, S, King, JA, Koch, K, Kohls, G, Konrad, K, Kuno, M, Kuntsi, J, Kvale, G, Kwon, JS, Lazaro, L, Lera-Miguel, S, Lesch, K-P, Hoekstra, L, Liu, Y, Lochner, C, Louza, MR, Luna, B, Lundervold, AJ, Malpas, CB, Marques, P, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Mattos, P, McCarthy, H, McGrath, J, Mehta, MA, Menchon, JM, Mennes, M, Martinho, MM, Moreira, PS, Morer, A, Morgado, P, Muratori, F, Murphy, CM, Murphy, DGM, Nakagawa, A, Nakamae, T, Nakao, T, Namazova-Baranova, L, Narayanaswamy, JC, Nicolau, R, Nigg, JT, Novotny, SE, Nurmi, EL, Weiss, EO, Tuura, RLO, O'Hearn, K, O'Neill, J, Oosterlaan, J, Oranje, B, Paloyelis, Y, Parellada, M, Pauli, P, Perriello, C, Piacentini, J, Piras, F, Plessen, KJ, Puig, O, Ramos-Quiroga, JA, Reddy, YCJ, Reif, A, Reneman, L, Retico, A, Rosa, PGP, Rubia, K, Rus, OG, Sakai, Y, Schrantee, A, Schwarz, L, Schweren, LJS, Seitz, J, Shaw, P, Shook, D, Silk, TJ, Simpson, HB, Skokauskas, N, Vila, JCS, Solovieva, A, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Sudre, G, Szeszko, PR, Tamm, L, Taylor, MJ, Tolin, DF, Tosetti, M, Tovar-Moll, F, Tsuchiyagaito, A, van Erp, TGM, van Wingen, GA, Vance, A, Venkatasubramanian, G, Vilarroya, O, Vives-Gilabert, Y, von Polier, GG, Walitza, S, Wallace, GL, Wang, Z, Wolfers, T, Yoncheva, YN, Yun, J-Y, Zanetti, M, Zhou, F, Ziegler, GC, Zierhut, KC, Zwiers, MP, Thompson, PM, Stein, DJ, Buitelaar, J, Franke, B, and van den Heuvel, OA
- Abstract
Objective: Attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. The authors sought to directly compare these disorders using structural brain imaging data from ENIGMA consortium data. Methods: Structural T1-weighted whole-brain MRI data from healthy control subjects (N=5,827) and from patients with ADHD (N=2,271), ASD (N=1,777), and OCD (N=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. The authors examined subcortical volume, cortical thickness, and cortical surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults, using linear mixed-effects models adjusting for age, sex, and site (and intracranial volume for subcortical and surface area measures). Results: No shared differences were found among all three disorders, and shared differences between any two disorders did not survive correction for multiple comparisons. Children with ADHD compared with those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller intracranial volume than control subjects and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared with adult control subjects and other clinical groups. No OCD-specific differences were observed across different age groups and surface area differences among all disorders in childhood and adulthood. Conclusions: The study findings suggest robust but subtle differences across different age groups among ADHD, ASD, and OCD. ADHD-specific intracranial volume and hippocampal differences in children and adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults, support previous work emphasizing structural brain differences in these disorders.
- Published
- 2020
37. Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters
- Author
-
Bruin, WB, Taylor, L, Thomas, RM, Shock, JP, Zhutovsky, P, Abe, Y, Alonso, P, Ameis, SH, Anticevic, A, Arnold, PD, Assogna, F, Benedetti, F, Beucke, JC, Boedhoe, PSW, Bollettini, I, Bose, A, Brem, S, Brennan, BP, Buitelaar, JK, Calvo, R, Cheng, Y, Cho, KIK, Dallaspezia, S, Denys, D, Ely, BA, Feusner, JD, Fitzgerald, KD, Fouche, J-P, Fridgeirsson, EA, Gruner, P, Guersel, DA, Hauser, TU, Hirano, Y, Hoexter, MQ, Hu, H, Huyser, C, Ivanov, I, James, A, Jaspers-Fayer, F, Kathmann, N, Kaufmann, C, Koch, K, Kuno, M, Kvale, G, Kwon, JS, Liu, Y, Lochner, C, Lazaro, L, Marques, P, Marsh, R, Martinez-Zalacain, Mataix-Cols, D, Menchon, JM, Minuzzi, L, Moreira, PS, Morer, A, Morgado, P, Nakagawa, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, EL, O'Neill, J, Pariente, JC, Perriello, C, Piacentini, J, Piras, F, Reddy, YCJ, Rus-Oswald, OG, Sakai, Y, Sato, JR, Schmaal, L, Shimizu, E, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Szeszko, PR, Tolin, DF, Venkatasubramanian, G, Wang, Z, Yun, J-Y, van Rooij, D, Thompson, PM, van den Heuvel, OA, Stein, DJ, van Wingen, GA, Bruin, WB, Taylor, L, Thomas, RM, Shock, JP, Zhutovsky, P, Abe, Y, Alonso, P, Ameis, SH, Anticevic, A, Arnold, PD, Assogna, F, Benedetti, F, Beucke, JC, Boedhoe, PSW, Bollettini, I, Bose, A, Brem, S, Brennan, BP, Buitelaar, JK, Calvo, R, Cheng, Y, Cho, KIK, Dallaspezia, S, Denys, D, Ely, BA, Feusner, JD, Fitzgerald, KD, Fouche, J-P, Fridgeirsson, EA, Gruner, P, Guersel, DA, Hauser, TU, Hirano, Y, Hoexter, MQ, Hu, H, Huyser, C, Ivanov, I, James, A, Jaspers-Fayer, F, Kathmann, N, Kaufmann, C, Koch, K, Kuno, M, Kvale, G, Kwon, JS, Liu, Y, Lochner, C, Lazaro, L, Marques, P, Marsh, R, Martinez-Zalacain, Mataix-Cols, D, Menchon, JM, Minuzzi, L, Moreira, PS, Morer, A, Morgado, P, Nakagawa, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nurmi, EL, O'Neill, J, Pariente, JC, Perriello, C, Piacentini, J, Piras, F, Reddy, YCJ, Rus-Oswald, OG, Sakai, Y, Sato, JR, Schmaal, L, Shimizu, E, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stern, ER, Stevens, MC, Stewart, SE, Szeszko, PR, Tolin, DF, Venkatasubramanian, G, Wang, Z, Yun, J-Y, van Rooij, D, Thompson, PM, van den Heuvel, OA, Stein, DJ, and van Wingen, GA
- Abstract
No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker.
- Published
- 2020
38. P.253 Immunoassay quantification and neuroimaging data for differentiating bipolar and unipolar depression: support vector machine on kernels and elastic net approaches
- Author
-
Vai, B., primary, Parenti, L., additional, Cazzetta, S., additional, Mazza, M., additional, Bollettini, I., additional, Poletti, S., additional, Lorenzi, C., additional, Aggio, V., additional, Zanardi, R., additional, Barbini, B., additional, Colombo, C., additional, and Benedetti, F., additional
- Published
- 2020
- Full Text
- View/download PDF
39. P.305 Inflammation and neuroimaging differentiate bipolar and unipolar depression: a multiple kernel learning approach
- Author
-
Parenti, L., primary, Colombo, F., additional, Bollettini, I., additional, Vai, B., additional, Poletti, S., additional, and Benedetti, F., additional
- Published
- 2020
- Full Text
- View/download PDF
40. P.029 Classifying mood disorders using multiple kernel learning on multimodal neuroimaging data: translating biological data into a diagnostic tool for depression
- Author
-
Vai, B., primary, Parenti, L., additional, Cara, C., additional, Verga, C., additional, Bollettini, I., additional, Poletti, S., additional, Colombo, C., additional, and Benedetti, F., additional
- Published
- 2019
- Full Text
- View/download PDF
41. P.061 Diffusion tensor imaging as a biomarker for the discrimination of bipolar and unipolar depression
- Author
-
Parenti, L., primary, Cara, C., additional, Bollettini, I., additional, Vai, B., additional, Poletti, S., additional, and Benedetti, F., additional
- Published
- 2019
- Full Text
- View/download PDF
42. An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group
- Author
-
Boedhoe, PSW, Heymans, MW, Schmaal, L, Abe, Y, Alonso, P, Ameis, SH, Anticevic, A, Arnold, PD, Batistuzzo, MC, Benedetti, F, Beucke, JC, Bollettini, I, Bose, A, Brem, S, Calvo, A, Calvo, R, Cheng, Y, Cho, KLK, Ciullo, V, Dallaspezia, S, Denys, D, Feusner, JD, Fitzgerald, KD, Fouches, J-P, Fridgeirsson, EA, Gruner, P, Henna, GL, Hibar, DP, Hoexter, MQ, Hu, H, Huyser, C, Jahanshad, N, James, A, Kathmann, N, Kaufmann, C, Koch, K, Kwon, JS, Lazaro, L, Lochner, C, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Menchon, JM, Minuzzi, L, Morer, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nishida, S, Nurmi, EL, O'Neill, J, Piacentini, J, Piras, F, Reddy, YCJ, Reess, TJ, Sakai, Y, Sato, JP, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stevens, MC, Szeszkos, PP, Tolin, DF, van Wingen, GA, Venkatasubramanian, G, Walitza, S, Wang, Z, Yun, J-Y, Thompson, PM, Stein, DJ, van den Heuvel, OA, Twisk, JWR, Boedhoe, PSW, Heymans, MW, Schmaal, L, Abe, Y, Alonso, P, Ameis, SH, Anticevic, A, Arnold, PD, Batistuzzo, MC, Benedetti, F, Beucke, JC, Bollettini, I, Bose, A, Brem, S, Calvo, A, Calvo, R, Cheng, Y, Cho, KLK, Ciullo, V, Dallaspezia, S, Denys, D, Feusner, JD, Fitzgerald, KD, Fouches, J-P, Fridgeirsson, EA, Gruner, P, Henna, GL, Hibar, DP, Hoexter, MQ, Hu, H, Huyser, C, Jahanshad, N, James, A, Kathmann, N, Kaufmann, C, Koch, K, Kwon, JS, Lazaro, L, Lochner, C, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Menchon, JM, Minuzzi, L, Morer, A, Nakamae, T, Nakao, T, Narayanaswamy, JC, Nishida, S, Nurmi, EL, O'Neill, J, Piacentini, J, Piras, F, Reddy, YCJ, Reess, TJ, Sakai, Y, Sato, JP, Simpson, HB, Soreni, N, Soriano-Mas, C, Spalletta, G, Stevens, MC, Szeszkos, PP, Tolin, DF, van Wingen, GA, Venkatasubramanian, G, Walitza, S, Wang, Z, Yun, J-Y, Thompson, PM, Stein, DJ, van den Heuvel, OA, and Twisk, JWR
- Abstract
Objective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data.
- Published
- 2019
43. P.4.12 Classification of mood disorders using a multiple kernel approach on multimodal neuroimaging data
- Author
-
Bertocchi, C., primary, Vai, B., additional, Poletti, S., additional, Bollettini, I., additional, Melloni, E., additional, Colombo, C., additional, and Benedetti, F., additional
- Published
- 2019
- Full Text
- View/download PDF
44. Effect of sleep duration on white matter microstructure in bipolar disorder: a tract-based spatial statistics study
- Author
-
Melloni, EMT, Dallaspezia, S, Poletti, S, Bollettini, I, Benedetti, F, Melloni, Emt, Dallaspezia, S, Poletti, S, Bollettini, I, and Benedetti, F
- Published
- 2016
45. The modulatory role of catechol-O-methyltransferase Val158Met polymorphism on the association between white matter microstructure and cognitive performances in schizophrenia
- Author
-
Aggio, V., Poletti, S., Bollettini, I., Mazza, E., Cavallaro, R., Smeraldi, E., Francesco Benedetti, Aggio, V, Poletti, Sara, Bollettini, I, Mazza, E, Cavallaro, Roberto, Smeraldi, E, and Benedetti, F.
- Published
- 2015
46. White matter microstructure in bipolar disorder is influenced by the serotonin transporter gene polymorphism 5-HTTLPR
- Author
-
Benedetti F, Bollettini I, Poletti S, Locatelli C, Lorenzi C, Pirovano A, Smeraldi E, Colombo C, Benedetti, F, Bollettini, I, Poletti, S, Locatelli, C, Lorenzi, C, Pirovano, A, Smeraldi, E, and Colombo, C
- Subjects
Adult ,Male ,Serotonin Plasma Membrane Transport Proteins ,Bipolar Disorder ,Diffusion Tensor Imaging ,Genotype ,Humans ,Female ,Middle Aged ,Polymorphism, Single Nucleotide ,White Matter - Abstract
Bipolar disorder (BD) is associated with signs of widespread disruption of white matter (WM) integrity. A polymorphism in the promoter of the serotonin transporter (5-HTTLPR) influenced functional cortico-limbic connectivity in healthy subjects and course of illness in BD, with the short (s) allele being associated with lower functional connectivity, and with earlier onset of illness and poor response to treatment. We tested the effects of 5-HTTLPR on diffusion tensor imaging (DTI) measures of WM microstructure in 140 inpatients, affected by a major depressive episode in course of BD, of Italian descent. We used whole brain tract-based spatial statistics in the WM skeleton with threshold-free cluster enhancement of DTI measures of WM microstructure: axial, radial and mean diffusivity and fractional anisotropy. Compared with l/l homozygotes, 5-HTTLPR * s carriers showed significantly increased radial and mean diffusivity in several brain WM tracts, including corpus callosum, cingulum bundle, uncinate fasciculus, corona radiata, thalamic radiation, inferior and superior longitudinal fasciculus and inferior fronto-occipital fasciculus. An increase of mean and radial diffusivity, perpendicular to the main axis of the WM tract, is thought to signify increased space between fibers, thus suggesting demyelination or dysmyelination, or loss of bundle coherence. The effects of 5-HTTLPR on the anomalous emotional processing in BD might be mediated by changes of WM microstructure in key WM tracts contributing to the functional integrity of the brain.
- Published
- 2014
47. Serotonin transporter promoter gene and white matter integrity: a tract based spatial statistics study in bipolar patients
- Author
-
Bollettini I, POLETTI, SARA, Radaelli D, Vai B, Locatelli C, Benedetti F., COLOMBO , CRISTINA ANNA, Bollettini, I, Poletti, Sara, Radaelli, D, Vai, B, Locatelli, C, Colombo, CRISTINA ANNA, and Benedetti, F.
- Published
- 2014
48. Chronotherapeutic treatment efficacy and white matter integrity: A tract-based spatial statistics study in bipolar patients
- Author
-
Francesco Benedetti, Bollettini, I., Poletti, S., Radaelli, D., Smeraldi, E., Colombo, C., Benedetti, F, Bollettini, I, Poletti, S, Radaelli, D, Smeraldi, E, and Colombo, C
- Published
- 2014
49. Fronto-limbic connectivity during emotional processing in bipolar depression: the role of 5-HT1A promoter polymorphism
- Author
-
Ghiglino, D., primary, Riberto, M., additional, Vai, B., additional, Poletti, S., additional, Bollettini, I., additional, Colombo, C., additional, Lorenzi, C., additional, and Benedetti, F., additional
- Published
- 2017
- Full Text
- View/download PDF
50. Tract-based fractional anisotropy mediates the relationship between illness duration and cognitive performances in bipolar disorder
- Author
-
Melloni, E.M.T., primary, Poletti, S., additional, Bollettini, I., additional, Brioschi, S., additional, Locatelli, C., additional, and Benedetti, F., additional
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.