18 results on '"Boismain, Florent"'
Search Results
2. Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery
- Author
-
Keller, Caroline, primary, Desrues, Antoine, additional, Karuppiah, Saravanan, additional, Martin, Eléa, additional, Alper, John, additional, Boismain, Florent, additional, Villevieille, Claire, additional, Herlin-Boime, Nathalie, additional, Haon, Cédric, additional, and Chenevier, Pascale, additional
- Published
- 2021
- Full Text
- View/download PDF
3. Si and Si@C Nanoparticles for Lithium-Ion Batteries Anodes: Electrode/Electrolyte Interface Evolution
- Author
-
Desues, Antoine, primary, Alper, John P, additional, Boismain, Florent, additional, Demers, Hendrix, additional, Veillette, René, additional, Clément, Daniel, additional, Zaghib, Karim, additional, De Vito, Eric, additional, Franger, Sylvain, additional, Trudeau, Michel, additional, Haon, Cédric, additional, and Herlin, Nathalie, additional
- Published
- 2020
- Full Text
- View/download PDF
4. One Step Synthesis of Core@Shell Sige@Si Nanoparticles and Their Use As Active Material in High Capacity Anodes for Li-Ion Batteries
- Author
-
Haon, Cédric, primary, Desues, Antoine, additional, Herlin, Nathalie, additional, Boismain, Florent, additional, Coulon, Pierre-Eugène, additional, Soloy, Adrien, additional, and Alper, John, additional
- Published
- 2020
- Full Text
- View/download PDF
5. Nanoparticules Si@C pour les anodes : suivi de l'évolution de l'interface électrode/électrolyte par spectroscopie d'impédance électrochimique
- Author
-
Desrues, Antoine, Alper, John, Boismain, Florent, Haon, Cédric, Franger, Sylvain, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; La maitrise de l'épaisseur ou de la composition chimique de la SEI représente un enjeu majeur pour le fonctionnement à long-terme des batteries. Dans le cas d'anodes de silicium, nous proposons de protéger la surface vis-à-vis des solvants de l'électrolyte, par l'utilisation de nanoparticules Si@C de morphologie coeur-coquille synthétisées par pyrolyse-laser double étage. Les performances électrochimiques sont améliorées par le dépôt de la couche de carbone. Nous montrerons l'effet de la variation de l'épaisseur de la coquille de carbone sur la cyclabilité des électrodes. Des analyses operando par spectroscopie d'impédance électrochimique résolue en potentiel ont été menées afin de mesurer la résistance de la SEI. L'évolution de cette résistance peut être corrélée aux mécanismes de formation et à l'évolution des caractéristiques de la SEI. La comparaison des résistances pour les matériaux recouverts, ou non, de carbone démontre le rôle bénéfique que joue la coquille de carbone dans la stabilisation de la SEI.
- Published
- 2019
6. Laser pyrolysis synthesis of nanoparticles for energy applications
- Author
-
Desrues, Antoine, Belchi, Raphaëlle, Alper, J.-P., Boismain, Florent, Boulineau, Adrien, Coulon, P.-E., Porterat, Dominique, Habert, A., Haon, C., Bouclé, Johann, Ratier, Bernard, Franger, Sylvain, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), RF-ELITE : RF-Electronique Imprimée pour les Télécommunications et l'Energie (XLIM-RFEI), XLIM (XLIM), Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
7. Core@shell silicon-carbon nanoparticles with a tunable shell thickness: performances as battery anodes
- Author
-
Desrues, Antoine, Alper, John, Boismain, Florent, Haon, Cédric, Franger, Sylvain, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Symposium: Battery and energy storage devices Nanometric silicon appears as an interesting candidate to improve the capacity of lithium-ion batteries anodes because its theoretical specific capacity is over 10 times that of CUITent commercial graphite electrodes. A major issue with nanosilicon anodes is the continuous formation of solid electrolyte interphase (SEI) due to the significant volume changes in the material during lithiation-delithiation. Coating the silicon surface with carbon has proved to protect it, as a more stable SEI is obtained. For this purpose, we synthesize core@shell silicon-carbon nanoparticles by a using a double-stage laser pyrolysis reactor. This gas-phase technique allows one-step synthesis of a silicon core coated by a carbon shell. The size and the size distribution, as well as the shell's thickness, can be controlled by the modification ofparameters. This wall-1ess process leads to clean interfaces. In this work the synthesis of carbon coated crystalline nanosilicon (30 nm) with various carbon contents, up to 20 % w/w, will be presented. These Si@C particles present a clear silicon-carbon interface as shown by STEM-EELS. The ga1vanostatic performance comparison indicates that the coulombic efficiency is improved by a greater carbon content and power rate experiments indicate that an optimum exists. Finally, by using electrochemical impedancespectroscopy (EIS), a comparison of SEI resistances for coated and non-coated parti cl es will be presented.
- Published
- 2018
8. Cover Feature: Best Performing SiGe/Si Core‐Shell Nanoparticles Synthesized in One Step for High Capacity Anodes (Batteries & Supercaps 12/2019)
- Author
-
Desrues, Antoine, primary, Alper, John P., additional, Boismain, Florent, additional, Zapata Dominguez, Diana, additional, Berhaut, Christopher, additional, Coulon, Pierre‐Eugène, additional, Soloy, Adrien, additional, Grisch, Frédéric, additional, Tardif, Samuel, additional, Pouget, Stéphanie, additional, Lyonnard, Sandrine, additional, Haon, Cédric, additional, and Herlin‐Boime, Nathalie, additional
- Published
- 2019
- Full Text
- View/download PDF
9. Best Performing SiGe/Si Core‐Shell Nanoparticles Synthesized in One Step for High Capacity Anodes
- Author
-
Desrues, Antoine, primary, Alper, John P., additional, Boismain, Florent, additional, Zapata Dominguez, Diana, additional, Berhaut, Christopher, additional, Coulon, Pierre‐Eugène, additional, Soloy, Adrien, additional, Grisch, Frédéric, additional, Tardif, Samuel, additional, Pouget, Stéphanie, additional, Lyonnard, Sandrine, additional, Haon, Cédric, additional, and Herlin‐Boime, Nathalie, additional
- Published
- 2019
- Full Text
- View/download PDF
10. Electrode/electrolyte interphase evolution for next generation Li-ion batteries anodes
- Author
-
Desrues, Antoine, Alper, John P., Boismain, Florent, Haon, Cédric, Franger, Sylvain, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Performant electrochemical storage devices appear as one of the solution to face the challenge of energy transition. In this context, lithium-ion batteries are a well-developed technology 1. This work is focused on increasing the negative electrode's capacity by understanding the degradation mechanism occurring in the material. Graphitic carbon is commonly used as a negative electrode in commercial battery systems because of its stability, electronic conductivity, and its natural abundance. However, its maximum energy density remains too low to meet the requirements of demanding applications such as electric vehicles. Silicon is a promising alternative anode material to increase its capacity up to 3579 mAh/g, ten times higher than the 350 mAh/g of graphite 2. However, fractures issues occur in the material, due the high volumetric change over cycling. Using nanoparticles has been shown to alleviate the problem 3 but at this size, the formation of an interphase between the electrolyte and the solid (named SEI) becomes predominant. This SEI stability is fundamental to obtain stable performance of silicon electrodes. The coating of the silicon surface by carbon has proved to protect the bare silicon surface and obtain a more stable SEI 4. The integration of such nanoparticles in Li-ion anodes improves the electrodes' specific capacities. Those particles are synthetized by laser pyrolysis, a one step process. Impedance spectroscopy, a powerful and non-destructive technique, is used to probe the electrode's interfaces. In this paper, using this technique, an improved stability of carbon coated silicon particles will be demonstrated by comparison to pure silicon.
- Published
- 2017
11. Formation of artificial solid electrolyte interphase by radiolysis
- Author
-
Fanny, Varenne, Miserque, Frederic, Boulineau, Adrien, Martin, Jean-Frédéric, Dollé, Mickaël, Cahen, Sébastien, Hérold, Claire, Boismain, Florent, Alper, John P., Herlin-Boime, Nathalie, Le Caër, Sophie, Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chimie et Electrochimie des Solides, Université de Montréal (UdeM), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Edifices Nanométriques (LEDNA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Palacin, Serge
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Among energy storage devices, Lithium ion batteries (LlBs) are efficient power sources used for many applications inc1uding mobile microelectronics. However, ageing phenomena are not yet fully understood. These 8henomena are a crucial issue to pro vide safe and stable batteries!. LIBs are usually compbsed of a negative electrode where the active material is graphite, a positive electrode usualli a lithium metal oxide and an organic liquid electrolyte. Ortiz et al. have shown that radiolysis is a powerful tool to simulate the degradation of the latter one in short time: minutes/hours instead of weeks/months by electrolysis (Fig. 1). Moreover, radiolysis allows performing experiments at the picosecond time scale thus giving access to reaction mechanisms. During the first cycles of the battery, the reduced surface of the negative electrode reacts with the electrolyte producing a solid interphase (solid electrolyte interphase, SEI) which is responsible for the capacity loss of the battery. In this work, we investigated the SEI formation by radiolysis at the surface of various carbonaceous materials inc1uding crystalline graphite (lithiated or not) and carbon nanoparticles (amorphous as weIl as organized) prepared by laser pyrolysis. Materials were dispersed in a mixture of carbonate solvents containing LiPF. Composition and morphology of SEI were invesigated by XPS and TEM while the composition of gas and liquid phases was studied by gas chromatography and high resolution mass spectrometry, respectively. We show that an artificial SEI can be produced by radiolysis. We observe always the same degradation mechanisms of the electrolyte but interestingly the SEI composition depends on the carbonaceous material. The artificial SEI formed at the surface of graphite is composed of Li carbonate, oxalate and oligomers of poly(ethylene oxide) while the SEI formed at the surface of carbon nanoparticles contains Li salts as Li$_2$CO$_3$. Radiolysis allows producing materials with modified surface that will be tested as new materials for negative electrode.
- Published
- 2017
12. Laser pyrolysis : a method of interest for the controlled synthesis of amorphous or crystalline Si@C nanoparticles - application as anode materials in Li-Ion batteries
- Author
-
Alper, John, Boismain, Florent, Sourice, Julien, Boulineau, Adrien, Habert, Aurélie, De Vito, Eric, Porcher, Willy, Reynaud, Cécile, Haon, Cédric, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Palacin, Serge, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; In Lithium Ion Batteries, the replacement of graphite (372 mAh.g$^{-1}$) as anode active materials by higher specific capacity materials is a strategy to answer the continuous demand for increased energy storage. Silicon appears as an attractive material thanks to its high theoretical specific capacity (3579 mAh.g$^{-1}$). Use of silicon based anodes has not yet been realized because performances degrade rapidly. Silicon nanostructuration together with association of carbon enhances performances. In particular, core-shell silicon-carbon Si@C nanoparticles are attractive candidates to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation processes. Such nanoparticles were synthesized in a single step by a continuous gas phase method, the laser pyrolysis, interesting for industrial production. We report here how flow simulations helped in the design of a reactor where decomposition of silane and ethylene are conducted in two successive reaction zones. This reactor could work in stable conditions for several hours leading to the single-step synthesis of amorphous or crystalline silicon nanoparticles coated with a carbon shell (a-Si@C). The advantages of the a-Si@C material is emphasized by comparison with c-Si@C material. In particular, cyclic voltammetry demonstrates that a-Si@C composite reaches maximal lithiation during the first sweep, which is attributed to the amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g$^{-1}$ (C/5 rate) and 800 mAh.g$^{-1}$ (2C), with a 99.95% coulombic efficiency Moreover, post-mortem observations show an electrode expansion of less than 20% in volume with preserved nanostructuration.
- Published
- 2017
13. Laser Pyrolysis Derived Silicon-Carbon Core-Shell Nanomaterials for Lithium Ion Battery Anodes
- Author
-
Alper, John P., Boismain, Florent, Sourice, Julien, Porcher, Willy, Sublemontier, Olivier, Bordes, A., De Vito, E., Boulineau, A, Reynaud, Cécile, Haon, C, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Palacin, Serge, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; CUITent LiB technology relies on graphitic carbon as the anode material, with a theoretical capacity of 372 mAh/g. In order to increase the energy density of LiBs, anode materials with a greater capacity for lithium storage are under intense investigation. Materials which form alloys with lithium such as antimony, germanium, silicon, and tin, all have theoretical capacities which far surpass graphite. However silicon, as the most naturally abundant e1ement and possessing a theoretical capacity of 3579 mAh/g in the Li$_{15}$Si$_4$ alloy, is the most promising for global adoption in next generation LiBs.
- Published
- 2017
14. Silicon core - carbon shell nanoparticles for Li-ion batteries anodes. Relationship between morphology and degradation mechanism studied by Impedance spectroscopy
- Author
-
Desrues, Antoine, Alper, John, Boismain, Florent, Foy, Eddy, Franger, Sylvain, Haon, Cédric, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire Archéomatériaux et Prévision de l'Altération (LAPA - UMR 3685), IRAMAT - Laboratoire Métallurgies et Cultures (IRAMAT - LMC), Institut de Recherches sur les Archéomatériaux (IRAMAT), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Performant electrochemical storage devices appear as one of the solution to face the challenge of energy transition and development of carbon-less energy processes. In this context, lithium-ion batteries are a well-developed technology because of their lllgh energy density, their long life over cycling and their large field of applications, from microbatteries to stationary storage.
- Published
- 2017
15. Double stage laser pyrolysis synthesis applied to silicon-carbon core-shell nanoparticles
- Author
-
Boismain, Florent, Alper, John, Desrues, Antoine, Sublemontier, Olivier, Haon, Cédric, Herlin-Boime, Nathalie, Palacin, Serge, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Synthesis routes permitting the preparation of complex structures such as core@shell nanoparticles are of interest for the particles unique physical and chemical properties. We demonstrate here a versatile laser pyrolysis method for the one step synthesis of Si@C nanoparticles. These nanoparticles are synthesized in a double stage reactor developed with the help of flow simulation. Using the laser pyrolysis method, we demonstrate production rate of 10 g/h under stable condition for over 5 hours. In the first reaction zone,the precursor gas of silicon, the silane (SiH$_4$), absorbs the CO$_2$ laser and is decomposed to form silicon nanoparticles. In the second stage the carbon precursor gas, ethylene (C$_2$H$_4$), mixed with the silicon nanoparticles through a novel radial injection, is decomposed via laser excitation and the carbon is deposited on the silicon cores while avoiding homogeneous nucleation of carbon nanoparticles. The size and the crystallinity of the silicon cores are controlled with the time of interaction and power of the laser beam while the carbon content is controlled by the ethylene flow rate. Other gases were also be added for doping or alloying of the silicon core (for example germane to achieve SiGe alloy cores or ammonia to dope the carbon shell). These core-shell nanoparticles (Si@C) were tested as active materials for anodes of Li-Ion batteries. Compared to the commonly used graphite electrode, the capacity is significantly higher (therotecal values 3579 mAh/g vs 372 mAh/g) while the stability is improved in comparison with an electrode elaborated from pure silicon (500 cycles vs 50 cycles).
- Published
- 2017
16. Ex situ solid electrolyte interphase synthesis via radiolysis of Li-ion battery anode–electrolyte system for improved coulombic efficiency
- Author
-
Varenne, Fanny, primary, Alper, John P., additional, Miserque, Frédéric, additional, Bongu, Chandra Sekhar, additional, Boulineau, Adrien, additional, Martin, Jean-Frédéric, additional, Dauvois, Vincent, additional, Demarque, Alexandre, additional, Bouhier, Mickaël, additional, Boismain, Florent, additional, Franger, Sylvain, additional, Herlin-Boime, Nathalie, additional, and Le Caër, Sophie, additional
- Published
- 2018
- Full Text
- View/download PDF
17. Laser Pyrolysis : a method of interest for the synthesis of amorphous or crystalline Si-core C-shell nanoparticles - application as anode material in Li-Ion batteries
- Author
-
Alper, John P., Sourice, Julien, Boismain, Florent, Boulineau, Adrien, Reynaud, Cécile, Haon, Cédric, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Palacin, Serge, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; Although the Li-ion battery (LIB) currently offers the most suitable balance between power and autonomy for consumer electronics and electric vehicle applications, there continues to be a demand for increased energy capacity. One strategy to increase LiB’s energy density is to replace graphite (372 mAh.g-1) as the anode active material by higher specific capacity materials. Silicon appears as an attractive alternative material thanks to its high theoretical specific capacity (3579 mAh.g-1 for the Li3,75Si phase) and its low discharge potential. Despite being the focus of scientific activity for over 10 years, the use of silicon based anodes have not yet been realized because the performance of these materials degrades rapidly during cycling. Silicon nanostructuration together with association of carbon to Si greatly enhance the performances in terms of both cyclability and capacity. In particular, core-shell silicon-carbon Si@C nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation processes.The innovative solution proposed here is to use at the anode nanoparticles of Si@C synthesized in a single step by a scalable continuous gas phase method particularly interesting for industrial production, i.e. the laser pyrolysis method. Moreover, thanks to the control of experimental parameters, this method allows producing an amorphous core of silicon (a-Si) as well as a crystalline one (c-Si); Indeed using a-Si as core material, instead of c-Si, is an considered option not often considered but it appears promising to enhance cyclability because a-Si is not subject to the drastic crystalline state alteration upon its first lithiation. In order to cumulate all the benefits cited above, active material should be a composite of an a-Si core covered with a carbon shellWe report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness which prevents detrimental oxidation of the a-Si cores. The advantages of the a-Si@C material will be emphasized by comparison with c-Si@C material used as active materials. In particular, cyclic voltammetry demonstrates that the amorphous core-shell composite reaches its maximal lithiation during the first sweep, which is attributed to the amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95 %. Moreover, postmortem observations show an electrode expansion of less than 20% in volume where the nanostructuration is preserved
- Published
- 2016
18. Silicon Core Carbon Shell Nanoparticles By Scalable Laser Pyrolysis for Li-Ion Alloy Anodes – Material Synthesis and Performance Characterization
- Author
-
Alper, John P., Boismain, Florent, Sourice, Julien, Porcher, Willy, Foy, Eddy, Reynaud, Cécile, Haon, Cédric, Herlin-Boime, Nathalie, Laboratoire Edifices Nanométriques (LEDNA), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Archéomatériaux et Prévision de l'Altération (LAPA - UMR 3685), IRAMAT - Laboratoire Métallurgies et Cultures (IRAMAT - LMC), Institut de Recherches sur les Archéomatériaux (IRAMAT), Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS), and Palacin, Serge
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry - Abstract
International audience; As the world moves away from distributed fossil fuel use in order to mitigate the climatic effects of carbon pollution, the need for high energy density storage devices continues to grow. Secondary lithium ion batteries (LiB) are one such attractive energy storage device. Current LiB technology relies on graphitic carbon as the anode material, with a theoretical capacity of 372 mAh/g. In order to increase the energy density of LiBs, anode materials with a greater capacity for lithium storage are under intense investigation. Materials which form alloys with lithium such as antimony, germanium, silicon, and tin, all have theoretical capacities which far surpass graphite. However silicon, as the most naturally abundant element and possessing a theoretical capacity of 3579 mAh/g in the Li$_{15}$Si$_4$ alloy, is the most promising for global adoption in next generation LiBs. There are issues which require resolution before silicon can be implemented. Large volumetric changes associated with the lithiation-delithiathion process ($\sim$300%) result in material pulverization and loss of electrical contact. Also unstable solid-electrolyte-interphase (SEI) formation during cycling results in the consumption of lithium during operation and capacity fade [2]. Previous studies have conclusively shown that the former issue may be mitigated by utilizing nano-scale silicon materials, with particles under 150 nm in diameter remaining intact during the swelling and contraction associated with cycling. It has also been demonstrated that by encapsulating the silicon materials in carbon shells shows promise in stabilizing the SEI. Here we present a scalable process to achieve this core-shell morphology via laser mediated pyrolysis. The technique, which has been used to produce various ceramic, oxide, and metallic particles, has already been utilized on the industrial scale for silicon nanoparticle production. Previously our group demonstrated the capacity of crystalline silicon core-carbon shell materials, synthesized in a two stage pyrolysis reactor, reaches ~500 mAh/g and retains over 70% capacity at a fast 2C rate over 500 cycles. Amorphous silicon, with isotropic expansion upon lithiation, holds promise in forming a more stable SEI than crystalline silicon, and hence increased capacity retention. We have tuned pyrolysis reaction parameters in order to obtain consistent production of amorphous silicon nanoparticle cores. In this talk, a comparison of the battery testing results for amorphous vs. crystalline silicon cores will be presented. Steps to overcome present challenges with the cyclability and irreversible capacity loss due to SEI formation will also be discussed.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.