1. Optimization of cooling rate of Q-P treated 42SiCr steel using AI digital twinning
- Author
-
Omid Khalaj, Parsa Hassas, Bohuslav Mašek, Ctibor Štadler, and Jiří Svoboda
- Subjects
42SiCr steel ,Q&P treatment ,Cooling rate ,Metaverse ,Digital twin ,Artificial intelligence ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
In the continuously advancing field of mechanical engineering, digitalization is bringing a major transformation, specifically with the concept of digital twins. Digital twins are dynamic digital models of real-world systems and processes, crucial for Industry 4.0 and the emerging Industry 5.0, which are changing how humans and machines work together in manufacturing. This paper explores the combination of physics-based and data-driven modeling using advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques. This approach provides a comprehensive understanding of mechanical systems, improving materials design and manufacturing processes. The focus is on the advanced 42SiCr alloy, where AI-driven digital twinning is used to optimize cooling rates during Quenching and Partitioning (Q-P) treatments. This leads to significant improvements in the mechanical properties of 42SiCr steel. Given its complex properties influenced by various factors, this alloy is perfect for digital twinning. The Q-P heat treatment process not only restores the material's deformability but also gives it advanced high-strength steel (AHSS) properties. The findings show how AI and ML can effectively guide the development of high-strength steels and enhance their treatment processes. Additionally, integrating digital twins with new technologies like the Metaverse offers exciting possibilities for simulated production, remote monitoring, and collaborative design. By establishing a clear workflow from physical to digital twins and presenting empirical results, this paper connects theoretical modeling with practical applications, paving the way for smarter manufacturing solutions in mechanical engineering. Furthermore, this paper analyzes how digital twins can be integrated into advanced technologies like the Metaverse, opening up new possibilities for simulated production, remote monitoring, design collaboration, training simulations, analytics, and complete supply chain visibility. This integration is a crucial step toward realizing the full potential of digitalization in mechanical engineering.
- Published
- 2024
- Full Text
- View/download PDF