1. Effect of Nanoplastic Type and Surface Chemistry on Particle Agglomeration over a Salinity Gradient.
- Author
-
Shupe HJ, Boenisch KM, Harper BJ, Brander SM, and Harper SL
- Subjects
- Ecotoxicology, Polystyrenes chemistry, Salinity, Microplastics, Water Pollutants, Chemical analysis
- Abstract
Agglomeration of nanoplastics in waters can alter their transport and fate in the environment. Agglomeration behavior of 4 nanoplastics differing in core composition (red- or blue-dyed polystyrene) and surface chemistry (plain or carboxylated poly[methyl methacrylate] [PMMA]) was investigated across a salinity gradient. No agglomeration was observed for carboxylated PMMA at any salinity, whereas the plain PMMA agglomerated at only 1 g/L. Both the red and the blue polystyrene agglomerated at 25 g/L. Results indicate that both composition and surface chemistry can impact how environmental salinity affects plastic nanoparticle agglomeration. Environ Toxicol Chem 2021;40:1822-1828. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC., (© 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.)
- Published
- 2021
- Full Text
- View/download PDF