424 results on '"Bode, T"'
Search Results
2. An energy-based material model for the simulation of shape memory alloys under complex boundary value problems
- Author
-
Erdogan, C., Bode, T., and Junker, P.
- Subjects
Computer Science - Computational Engineering, Finance, and Science - Abstract
Shape memory alloys are remarkable 'smart' materials used in a broad spectrum of applications, ranging from aerospace to robotics, thanks to their unique thermomechanical coupling capabilities. Given the complex properties of shape memory alloys, which are largely influenced by thermal and mechanical loads, as well as their loading history, predicting their behavior can be challenging. Consequently, there exists a pronounced demand for an efficient material model to simulate the behavior of these alloys. This paper introduces a material model rooted in Hamilton's principle. The key advantages of the presented material model encompass a more accurate depiction of the internal variable evolution and heightened robustness. As such, the proposed material model signifies an advancement in the realistic and efficient simulation of shape memory alloys.
- Published
- 2024
3. High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hilk, D., Hillesheimer, D., Hinz, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Plischke, P., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %., Comment: Fixed affiliation of the corresponding author
- Published
- 2019
- Full Text
- View/download PDF
4. Gamma-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, A., Kraus, M., Lasserre, T., Lebeda, O., Lehnert, B., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Seitz-Moskaliuk, H., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims to measure the effective electron antineutrino mass $m_{\overline{\nu}_e}$ with a sensitivity of 0.2 eV/c$^2$ using a gaseous tritium source combined with the MAC-E filter technique. A low background rate is crucial to achieving the proposed sensitivity, and dedicated measurements have been performed to study possible sources of background electrons. In this work, we test the hypothesis that gamma radiation from external radioactive sources significantly increases the rate of background events created in the main spectrometer (MS) and observed in the focal-plane detector. Using detailed simulations of the gamma flux in the experimental hall, combined with a series of experimental tests that artificially increased or decreased the local gamma flux to the MS, we set an upper limit of 0.006 count/s (90% C.L.) from this mechanism. Our results indicate the effectiveness of the electrostatic and magnetic shielding used to block secondary electrons emitted from the inner surface of the MS.
- Published
- 2019
- Full Text
- View/download PDF
5. Characterization of 30 $^{76}$Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
GERDA collaboration, Agostini, M., Bakalyarov, A. M., Andreotti, E., Balata, M., Barabanov, I., Baudis, L., Barros, N., Bauer, C., Bellotti, E., Belogurov, S., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Budjáš, D., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Freund, K., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lehnert, B., Liao, Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Ur, C. A., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of $^{76}$Ge into $^{76}$Se+2e$^-$. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes., Comment: 29 pages, 18 figures
- Published
- 2019
- Full Text
- View/download PDF
6. High-resolution spectroscopy of gaseous 83mKr conversion electrons with the KATRIN experiment
- Author
-
Altenmüller, K, Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Hickford, S, Hilk, D, Hillesheimer, D, Hinz, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Plischke, P, Pollithy, A, Poon, AWP, Priester, F, C-O Ranitzsch, P, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous 83mKr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The obtained results represent one of the major commissioning milestones for the subsequent direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the KATRIN beamline. Precise measurement of the narrow K-32, L3-32, and N2,3-32 conversion electron lines allowed to verify the eV-scale energy resolution of the KATRIN main spectrometer necessary for competitive measurement of the absolute neutrino mass scale.
- Published
- 2020
7. Initial results from the Majorana Demonstrator
- Author
-
Caldwell, TS, Abgrall, N, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bos, B, Bradley, AW, Brudanin, V, Busch, M, Buuck, M, Chan, YDC, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The Majorana Collaboration has assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge with the goal of establishing the required background and scalability of a Ge-based next-generation ton-scale experiment. The Majorana Demonstrator consists of 44 kg of high-purity Ge (HPGe) detectors (30 kg enriched in 76Ge) with a low-noise p-Type point contact (PPC) geometry. The detectors are split between two modules which are contained in a single lead and high-purity copper shield at the Sanford Underground Research Facility in Lead, South Dakota. Following a commissioning run that started in June 2015, the full detector array has been acquiring data since August 2016. We will discuss the status of the Majorana Demonstrator and initial results from the first physics run; including current background estimates, exotic low-energy physics searches, projections on the physics reach of the Demonstrator, and implications for a ton-scale Ge-based neutrinoless double-beta decay search.
- Published
- 2020
8. Spectral analysis for the Majorana Demonstrator experiment
- Author
-
Hehn, L, Abgrall, N, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bradley, AW, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium detectors totaling 44.1kg (29.7kg enriched detectors), located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Data taken with this setup since summer 2015 at different construction stages of the experiment show a clear reduction of the observed background index around the ROI for 0νββ-decay search due to improvements in shielding. We discuss the statistical approaches to search for a νββ-signal and derive the physics sensitivity for an expected exposure of 10kg• y from enriched detectors using a profile likelihood based hypothesis test in combination with toy Monte Carlo data.
- Published
- 2020
9. Progress Toward A 2νββ Measurement for the Majorana Demonstrator
- Author
-
Gilliss, T, Abgrall, N, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bradley, AW, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The MAJORANA DEMONSTRATOR is a 76Ge-based neutrinoless double-beta decay (0νββ) experiment. Staged at the 4850 ft level of the Sanford Underground Research Facility, the DEMONSTRATOR operates an array of high-purity p-Type point contact Ge detectors deployed within a graded passive shield and an active muon veto system. The present work concerns the two-neutrino double-beta decay mode (2νββ) of 76Ge. For Ge detectors, having superior energy resolution (0.1%), this mode poses negligible background to the 0νββ mode, even for a ton-scale experiment. However, the measurement of the 2νββ mode allows for careful systematics checks of active detector mass, enrichment fraction, and pulse shape discrimination cuts related to both the 0νββ and 2νββ decay modes. A precision measurement of the 2νββ shape also allows searches for spectral distortions, possibly indicative of new physics, including 0νββχ. Work is underway to construct a full experimental background model enabling a Bayesian fit to the measured energy spectrum and extraction of a precise 2νββ spectrum and half-life.
- Published
- 2020
10. Design improvements to cables and connectors in the Majorana Demonstrator
- Author
-
Haufe, CR, Reine, AL, Abgrall, N, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bradley, AW, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Hehn, L, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Rielage, K, Robertson, RGH, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-Type point contact detectors totaling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. The DEMONSTRATOR uses custom high voltage cables to bias the detectors, as well as custom signal cables and connectors to read out the charge deposited at each detectors point contact. These low-mass cables and connectors must meet stringent radiopurity requirements while being subjected to thermal and mechanical stress. A number of issues have been identified with the currently installed cables and connectors. An improved set of cables and connectors for the MAJORANA DEMONSTRATOR are being developed with the aim of increasing their overall reliability and connectivity. We will discuss some of the issues encountered with the current cables and connectors as well as our improved designs and their initial performance.
- Published
- 2020
11. Data quality assurance for the Majorana Demonstrator
- Author
-
Myslik, J, Abgrall, N, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bradley, AW, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Trimble, JE, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Condensed Matter Physics ,Other Physical Sciences - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76 Ge-enriched germanium detectors totalling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Any neutrinoless double-beta decay search requires a thorough understanding of the background and the signal energy spectra. The various techniques employed to ensure the integrity of the measured spectra are discussed. Data collection is monitored with a thorough set of checks, and subsequent careful analysis is performed to qualify the data for higher level physics analysis. Instrumental background events are tagged for removal, and problematic channels are removed from consideration as necessary.
- Published
- 2020
12. Recent results from the MAJORANA DEMONSTRATOR
- Author
-
Myslik, J., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bos, B., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hegedus, R. J., Hehn, L., Henning, R., Aguilar, D. Hervas, Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Othman, G., Pettus, W., Piliounis, A., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Ruof, N. W., Shanks, B., Shirchenko, M., Tedeschi, D., Varner, R. L., Vasilyev, S., Vasundhara, White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decay in $^{76}$Ge and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modules of natural and $^{76}$Ge-enriched germanium detectors totalling 44.1 kg, operating at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Commissioning of the experiment began in June 2015, followed by data production with the full detector array in August 2016. The ultra-low background and record energy resolution achieved by the MAJORANA DEMONSTRATOR enable a sensitive neutrinoless double-beta decay search, as well as additional searches for physics beyond the Standard Model. I will discuss the design elements that enable these searches, along with the latest results, focusing on the neutrinoless double-beta decay search. I will also discuss the current status and the future plans of the MAJORANA DEMONSTRATOR, as well as the plans for a future tonne-scale $^{76}$Ge experiment., Comment: 4 pages. Proceedings of The 39th International Conference on High Energy Physics (ICHEP2018), 4-11 July, 2018, Seoul, Korea. Submitted to Proceedings of Science
- Published
- 2018
13. Peridynamic Galerkin method: an attractive alternative to finite elements
- Author
-
Bode, T., Weißenfels, C., and Wriggers, P.
- Published
- 2022
- Full Text
- View/download PDF
14. The KATRIN Superconducting Magnets: Overview and First Performance Results
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, n W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, uE., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6~T, adiabatically guide $\beta$-electrons from the source to the detector within a magnetic flux of 191~Tcm$^2$. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064~m to 9~m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70$\%$ of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01$\%$ per month at 70$\%$ of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets.
- Published
- 2018
- Full Text
- View/download PDF
15. Muon-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Leiber, B., Letnev, J., Linek, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rink, R., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Rovedo, P., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Wandkowsky, N., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c$^{2}$. It investigates the kinematics of $\beta$-particles from tritium $\beta$-decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about $12\%$ of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than $17\%$ ($90\%$ confidence level) of the overall MS background.
- Published
- 2018
- Full Text
- View/download PDF
16. Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
- Author
-
KATRIN Collaboration, Arenz, M., Baek, W. -J., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Berendes, R., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buglak, W., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Furse, D., Gil, W., Glück, F., Urena, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Wandkowsky, N., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of $0.2\,{\text{eV}/c^2}$ (90\% C.L.) by precision measurement of the shape of the tritium \textbeta-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as $\textsuperscript{219}$Rn and $\textsuperscript{220}$Rn, in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes., Comment: 16 pages, 9 figures, 4 tables
- Published
- 2018
- Full Text
- View/download PDF
17. Recent Results from the Majorana Demonstrator
- Author
-
Gilliss, T, Alvis, S I, Arnquist, I J, Avignone III, F T, Barabash, A S, Barton, C J, Bertrand, F E, Bode, T, Brudanin, V, Busch, M, Buuck, M, Caldwell, T S, Chan, Y-D, Christofferson, C D, Chu, P -H, Cuesta, C, Detwiler, J A, Dunagan, C, Efremenko, Yu, Ejiri, H, Elliott, S R, Giovanetti, G K, Green, M P, Gruszko, J, Guinn, I S, Guiseppe, V E, Haufe, C R, Hehn, L, Henning, R, Hoppe, E W, Howe, M A, Keeter, K J, Kidd, M F, Konovalov, S I, Kouzes, R T, Lopez, A M, Martin, R D, Massarczyk, R, Meijer, S J, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, A W P, Radford, D C, Rager, J, Reine, A L, Rielage, K, Robertson, R G H, Ruof, N W, Shanks, B, Shirchenko, M, Suriano, A M, Tedeschi, D, Varner, R L, Vasilyev, S, Vetter, K, Vorren, K, White, B R, Wilkerson, J F, Wiseman, C, Xu, W, Yakushev, E, Yu, C -H, Yumatov, V, Zhitnikov, I, and Zhu, B X
- Subjects
Physics - Instrumentation and Detectors - Abstract
The MAJORANA Collaboration has completed construction and is now operating an array of high purity Ge detectors searching for neutrinoless double-beta decay ($0\nu\beta\beta$) in $^{76}$Ge. The array, known as the MAJORANA DEMONSTRATOR, is comprised of 44 kg of Ge detectors (30 kg enriched to 88% in $^{76}$Ge) installed in an ultra-low background compact shield at the Sanford Underground Research Facility in Lead, South Dakota. The primary goal of the DEMONSTRATOR is to establish a low-background design that can be scaled to a next-generation tonne-scale experiment. This work reports initial background levels in the $0\nu\beta\beta$ region of interest. Also presented are recent physics results leveraging P-type point-contact detectors with sub-keV energy thresholds to search for physics beyond the Standard Model; first results from searches for bosonic dark matter, solar axions, Pauli exclusion principle violation, and electron decay have been published. Finally, this work discusses the proposed tonne-scale $^{76}$Ge $0\nu\beta\beta$ LEGEND experiment., Comment: 6 pages, 1 figure, PANIC 2017: 21st Particles and Nuclei International Conference
- Published
- 2018
- Full Text
- View/download PDF
18. Improved limit on neutrinoless double beta decay of $^{76}$Ge from GERDA Phase II
- Author
-
Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Biernat, J., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., Comellato, T., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pelczar, K., Pertoldi, L., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schmitt, C., Schneider, B., Schönert, S., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The GERDA experiment searches for the lepton number violating neutrinoless double beta decay of $^{76}$Ge ($^{76}$Ge $\rightarrow$ $^{76}$Se + 2e$^-$) operating bare Ge diodes with an enriched $^{76}$Ge fraction in liquid argon. The exposure for BEGe-type detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of $1.0_{-0.4}^{+0.6}\cdot10^{-3}$ cts/(keV$\cdot$kg$\cdot$yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0$\nu\beta\beta$ experiment. No signal is observed and a new 90 \% C.L. lower limit for the half-life of $8.0\cdot10^{25}$ yr is placed when combining with our previous data. The median expected sensitivity assuming no signal is $5.8\cdot10^{25}$ yr., Comment: 5 pages, 2 figures
- Published
- 2018
- Full Text
- View/download PDF
19. The Majorana Demonstrator Status and Preliminary Results
- Author
-
Yu, C. -H., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y. -D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu, Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., Othman, G., Pettus, W., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Ruff, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yumatov, V., Zhitnikov, I., and Zhu, B. Z.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The Majorana Collaboration is using an array of high-purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. Searches for neutrinoless double-beta decay are understood to be the only viable experimental method for testing the Majorana nature of the neutrino. Observation of this decay would imply violation of lepton number, that neutrinos are Majorana in nature, and provide information on the neutrino mass. The Majorana Demonstrator comprises 44.1 kg of p-type point-contact Ge detectors (29.7 kg enriched in 76Ge) surrounded by a low-background shield system. The experiment achieved a high efficiency of converting raw Ge material to detectors and an unprecedented detector energy resolution of 2.5 keV FWHM at Q$_{\beta\beta}$. The Majorana collaboration began taking physics data in 2016. This paper summarizes key construction aspects of the Demonstrator and shows preliminary results from initial data., Comment: 5 pages, 2 figures. Proceeding for the "16th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS16)", 18-22 September 2017
- Published
- 2018
- Full Text
- View/download PDF
20. Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at -18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two $^{83\mathrm{m}}$Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN's commissioning measurements in July 2017. The measured scale factor $M=1972.449(10)$ of the high-voltage divider K35 is in agreement with the last PTB calibration four years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider., Comment: 7 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
21. First transmission of electrons and ions through the KATRIN beamline
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Naumann, U., Neumann, H., Niemes, S., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium beta decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of Autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous Kr-83m was injected into the KATRIN source section, and a condensed Kr-83m source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus., Comment: Minor updates; as published in JINST
- Published
- 2018
- Full Text
- View/download PDF
22. Low Background Materials and Fabrication Techniques for Cables and Connectors in the Majorana Demonstrator
- Author
-
Busch, M., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Rouf, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus Ge-76. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a tonne scale Ge-76-based search (the LEGEND collaboration). In the DEMONSTRATOR, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the MAJORANA DEMONSTRATOR, including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements., Comment: Proceedings of LRT 2017
- Published
- 2017
- Full Text
- View/download PDF
23. Design improvements to cables and connectors in the Majorana Demonstrator
- Author
-
Haufe, C. R., Reine, A. L., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y. -D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Pettus, W., Poon, A. W. P., Radford, D. C., Rager, J., Rielage, K., Robertson, R. G. H., Ruof, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The Majorana Demonstrator is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and 76Ge-enriched germanium p-type point contact detectors totaling 44.1 kg, located at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. The Demonstrator uses custom high voltage cables to bias the detectors, as well as custom signal cables and connectors to read out the charge deposited at the point contact of each detector. These low-mass cables and connectors must meet stringent radiopurity requirements while being subjected to thermal and mechanical stress. A number of issues have been identified with the currently installed cables and connectors. An improved set of cables and connectors for the Majorana Demonstrator are being developed with the aim of increasing their overall reliability and connectivity. We will discuss some of the issues encountered with the current cables and connectors as well as our improved designs and their initial performance., Comment: 5 pages, 2 figures, TAUP 2017: XV International Conference on Topics in Astroparticle and Underground Physics
- Published
- 2017
24. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
Agostini, M, Bakalyarov, AM, Andreotti, E, Balata, M, Barabanov, I, Baudis, L, Barros, N, Bauer, C, Bellotti, E, Belogurov, S, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Freund, K, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lehnert, B, Liao, Y, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
GERDA Collaboration ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
- Published
- 2019
25. Gamma-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K, Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, A, Kraus, M, Lasserre, T, Lebeda, O, Lehnert, B, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schlüter, L, Schrank, M, Seitz-Moskaliuk, H, and Sibille, V
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The KATRIN experiment aims to measure the effective electron antineutrino mass mν¯e with a sensitivity of 0.2eV/c2 using a gaseous tritium source combined with the MAC-E filter technique. A low background rate is crucial to achieving the proposed sensitivity, and dedicated measurements have been performed to study possible sources of background electrons. In this work, we test the hypothesis that gamma radiation from external radioactive sources significantly increases the rate of background events created in the main spectrometer (MS) and observed in the focal-plane detector. Using detailed simulations of the gamma flux in the experimental hall, combined with a series of experimental tests that artificially increased or decreased the local gamma flux to the MS, we set an upper limit of 0.006count/s (90% C.L.) from this mechanism. Our results indicate the effectiveness of the electrostatic and magnetic shielding used to block secondary electrons emitted from the inner surface of the MS.
- Published
- 2019
26. Recent results from the MAJORANA DEMONSTRATOR
- Author
-
Myslik, Jordan, Alvis, SI, Arnquist, IJ, Avignone III, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bos, B, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, Y-D, Christofferson, CD, Chu, P-H, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Yu, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Hehn, L, Henning, R, Hervas Aguilar, D, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Othman, G, Pettus, W, Piliounis, A, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Ruof, NW, Shanks, B, Shirchenko, M, Tedeschi, D, Varner, RL, Vasilyev, S, Vasundhara, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, C-H, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decay in 76Ge and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modules of natural and 76Ge-enriched germanium detectors totalling 44.1 kg, operating at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Commissioning of the experiment began in June 2015, followed by data production with the full detector array in August 2016. The ultra-low background and record energy resolution achieved by the MAJORANA DEMONSTRATOR enable a sensitive neutrinoless double-beta decay search, as well as additional searches for physics beyond the Standard Model. I will discuss the design elements that enable these searches, along with the latest results, focusing on the neutrinoless double-beta decay search. I will also discuss the current status and the future plans of the MAJORANA DEMONSTRATOR, as well as the plans for a future tonne-scale 76Ge experiment.
- Published
- 2019
27. Muon-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K, Arenz, M, Baek, W-J, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Leiber, B, Letnev, J, Linek, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Rink, R, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Rovedo, P, Ryšavý, M, Sack, R, Saenz, A, and Schimpf, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Cosmic-ray muon backgrounds ,Electrostatic spectrometer ,Neutrino mass ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Particle and high energy physics - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β-particles from tritium β-decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background.
- Published
- 2019
28. Recent results from the Majorana Demonstrator
- Author
-
Myslik, J, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bos, B, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Hehn, L, Henning, R, Hervas Aguilar, D, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Othman, G, Pettus, W, Piliounis, A, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Ruof, NW, Shanks, B, Shirchenko, M, Tedeschi, D, Varner, RL, Vasilyev, S, Vasundhara, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, CH, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
Neutrinoless double-beta decay ,germanium ,point-contact detectors ,physics.ins-det - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decay in 76Ge and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modules of natural and 76Ge-enriched germanium detectors totalling 44.1 kg, operating at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Commissioning of the experiment began in June 2015, followed by data production with the full detector array in August 2016. The ultra-low background and record energy resolution achieved by the MAJORANA DEMONSTRATOR enable a sensitive neutrinoless double-beta decay search, as well as additional searches for physics beyond the Standard Model. I will discuss the design elements that enable these searches, along with the latest results, focusing on the neutrinoless double-beta decay search. I will also discuss the current status and the future plans of the MAJORANA DEMONSTRATOR, as well as the plans for a future tonne-scale 76Ge experiment.
- Published
- 2019
29. Recent results from the MAJORANA DEMONSTRATOR
- Author
-
Myslik, J, Alvis, SI, Arnquist, IJ, III, FT Avignone, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Bos, B, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, Y-D, Christofferson, CD, Chu, P-H, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Yu, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Hehn, L, Henning, R, Aguilar, D Hervas, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Othman, G, Pettus, W, Piliounis, A, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Ruof, NW, Shanks, B, Shirchenko, M, Tedeschi, D, Varner, RL, Vasilyev, S, Vasundhara, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yu, C-H, Yumatov, V, Zhitnikov, I, and Zhu, BX
- Subjects
physics.ins-det ,nucl-ex - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search forneutrinoless double-beta decay in $^{76}$Ge and to demonstrate the feasibilityto deploy a large-scale experiment in a phased and modular fashion. It consistsof two modules of natural and $^{76}$Ge-enriched germanium detectors totalling44.1 kg, operating at the 4850' level of the Sanford Underground ResearchFacility in Lead, South Dakota, USA. Commissioning of the experiment began inJune 2015, followed by data production with the full detector array in August2016. The ultra-low background and record energy resolution achieved by theMAJORANA DEMONSTRATOR enable a sensitive neutrinoless double-beta decay search,as well as additional searches for physics beyond the Standard Model. I willdiscuss the design elements that enable these searches, along with the latestresults, focusing on the neutrinoless double-beta decay search. I will alsodiscuss the current status and the future plans of the MAJORANA DEMONSTRATOR,as well as the plans for a future tonne-scale $^{76}$Ge experiment.
- Published
- 2018
30. Initial Results from the Majorana Demonstrator
- Author
-
Caldwell, T. S., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bos, B., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Chan, Y-D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Pettus, W., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Ruof, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The MAJORANA Collaboration has assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge with the goal of establishing the required background and scalability of a Ge-based next-generation ton-scale experiment. The MAJORANA DEMONSTRATOR consists of 44 kg of high-purity Ge (HPGe) detectors (30 kg enriched in $^{76}$Ge) with a low-noise p-type point contact (PPC) geometry. The detectors are split between two modules which are contained in a single lead and high-purity copper shield at the Sanford Underground Research Facility in Lead, South Dakota. Following a commissioning run that started in June 2015, the full detector array has been acquiring data since August 2016. We will discuss the status of the MAJORANA DEMONSTRATOR and initial results from the first physics run; including current background estimates, exotic low-energy physics searches, projections on the physics reach of the DEMONSTRATOR, and implications for a ton-scale Ge-based neutrinoless double-beta decay search., Comment: Proceedings of TAUP 2017: XV International Conference on Topics in Astroparticle and Underground Physics (24-28 July 2017, Sudbury, ON, Canada)
- Published
- 2017
31. Data quality assurance for the MAJORANA DEMONSTRATOR
- Author
-
Myslik, J., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P-H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., O'Shaughnessy, C., Othman, G., Pettus, W., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Ruof, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C-H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a large-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and $^{76}$Ge-enriched germanium detectors totalling 44.1 kg, located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Any neutrinoless double-beta decay search requires a thorough understanding of the background and the signal energy spectra. The various techniques employed to ensure the integrity of the measured spectra are discussed. Data collection is monitored with a thorough set of checks, and subsequent careful analysis is performed to qualify the data for higher level physics analysis. Instrumental background events are tagged for removal, and problematic channels are removed from consideration as necessary., Comment: 5 pages, 2 figures, Proceedings of TAUP 2017 - XV International Conference on Topics in Astroparticle and Underground Physics (Sudbury ON, Canada, July 24-28, 2017)
- Published
- 2017
32. Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components
- Author
-
Christofferson, C. D., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Rouf, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design., Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul)
- Published
- 2017
- Full Text
- View/download PDF
33. Progress Toward A $2\nu\beta\beta$ Measurement For The Majorana Demonstrator
- Author
-
Gilliss, T, Abgrall, N, Alvis, S I, Arnquist, I J, Avignone III, F T, Barabash, A S, Barton, C J, Bertrand, F E, Bode, T, Bradley, A W, Brudanin, V, Busch, M, Buuck, M, Caldwell, T S, Chan, Y-D, Christofferson, C D, Chu, P -H, Cuesta, C, Detwiler, J A, Dunagan, C, Efremenko, Yu, Ejiri, H, Elliott, S R, Giovanetti, G K, Green, M P, Gruszko, J, Guinn, I S, Guiseppe, V E, Haufe, C R, Hehn, L, Henning, R, Hoppe, E W, Howe, M A, Keeter, K J, Kidd, M F, Konovalov, S I, Kouzes, R T, Lopez, A M, Martin, R D, Massarczyk, R, Meijer, S J, Mertens, S, Myslik, J, O'Shaughnessy, C, Othman, G, Pettus, W, Poon, A W P, Radford, D C, Rager, J, Reine, A L, Rielage, K, Robertson, R G H, Ruof, N W, Shanks, B, Shirchenko, M, Suriano, A M, Tedeschi, D, Trimble, J E, Varner, R L, Vasilyev, S, Vetter, K, Vorren, K, White, B R, Wilkerson, J F, Wiseman, C, Xu, W, Yakushev, E, Yu, C -H, Yumatov, V, Zhitnikov, I, and Zhu, B X
- Subjects
Physics - Instrumentation and Detectors - Abstract
The MAJORANA DEMONSTRATOR is a $^{76}$Ge-based neutrinoless double-beta decay ($0\nu\beta\beta$) experiment. Staged at the 4850 ft level of the Sanford Underground Research Facility, the DEMONSTRATOR operates an array of high-purity p-type point contact Ge detectors deployed within a graded passive shield and an active muon veto system. The present work concerns the two-neutrino double-beta decay mode ($2\nu\beta\beta$) of $^{76}$Ge. For Ge detectors, having superior energy resolution (0.1%), this mode poses negligible background to the $0\nu\beta\beta$ mode, even for a ton-scale experiment. However, the measurement of the $2\nu\beta\beta$ mode allows for careful systematics checks of active detector mass, enrichment fraction, and pulse shape discrimination cuts related to both the $0\nu\beta\beta$ and $2\nu\beta\beta$ decay modes. A precision measurement of the $2\nu\beta\beta$ shape also allows searches for spectral distortions, possibly indicative of new physics, including $0\nu\beta\beta\chi$. Work is underway to construct a full experimental background model enabling a Bayesian fit to the measured energy spectrum and extraction of a precise $2\nu\beta\beta$ spectrum and half-life., Comment: 5 pages, 2 figures, TAUP 2017: XV International Conference on Topics in Astroparticle and Underground Physics
- Published
- 2017
34. Spectral analysis for the Majorana Demonstrator experiment
- Author
-
Hehn, L., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P-H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Haufe, C. R., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Pettus, W., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Ruof, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C-H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular arrays of natural and $^{76}\textrm{Ge}$-enriched germanium detectors totaling 44.1 kg (29.7 kg enriched detectors), located at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Data taken with this setup since summer 2015 at different construction stages of the experiment show a clear reduction of the observed background index around the ROI for $0\nu\beta\beta$-decay search due to improvements in shielding. We discuss the statistical approaches to search for a $0\nu\beta\beta$-signal and derive the physics sensitivity for an expected exposure of $10\,\textrm{kg}{\cdot}\textrm{y}$ from enriched detectors using a profile likelihood based hypothesis test in combination with toy Monte Carlo data., Comment: 5 page, 2 figures, to appear in Proceedings of TAUP 2017 - XV International Conference on Topics in Astroparticle and Underground Physics, 24 - 28 July 2017, Sudbury, ON, Canada
- Published
- 2017
35. Upgrade for Phase II of the GERDA Experiment
- Author
-
Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Frodyma, N., Gangapshev, A., Garfagnini, A., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Ioannucci, L., Csathy, J. Janicsko, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneissl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Nisi, S., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schütz, A-K., Schulz, O., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The GERDA collaboration is performing a sensitive search for neutrinoless double beta decay of $^{76}$Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the GERDA experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. GERDA is thus the first experiment that will remain background-free up to its design exposure (100 kg yr). It will reach thereby a half-life sensitivity of more than 10$^{26}$ yr within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components., Comment: 31 pages, 34 figures
- Published
- 2017
- Full Text
- View/download PDF
36. Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator
- Author
-
Aalseth, C. E., Abgrall, N., Aguayo, E., Alvis, S. I., Amman, M., Arnquist, I. J., Avignone III, F. T., Back, H. O., Barabash, A. S., Barbeau, P. S., Barton, C. J., Barton, P. J., Bertrand, F. E., Bode, T., Bos, B., Boswell, M., Brodzinski, R. L., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, A. S., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P. -H., Collar, J. I., Combs, D. C., Cooper, R. J., Cuesta, C., Detwiler, J. A., Doe, P. J., Dunmore, J. A., Efremenko, Yu., Ejiri, H., Elliott, S. R., Fast, J. E., Finnerty, P., Fraenkle, F. M., Fu, Z., Fujikawa, B. K., Fuller, E., Galindo-Uribarri, A., Gehman, V. M., Gilliss, T., Giovanetti, G. K., Goett, J., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Hallin, A. L., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Hossbach, T. W., Howe, M. A., Jasinski, B. R., Johnson, R. A., Keeter, K. J., Kephart, J. D., Kidd, M. F., Knecht, A., Konovalov, S. I., Kouzes, R. T., Lesko, K. T., LaFerriere, B. D., Leon, J., Leviner, L. E., Loach, J. C., Lopez, A. M., Luke, P. N., MacMullin, J., MacMullin, S., Marino, M. G., Martin, R. D., Massarczyk, R., McDonald, A. B., Mei, D. -M., Meijer, S. J., Merriman, J. H., Mertens, S., Miley, H. S., Miller, M. L., Myslik, J., Orrell, J. L., O'Shaughnessy, C., Othman, G., Overman, N. R., Pettus, W., Phillips II, D. G., Poon, A. W. P., Perumpilly, G., Pushkin, K., Radford, D. C., Rager, J., Reeves, J. H., Reine, A. L., Rielage, K., Robertson, R. G. H., Ronquest, M. C., Ruof, N. W., Schubert, A. G., Shanks, B., Shirchenko, M., Snavely, K. J., Snyder, N., Steele, D., Suriano, A. M., Tedeschi, D., Tornow, W., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yaver, H., Young, A. R., Yu, C. -H., Yumatov, V., Zhitnikov, I., Zhu, B. X., and Zimmermann, S.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The \MJ\ Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The \MJ\ \DEM\ comprises 44.1~kg of Ge detectors (29.7 kg enriched in $^{76}$Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at \qval\ and a very low background with no observed candidate events in 10 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of $1.9\times10^{25}$ yr (90\% CL). This result constrains the effective Majorana neutrino mass to below 240 to 520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is $4.0_{-2.5}^{+3.1}$ counts/(FWHM t yr)., Comment: typos fixed
- Published
- 2017
- Full Text
- View/download PDF
37. Searching for neutrinoless double beta decay with GERDA
- Author
-
GERDA Collaboration, Agostini, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Bettini, A., Bezrukov, L., Bode, T., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., Di Marco, N., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hiller, R., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaidic, Y., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Panas, K., Pandola, L., Pullia, A., Ransom, C., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Schmitt, C., Schneider, B., Schreiner, J., Schulz, O., Schwingenheuer, B., Schönert, S., Schütz, A-K., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combination of the novel experimental design, the careful material selection for radio-purity and the active/passive shielding techniques result in a very low residual background at the Q-value of the decay, about 1e-3 counts/(keV kg yr). This makes GERDA the first experiment in the field to be background-free for the complete design exposure of 100 kg yr. A search for neutrinoless double beta decay was performed with a total exposure of 47.7 kg yr: 23.2 kg yr come from the second phase (Phase II) of the experiment, in which the background is reduced by about a factor of ten with respect to the previous phase. The analysis presented in this paper includes 12.4 kg yr of new Phase II data. No evidence for a possible signal is found: the lower limit for the half-life of Ge76 is 8.0e25 yr at 90% CL. The experimental median sensitivity is 5.8e25 yr. The experiment is currently taking data. As it is running in a background-free regime, its sensitivity grows linearly with exposure and it is expected to surpass 1e26 yr within 2018., Comment: 8 pages, to appear in the proceedings of TAUP2017
- Published
- 2017
38. The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)
- Author
-
LEGEND Collaboration, Abgrall, N., Abramov, A., Abrosimov, N., Abt, I., Agostini, M., Agartioglu, M., Ajjaq, A., Alvis, S. I., Avignone III, F. T., Bai, X., Balata, M., Barabanov, I., Barabash, A. S., Barton, P. J., Baudis, L., Bezrukov, L., Bode, T., Bolozdynya, A., Borowicz, D., Boston, A., Boston, H., Boyd, S. T. P., Breier, R., Brudanin, V., Brugnera, R., Busch, M., Buuck, M., Caldwell, A., Caldwell, T. S., Camellato, T., Carpenter, M., Cattadori, C., Cederkäll, J., Chan, Y. -D., Chen, S., Chernogorov, A., Christofferson, C. D., Chu, P. -H., Cooper, R. J., Cuesta, C., Demidova, E. V., Deng, Z., Deniz, M., Detwiler, J. A., Di Marco, N., Domula, A., Du, Q., Efremenko, Yu., Egorov, V., Elliott, S. R., Fields, D., Fischer, F., Galindo-Uribarri, A., Gangapshev, A., Garfagnini, A., Gilliss, T., Giordano, M., Giovanetti, G. K., Gold, M., Golubev, P., Gooch, C., Grabmayr, P., Green, M. P., Gruszko, J., Guinn, I. S., Guiseppe, V. E., Gurentsov, V., Gurov, Y., Gusev, K., Hakenmüeller, J., Harkness-Brennan, L., Harvey, Z. R., Haufe, C. R., Hauertmann, L., Heglund, D., Hehn, L., Heinz, A., Hiller, R., Hinton, J., Hodak, R., Hofmann, W., Howard, S., Howe, M. A., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Janssens, R., Ješkovský, M., Jochum, J., Johansson, H. T., Judson, D., Junker, M., Kaizer, J., Kang, K., Kazalov, V., Kermaïdic, Y., Kiessling, F., Kirsch, A., Kish, A., Klimenko, A., Knöpfle, K. T. K. T., Kochetov, O., Konovalov, S. I., Kontul, I., Kornoukhov, V. N., Kraetzschmar, T., Kröninger, K., Kumar, A., Kuzminov, V. V., Lang, K., Laubenstein, M., Lazzaro, A., Li, Y. L., Li, Y. -Y., Li, H. B., Lin, S. T., Lindner, M., Lippi, I., Liu, S. K., Liu, X., Liu, J., Loomba, D., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Ma, H., Majorovits, B., Mamedov, F., Martin, R. D., Massarczyk, R., Matthews, J. A. J., McFadden, N., Mei, D. -M., Mei, H., Meijer, S. J., Mengoni, D., Mertens, S., Miller, W., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Myslik, J., Nemchenok, I., Nilsson, T., Nolan, P., O'Shaughnessy, C., Othman, G., Panas, K., Pandola, L., Papp, L., Pelczar, K., Peterson, D., Pettus, W., Poon, A. W. P., Povinec, P. P., Pullia, A., Quintana, X. C., Radford, D. C., Rager, J., Ransom, C., Recchia, F., Reine, A. L., Riboldi, S., Rielage, K., Rozov, S., Rouf, N. W., Rukhadze, E., Rumyantseva, N., Saakyan, R., Sala, E., Salamida, F., Sandukovsky, V., Savard, G., Schönert, S., Schütz, A. -K., Schulz, O., Schuster, M., Schwingenheuer, B., Selivanenko, O., Sevda, B., Shanks, B., Shevchik, E., Shirchenko, M., Simkovic, F., Singh, L., Singh, V., Skorokhvatov, M., Smolek, K., Smolnikov, A., Sonay, A., Spavorova, M., Stekl, I., Stukov, D., Tedeschi, D., Thompson, J., Van Wechel, T., Varner, R. L., Vasenko, A. A., Vasilyev, S., Veresnikova, A., Vetter, K., von Sturm, K., Vorren, K., Wagner, M., Wang, G. -J., Waters, D., Wei, W. -Z., Wester, T., White, B. R., Wiesinger, C., Wilkerson, J. F., Willers, M., Wiseman, C., Wojcik, M., Wong, H. T., Wyenberg, J., Xu, W., Yakushev, E., Yang, G., Yu, C. -H., Yue, Q., Yumatov, V., Zeman, J., Zeng, Z., Zhitnikov, I., Zhu, B., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The observation of neutrinoless double-beta decay (0${\nu}{\beta}{\beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $\sim$0.1 count /(FWHM$\cdot$t$\cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0${\nu}{\beta}{\beta}$ signal region of all 0${\nu}{\beta}{\beta}$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0${\nu}{\beta}{\beta}$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results., Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017)
- Published
- 2017
- Full Text
- View/download PDF
39. The Status and Initial Results of the MAJORANA DEMONSTRATOR Experiment
- Author
-
Guiseppe, V. E., Abgrall, N., Alvis, S. I., Arnquist, I. J., Avignone III, F. T., Barabash, A. S., Barton, C. J., Bertrand, F. E., Bode, T., Bradley, A. W., Brudanin, V., Busch, M., Buuck, M., Caldwell, T. S., Chan, Y-D., Christofferson, C. D., Chu, P. -H., Cuesta, C., Detwiler, J. A., Dunagan, C., Efremenko, Yu., Ejiri, H., Elliott, S. R., Gilliss, T., Giovanetti, G. K., Green, M. P., Gruszko, J., Guinn, I. S., Haufe, C. R., Hehn, L., Henning, R., Hoppe, E. W., Howe, M. A., Keeter, K. J., Kidd, M. F., Konovalov, S. I., Kouzes, R. T., Lopez, A. M., Martin, R. D., Massarczyk, R., Meijer, S. J., Mertens, S., Myslik, J., O'Shaughnessy, C., Othman, G., Poon, A. W. P., Radford, D. C., Rager, J., Reine, A. L., Rielage, K., Robertson, R. G. H., Rouf, N. W., Shanks, B., Shirchenko, M., Suriano, A. M., Tedeschi, D., Trimble, J. E., Varner, R. L., Vasilyev, S., Vetter, K., Vorren, K., White, B. R., Wilkerson, J. F., Wiseman, C., Xu, W., Yakushev, E., Yu, C. -H., Yumatov, V., Zhitnikov, I., and Zhu, B. X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in Ge-76. The MAJORANA DEMONSTRATOR is comprised of 44.1 kg (29.7 kg enriched in Ge-76) of Ge detectors divided between two modules contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota, USA. The initial goals of the DEMONSTRATOR are to establish the required background and scalability of a Ge-based next-generation ton-scale experiment. Following a commissioning run that started in 2015, the first detector module started low-background data production in early 2016. The second detector module was added in August 2016 to begin operation of the entire array. We discuss results of the initial physics runs, as well as the status and physics reach of the full MAJORANA DEMONSTRATOR experiment., Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017)
- Published
- 2017
- Full Text
- View/download PDF
40. Background free search for neutrinoless double beta decay with GERDA Phase II
- Author
-
Agostini, M., Allardt, M., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Bellotti, E., Belogurov, S., Belyaev, S. T., Benato, G., Bettini, A., Bezrukov, L., Bode, T., Borowicz, D., Brudanin, V., Brugnera, R., Caldwell, A., Cattadori, C., Chernogorov, A., D'Andrea, V., Demidova, E. V., DiMarco, N., diVacri, A., Domula, A., Doroshkevich, E., Egorov, V., Falkenstein, R., Fedorova, O., Freund, K., Frodyma, N., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hegai, A., Heisel, M., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kihm, T., Kirpichnikov, I. V., Kirsch, A., Kish, A., Klimenko, A., Kneißl, R., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Kuzminov, V. V., Laubenstein, M., Lazzaro, A., Lebedev, V. I., Lehnert, B., Liao, H. Y., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Medinaceli, E., Miloradovic, M., Mingazheva, R., Misiaszek, M., Moseev, P., Nemchenok, I., Palioselitis, D., Panas, K., Pandola, L., Pelczar, K., Pullia, A., Riboldi, S., Rumyantseva, N., Sada, C., Salamida, F., Salathe, M., Schmitt, C., Schneider, B., Schönert, S., Schreiner, J., Schulz, O., Schütz, A. -K., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Simgen, H., Smolnikov, A., Stanco, L., Vanhoefer, L., Vasenko, A. A., Veresnikova, A., von Sturm, K., Wagner, V., Walter, M., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zuber, K., and Zuzel, G.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta ($0\nu\beta\beta$) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for $0\nu\beta\beta$ decay of $^{76}$Ge ($^{76}\rm{Ge} \rightarrow\,^{76}\rm{Se} + 2e^-$) by operating bare detectors made from germanium with enriched $^{76}$Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of $\approx10^{-3}$ cts/(keV$\cdot$kg$\cdot$yr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of $5.3\cdot10^{25}$ yr at 90 % C.L. Our sensitivity of $4.0\cdot10^{25}$ yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first $0\nu\beta\beta$ experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for $0\nu\beta\beta$ decay motivates a larger germanium experiment with higher sensitivity., Comment: 14 pages, 9 figures, 1 table; ; data, figures and images available at http://www.mpi-hd.mpg/gerda/public
- Published
- 2017
- Full Text
- View/download PDF
41. Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
- Author
-
Arenz, M, Baek, W-J, Bauer, S, Beck, M, Beglarian, A, Behrens, J, Berendes, R, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buglak, W, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Furse, D, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, and Schönung, K
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of 0.2eV/c2 (%90 CL) by precision measurement of the shape of the tritium β -spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as 219Rn and 220Rn , in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes.
- Published
- 2018
42. The KATRIN superconducting magnets: Overview and first performance results
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Frankle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Urena, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalik, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, Seitz-Moskaliuk, H, Sentkerestiová, J, and Sibille, V
- Subjects
Acceleration cavities and magnets superconducting ,Control systems ,Cryogenics ,Spectrometers ,Nuclear & Particles Physics ,Other Physical Sciences ,Physical Sciences ,Engineering - Abstract
The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6 T, adiabatically guide β-electrons from the source to the detector within a magnetic flux of 191 Tcm2. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064 m to 9 m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70% of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01% per month at 70% of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets.
- Published
- 2018
43. The Majorana Demonstrator Status and Preliminary Results
- Author
-
Yu, CH, Alvis, SI, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Bertrand, FE, Bode, T, Brudanin, V, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Cuesta, C, Detwiler, JA, Dunagan, C, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, M, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Howe, MA, Keeter, KJ, Kidd, MF, Konovalov, SI, Kouzes, RT, Lopez, AM, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, Othman, G, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Ruof, NW, Shanks, B, Shirchenko, M, Suriano, AM, Tedeschi, D, Varner, RL, Vasilyev, S, Vetter, K, Vorren, K, White, BR, Wilkerson, JF, Wiseman, C, Xu, W, Yakushev, E, Yumatov, V, Zhitnikov, I, and Zhu, BZ
- Subjects
nucl-ex ,physics.ins-det - Abstract
The Majorana Collaboration is using an array of high-purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. Searches for neutrinoless double-beta decay are understood to be the only viable experimental method for testing the Majorana nature of the neutrino. Observation of this decay would imply violation of lepton number, that neutrinos are Majorana in nature, and provide information on the neutrino mass. The Majorana Demonstrator comprises 44.1 kg of p-type point-contact Ge detectors (29.7 kg enriched in 76Ge) surrounded by a low-background shield system. The experiment achieved a high efficiency of converting raw Ge material to detectors and an unprecedented detector energy resolution of 2.5 keV FWHM at Qββ. The Majorana collaboration began taking physics data in 2016. This paper summarizes key construction aspects of the Demonstrator and shows preliminary results from initial data.
- Published
- 2018
44. Calibration of high voltages at the ppm level by the difference of 83mKr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M, Baek, W-J, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two 83 mKr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2017. The measured scale factor M= 1972.449 (10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
- Published
- 2018
45. Upgrade for Phase II of the Gerda experiment
- Author
-
GERDA Collaboration, Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Vanhoefer, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
46. Calibration of high voltages at the ppm level by the difference of 83 m Kr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two 83 mKr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2017. The measured scale factor M= 1972.449 (10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
- Published
- 2018
47. Upgrade for Phase II of the Gerda experiment
- Author
-
Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
48. First transmission of electrons and ions through the KATRIN beamline
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Frankle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Urena, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalik, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Naumann, U, Neumann, H, Niemes, S, Off, A, Ortjohann, HW, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, and Schönung, K
- Subjects
Ion sources (positive ions ,negative ions ,electron cyclotron resonance (ECR) ,electron beam (EBIS)) ,Detector control systems ,Beam-line instrumentation ,Spectrometers ,Ion sources (positive ions ,negative ions ,electron cyclotron resonance ,electron beam (EBIS)) ,Nuclear & Particles Physics ,Other Physical Sciences ,Physical Sciences ,Engineering - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus.
- Published
- 2018
49. Search for Neutrinoless Double-β Decay in Ge76 with the Majorana Demonstrator
- Author
-
Aalseth, CE, Abgrall, N, Aguayo, E, Alvis, SI, Amman, M, Arnquist, IJ, Avignone, FT, Back, HO, Barabash, AS, Barbeau, PS, Barton, CJ, Barton, PJ, Bertrand, FE, Bode, T, Bos, B, Boswell, M, Bradley, AW, Brodzinski, RL, Brudanin, V, Busch, M, Buuck, M, Caldwell, AS, Caldwell, TS, Chan, Y-D, Christofferson, CD, Chu, P-H, Collar, JI, Combs, DC, Cooper, RJ, Cuesta, C, Detwiler, JA, Doe, PJ, Dunmore, JA, Efremenko, Yu, Ejiri, H, Elliott, SR, Fast, JE, Finnerty, P, Fraenkle, FM, Fu, Z, Fujikawa, BK, Fuller, E, Galindo-Uribarri, A, Gehman, VM, Gilliss, T, Giovanetti, GK, Goett, J, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Hallin, AL, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Hossbach, TW, Howe, MA, Jasinski, BR, Johnson, RA, Keeter, KJ, Kephart, JD, Kidd, MF, Knecht, A, Konovalov, SI, Kouzes, RT, LaFerriere, BD, Leon, J, Lesko, KT, Leviner, LE, Loach, JC, Lopez, AM, Luke, PN, MacMullin, J, MacMullin, S, Marino, MG, Martin, RD, Massarczyk, R, McDonald, AB, Mei, D-M, Meijer, SJ, Merriman, JH, Mertens, S, Miley, HS, Miller, ML, Myslik, J, Orrell, JL, O'Shaughnessy, C, Othman, G, Overman, NR, Perumpilly, G, Pettus, W, Phillips, DG, Poon, AWP, Pushkin, K, Radford, DC, Rager, J, Reeves, JH, Reine, AL, and Rielage, K
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Majorana Collaboration ,nucl-ex ,physics.ins-det ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ββ} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).
- Published
- 2018
50. Search for Neutrinoless Double-β Decay in ^{76}Ge with the Majorana Demonstrator.
- Author
-
Aalseth, CE, Abgrall, N, Aguayo, E, Alvis, SI, Amman, M, Arnquist, IJ, Avignone, FT, Back, HO, Barabash, AS, Barbeau, PS, Barton, CJ, Barton, PJ, Bertrand, FE, Bode, T, Bos, B, Boswell, M, Bradley, AW, Brodzinski, RL, Brudanin, V, Busch, M, Buuck, M, Caldwell, AS, Caldwell, TS, Chan, Y-D, Christofferson, CD, Chu, P-H, Collar, JI, Combs, DC, Cooper, RJ, Cuesta, C, Detwiler, JA, Doe, PJ, Dunmore, JA, Efremenko, Yu, Ejiri, H, Elliott, SR, Fast, JE, Finnerty, P, Fraenkle, FM, Fu, Z, Fujikawa, BK, Fuller, E, Galindo-Uribarri, A, Gehman, VM, Gilliss, T, Giovanetti, GK, Goett, J, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Hallin, AL, Haufe, CR, Hehn, L, Henning, R, Hoppe, EW, Hossbach, TW, Howe, MA, Jasinski, BR, Johnson, RA, Keeter, KJ, Kephart, JD, Kidd, MF, Knecht, A, Konovalov, SI, Kouzes, RT, LaFerriere, BD, Leon, J, Lesko, KT, Leviner, LE, Loach, JC, Lopez, AM, Luke, PN, MacMullin, J, MacMullin, S, Marino, MG, Martin, RD, Massarczyk, R, McDonald, AB, Mei, D-M, Meijer, SJ, Merriman, JH, Mertens, S, Miley, HS, Miller, ML, Myslik, J, Orrell, JL, O'Shaughnessy, C, Othman, G, Overman, NR, Perumpilly, G, Pettus, W, Phillips, DG, Poon, AWP, Pushkin, K, Radford, DC, Rager, J, Reeves, JH, Reine, AL, and Rielage, K
- Subjects
Majorana Collaboration ,nucl-ex ,physics.ins-det ,General Physics ,Mathematical Sciences ,Physical Sciences ,Engineering - Abstract
The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ββ} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.