17 results on '"Bocchi, Edoardo"'
Search Results
2. Asymmetric equilibrium configurations of a body immersed in a 2D laminar flow
- Author
-
Bocchi, Edoardo and Gazzola, Filippo
- Subjects
Mathematics - Analysis of PDEs ,35Q35, 76D05, 74F10 - Abstract
We study the equilibrium configurations of a possibly asymmetric fluid-structure-interaction problem. The fluid is confined in a bounded planar channel and is governed by the stationary Navier-Stokes equations with laminar inflow and outflow. A body is immersed in the channel and is subject to both the lift force from the fluid and to some external elastic force. Asymmetry, which is motivated by natural models, and the possibly non-vanishing velocity of the fluid on the boundary of the channel require the introduction of suitable assumptions to prevent collisions of the body with the boundary. With these assumptions at hand, we prove that for sufficiently small inflow/outflow there exists a unique equilibrium configuration. Only if the inflow, the outflow and the body are all symmetric, the configuration is also symmetric. A model application is also discussed.
- Published
- 2023
3. Rigorous thin film approximations of the one-phase unstable Muskat problem
- Author
-
Bocchi, Edoardo and Gancedo, Francisco
- Subjects
Mathematics - Analysis of PDEs - Abstract
This paper studies the one-phase Muskat problem driven by gravity and surface tension. The regime considered here is unstable with the fluid on top of a dry region. By a novel approach using a depth-averaged formulation, we derive two asymptotic approximations for this scenario. The lower order approximation is the classical thin film equation, while the higher order approximation provides a new refined thin film equation. We prove the optimal order of convergence in the shallowness parameter to the original Muskat solutions for both models with low-regular initial data.
- Published
- 2022
4. Well-posedness of a nonlinear shallow water model for an oscillating water column with time-dependent air pressure
- Author
-
Bocchi, Edoardo, He, Jiao, and Vergara-Hermosilla, Gastón
- Subjects
Mathematics - Analysis of PDEs ,35Q35, 76B15, 35L04, 74F10 - Abstract
We propose in this paper a new nonlinear mathematical model of an oscillating water column (OWC). The one-dimensional shallow water equations in the presence of this device is reformulated as a transmission problem related to the interaction between waves and a fixed partially-immersed structure. By imposing the conservation of the total fluid-OWC energy in the non-damped scenario, we are able to derive a transmission condition that involves a time-dependent air pressure inside the chamber of the device, instead of a constant atmospheric pressure as in \cite{bocchihevergara2021}. We then show that the transmission problem can be reduced to a quasilinear hyperbolic initial boundary value problem with a semi-linear boundary condition determined by an ODE depending on the trace of the solution to the PDE at the boundary. Local well-posedness for general problems of this type is established via an iterative scheme by using linear estimates for the PDE and nonlinear estimates for the ODE., Comment: 35 pages, 1 figure
- Published
- 2021
5. Modelling and simulation of a wave energy converter
- Author
-
Bocchi, Edoardo, He, Jiao, and Vergara-Hermosilla, Gaston
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Numerical Analysis ,35L02, 35Q35, 65N06, 65M06 - Abstract
In this work we present the mathematical model and simulations of a particular wave energy converter, the so-called oscillating water column. In this device, waves governed by the one-dimensional nonlinear shallow water equations arrive from offshore, encounter a step in the bottom and then arrive into a chamber to change the volume of the air to activate the turbine. The system is reformulated as two transmission problems: one is related to the wave motion over the stepped topography and the other one is related to the wave-structure interaction at the entrance of the chamber. We finally use the characteristic equations of Riemann invariants to obtain the discretized transmission conditions and we implement the Lax-Friedrichs scheme to get numerical solutions., Comment: 16 pages
- Published
- 2021
6. Anisotropy and stratification effects in the dynamics of fast rotating compressible fluids
- Author
-
Bocchi, Edoardo, Fanelli, Francesco, and Prange, Christophe
- Subjects
Mathematics - Analysis of PDEs ,35Q86, 35Q30, 76D50, 76N10, 35B40, 76M45 - Abstract
The primary goal of this paper is to develop robust methods to handle two ubiquitous features appearing in the modeling of geophysical flows: (i) the anisotropy of the viscous stress tensor, (ii) stratification effects. We focus on the barotropic Navier-Stokes equations with Coriolis and gravitational forces. Two results are the main contributions of the paper. Firstly, we establish a local well-posedness result for finite-energy solutions, via a maximal regularity approach. This method allows us to circumvent the use of the effective viscous flux, which plays a key role in the weak solutions theories of Lions-Feireisl and Hoff, but seems to be restricted to isotropic viscous stress tensors. Moreover, our approach is sturdy enough to take into account non constant reference density states; this is crucial when dealing with stratification effects. Secondly, we study the structure of the solutions to the previous model in the regime when the Rossby, Mach and Froude numbers are of the same order of magnitude. We prove an error estimate on the relative entropy between actual solutions and their approximation by a large-scale quasi-geostrophic flow supplemented with Ekman boundary layers. Our analysis holds for a large class of barotropic pressure laws.
- Published
- 2020
7. Well-Posedness of a Nonlinear Shallow Water Model for an Oscillating Water Column with Time-Dependent Air Pressure
- Author
-
Bocchi, Edoardo, He, Jiao, and Vergara-Hermosilla, Gastón
- Published
- 2023
- Full Text
- View/download PDF
8. On the return to equilibrium problem for axisymmetric floating structures in shallow water
- Author
-
Bocchi, Edoardo
- Subjects
Mathematics - Analysis of PDEs - Abstract
In this paper we address the return to equilibrium problem for an axisymmetric floating structure in shallow water. First we show that the equation for the solid motion can be reduced to a delay differential equation involving an extension-trace operator whose role is to describe the influence of the fluid equations on the solid motion. It turns out that the compatibility conditions on the initial data for the return to equilibrium configuration are not satisfied, so we cannot use the result from [3] for the nonlinear problem. Hence, assuming small amplitude waves, we linearize the equations in the exterior domain and we keep the nonlinear equations in the interior domain. For such configurations, the extension-trace operator can be computed explicitly and the delay term in the differential equation can be put in convolution form. The solid motion is therefore governed by a nonlinear second order integro-differential equation, whose linearization is the well-known Cummins equation. We show global in time existence and uniqueness of the solution using the conservation of the total fluid-structure energy.
- Published
- 2019
- Full Text
- View/download PDF
9. Floating structures in shallow water: local well-posedness in the axisymmetric case
- Author
-
Bocchi, Edoardo
- Subjects
Mathematics - Analysis of PDEs ,Physics - Atmospheric and Oceanic Physics ,Physics - Fluid Dynamics - Abstract
The floating structure problem describes the interaction between surface water waves and a floating body, generally a boat or a wave energy converter. As shown by Lannes in [18] the equations for the fluid motion can be reduced to a set of two evolution equations on the surface elevation and the horizontal discharge. The presence of the object is accounted for by a constraint on the discharge under the object; the pressure exerted by the fluid on this object is then the Lagrange multiplier associated to this constraint. Our goal in this paper is to prove the well-posedness of this fluid-structure interaction problem in the shallow water approximation under the assumption that the flow is axisymmetric without swirl. We write the fluid equations as a quasilinear hyperbolic mixed initial boundary value problem and the solid equation as a second order ODE coupled to the fluid equations. Finally we prove the local in time well-posedness for this coupled problem, provided some compatibility conditions on the initial data are satisfied.
- Published
- 2018
10. Modelling and simulation of a wave energy converter
- Author
-
Bocchi Edoardo, He Jiao, and Vergara-Hermosilla Gastón
- Subjects
Applied mathematics. Quantitative methods ,T57-57.97 ,Mathematics ,QA1-939 - Abstract
In this work we present the mathematical model and simulations of a particular wave energy converter, the so-called oscillating water column. In this device, waves governed by the one-dimensional nonlinear shallow water equations arrive from offshore, encounter a step in the bottom and then arrive into a chamber to change the volume of the air to activate the turbine. The system is reformulated as two transmission problems: one is related to the wave motion over the stepped topography and the other one is related to the wave-structure interaction at the entrance of the chamber. We finally use the characteristic equations of Riemann invariants to obtain the discretized transmission conditions and we implement the Lax-Friedrichs scheme to get numerical solutions.
- Published
- 2021
- Full Text
- View/download PDF
11. The dark side of the circular economy: The value uncaptured in bioeconomy business models
- Author
-
Gennari, Francesca, primary and Bocchi, Edoardo, additional
- Published
- 2023
- Full Text
- View/download PDF
12. Asymmetric equilibrium configurations of a body immersed in a 2d laminar flow
- Author
-
Bocchi, Edoardo, primary and Gazzola, Filippo, additional
- Published
- 2023
- Full Text
- View/download PDF
13. Anisotropy and stratification effects in the dynamics of fast rotating compressible fluids
- Author
-
Bocchi, Edoardo, primary, Fanelli, Francesco, additional, and Prange, Christophe, additional
- Published
- 2022
- Full Text
- View/download PDF
14. On the return to equilibrium problem for axisymmetric floating structures in shallow water
- Author
-
Bocchi, Edoardo, primary
- Published
- 2020
- Full Text
- View/download PDF
15. Floating Structures in Shallow Water: Local Well-posedness in the Axisymmetric Case
- Author
-
Bocchi, Edoardo, primary
- Published
- 2020
- Full Text
- View/download PDF
16. Transitions compressible-incompressible en mécanique des fluides : interaction vagues-structures et fluides en rotation
- Author
-
Bocchi, Edoardo, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, David Lannes, and Christophe Prange
- Subjects
Hyperbolic PDEs ,Mécanique des fluides ,Floating structures ,Fluides en rotation ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Équations de Saint-Venant ,Fluid mechanics ,Rotating fluids ,Boundary layers ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Couches limites ,Nonlinear shallow-Water equations ,EDPs hyperboliques ,Structures flottantes - Abstract
This manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers.; Ce manuscrit porte sur les transitions compressible-incompressible dans les équations aux dérivées partielles de la mécanique des fluides. On s'intéresse à deux problèmes : les structures flottantes et les fluides en rotation. Dans le premier problème, l'introduction d'un objet flottant dans les vagues induit une contrainte sur le fluide et les équations gouvernant le mouvement acquièrent une structure compressible-incompressible. Dans le deuxième problème, le mouvement de fluides géophysiques compressibles est influencé par la rotation de la Terre. L'étude de la limite à rotation rapide montre que le champ vectoriel de vitesse tend vers une configuration horizontale et incompressible.Les structures flottantes constituent un exemple particulier d'interaction fluide-structure, où un solide partiellement immergé flotte à la surface du fluide. Ce problème mathématique modélise le mouvement de convertisseurs d'énergie marine. En particulier, on s'intéresse aux bouées pilonnantes, installées proche de la côte où les modèles asymptotiques en eaux peu profondes sont valables. On étudie les équations de Saint-Venant axisymétriques en dimension deux avec un objet flottant à murs verticaux se déplaçant seulement verticalement. Les hypothèses sur le solide permettent de supprimer le problème à bord libre associé avec la ligne de contact entre l'air, le fluide et le solide. Les équations pour le fluide dans le domaine extérieur au solide sont donc écrites comme un problème au bord quasi-linéaire hyperbolique. Celui-ci est couplé avec une EDO non-linéaire du second ordre qui est dérivée de l'équation de Newton pour le mouvement libre du solide. On montre le caractère bien posé localement en temps du système couplé lorsque que les données initiales satisfont des conditions de compatibilité afin de générer des solutions régulières.Ensuite on considère une configuration particulière: le retour à l'équilibre. Il s'agit de considérer un solide partiellement immergé dans un fluide initialement au repos et de le laisser retourner à sa position d'équilibre. Pour cela, on utilise un modèle hydrodynamique différent, où les équations sont linearisées dans le domaine extérieur, tandis que les effets non-linéaires sont considérés en dessous du solide. Le mouvement du solide est décrit par une équation intégro-différentielle non-linéaire du second ordre qui justifie rigoureusement l'équation de Cummins, utilisée par les ingénieurs pour les mouvements des objets flottants. L'équation que l'on dérive améliore l'approche linéaire de Cummins en tenant compte des effets non-linéaires. On montre l'existence et l'unicité globale de la solution pour des données petites en utilisant la conservation de l'énergie du système fluide-structure.Dans la deuxième partie du manuscrit, on étudie les fluides en rotation rapide. Ce problème mathématique modélise le mouvement des flots géophysiques à grandes échelles influencés par la rotation de la Terre. Le mouvement est aussi affecté par la gravité, ce qui donne lieu à une stratification de la densité dans les fluides compressibles. La rotation génère de l'anisotropie dans les flots visqueux et la viscosité turbulente verticale tend vers zéro dans la limite à rotation rapide. Notre interêt porte sur ce problème de limite singulière en tenant compte des effets gravitationnels et compressibles. On étudie les équations de Navier-Stokes-Coriolis anisotropes compressibles avec force gravitationnelle dans la bande infinie horizontale avec une condition au bord de non glissement. Celle-ci et la force de Coriolis donnent lieu à l'apparition des couches d'Ekman proche du bord. Dans ce travail on considère des données initiales bien préparées. On montre un résultat de stabilité des solutions faibles globales pour des lois de pression particulières. La dynamique limite est décrite par une équation quasi-géostrophique visqueuse en dimension deux avec un terme d'amortissement qui tient compte des couches limites.
- Published
- 2019
17. Transitions compressible-incompressible en mécanique des fluides : interaction vagues-structures et fluides en rotation
- Author
-
BOCCHI, Edoardo, David Lannes, Christophe Prange, Dario Bambusi [Président], Anne-Laure Dalibard Roux [Rapporteur], Frédéric Rousset [Rapporteur], Francisco Gancedo, Christophe Lacave, Lannes, David, Prange, Christophe, Dalibard Roux, Anne-Laure, Rousset, Frédéric, Gancedo, Francisco, Lacave, Christophe, and Bambusi, Dario
- Subjects
Mécanique des fluides ,Équations de Saint-Venant ,Fluides en rotation ,Couches limites ,EDPs hyperboliques ,Structures flottantes
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.