16 results on '"Blumenberg, L."'
Search Results
2. Abstract TS1-2: Proteogenomic Landscape of Prospectively Collected Breast Cancer
- Author
-
Gillette, M, primary, Krug, K, additional, Satpathy, S, additional, Jaehnig, E, additional, Karpova, A, additional, Clauser, K, additional, Tang, L, additional, Blumenberg, L, additional, Kothadia, R, additional, Ruggles, K, additional, Zhang, B, additional, Ding, L, additional, Mertins, P, additional, Mani, DR, additional, Ellis, M, additional, and Carr, S, additional
- Published
- 2020
- Full Text
- View/download PDF
3. Proteogenomic and metabolomic characterization of human glioblastoma
- Author
-
Cristina E. Tognon, Larisa Polonskaya, Tara Skelly, Shuang Cai, Francesmary Modugno, Larissa Rossell, Nancy Roche, Chen Huang, Jessika Baral, Fulvio D'Angelo, Wen-Wei Liang, Chia-Feng Tsai, Sneha P. Couvillion, Karin D. Rodland, Jun Zhu, Liang-Bo Wang, Paul D. Piehowski, Antonio Colaprico, Anupriya Agarwal, Matthew A. Wyczalkowski, Umut Ozbek, Francesca Petralia, Alexis Demopoulos, William W. Maggio, Lin Chen, Katherine A. Hoadley, Richard D. Smith, Sandra Cottingham, John McGee, Marcin J. Domagalski, Houxiang Zhu, Emek Demir, Rebecca I. Montgomery, Jamie Moon, Rashna Madan, George D. Wilson, Luciano Garofano, Ewa P. Malc, Chelsea J. Newton, Steven A. Carr, Chandan Kumar-Sinha, Donghui Tan, Christopher R. Kinsinger, Oxana Paklina, Weiqing Wan, Stephanie De Young, Sandra Cerda, Shankha Satpathy, Wojciech Kaspera, Linda Hannick, Gad Getz, Runyu Hong, Shuangjia Lu, Ziad Hanhan, Daniel C. Rohrer, Annette Marrero-Oliveras, Wojciech Szopa, Yuxing Liao, Amanda G. Paulovich, Jiayi Ji, Denis A. Golbin, Tara Hiltke, Weiva Sieh, Piotr A. Mieczkowski, Matthew E. Monroe, Gilbert S. Omenn, Jill S. Barnholtz-Sloan, Azra Krek, Bing Zhang, Brittany Henderson, Peter B. McGarvey, Ratna R. Thangudu, Maciej Wiznerowicz, Saravana M. Dhanasekaran, Alex Webster, Kai Li, Karna Robinson, Nan Ji, Karl K. Weitz, Simina M. Boca, Xiaoyu Song, Anna Calinawan, Adam C. Resnick, Brian J. Druker, Dana R. Valley, David J. Clark, Tao Liu, Eric J. Jaehnig, Alicia Francis, Michele Ceccarelli, Rui Zhao, Dmitry Rykunov, Boris Reva, Elizabeth R. Duffy, Antonio Iavarone, Dave Tabor, Joshua F. McMichael, Daniel Cui Zhou, Maureen Dyer, Kimberly Elburn, Scott D. Jewell, Negin Vatanian, Shirley Tsang, Seungyeul Yoo, Alexander R. Pico, Grace Zhao, Kent J. Bloodsworth, Chet Birger, Jena Lilly, Eunkyung An, Jeffrey R. Whiteaker, Albert H. Kim, Yige Wu, Karen A. Ketchum, Felipe D. Leprevost, Alcida Karz, Uma Borate, Nathan Edwards, Uma Velvulou, Melissa Borucki, Vasileios Stathias, Sanford P. Markey, Corbin D. Jones, Ronald J. Moore, MacIntosh Cornwell, Karsten Krug, Michael J. Birrer, James Suh, Tomasz Czernicki, Jason E. McDermott, Emily S. Boja, Pei Wang, Nina Martinez, Wenke Liu, Yan Shi, Lili Blumenberg, Emily Kawaler, Jeffrey W. Tyner, Feng Chen, Jakub Stawicki, Ki Sung Um, Arul M. Chinnaiyan, Robert Zelt, Jacob J. Day, Zhen Zhang, Caleb M. Lindgren, Li Ding, Nikolay Gabrovski, Hongwei Liu, Jonathan T. Lei, Alla Karpova, Ramani B. Kothadia, Sailaja Mareedu, Mitual Amin, Hannah Boekweg, Jennifer E. Kyle, Sara R. Savage, Brian R. Rood, Yuriy Zakhartsev, Matthew L. Anderson, Alyssa Charamut, Wagma Caravan, Shakti Ramkissoon, Junmei Wang, Song Cao, Samuel H. Payne, Rosalie K. Chu, Rajiv Dhir, David W. Andrews, Galen Hostetter, Liqun Qi, Zhiao Shi, Milan G. Chheda, Robert Edwards, Hui Zhang, Weiping Ma, Jennifer M. Eschbacher, Stacey Gabriel, Jan Lubinski, Lijun Yao, Erika M. Zink, Kelly L. Stratton, William Bocik, Mathangi Thiagarajan, Shilpi Singh, Michael A. Gillette, Lisa M. Bramer, Thomas L. Bauer, Michael Vernon, Henry Rodriguez, Dimitris G. Placantonakis, Eric E. Schadt, Alexey I. Nesvizhskii, Vladislav A. Petyuk, Ana I. Robles, Yvonne Shutack, Anna Malovannaya, Stephen E. Stein, Xi Chen, Lyndon Kim, Yize Li, Shannon Richey, Stephan C. Schürer, Barbara Hindenach, Matthew J. Ellis, Yongchao Dou, David Fenyö, Amy M. Perou, Olga Potapova, Shrabanti Chowdhury, Andrew K. Godwin, Marcin Cieślik, Michael C. Wendl, Marina A. Gritsenko, Pietro Pugliese, Elie Traer, Simona Migliozzi, D. R. Mani, Houston Culpepper, Gregory J. Riggins, Xiaolu Yang, Mehdi Mesri, David Chesla, Lindsey K. Olsen, Lori J. Sokoll, Suhas Vasaikar, Liwei Zhang, Meghan C. Burke, Kelly V. Ruggles, Qing Kay Li, Daniel W. Chan, Bo Wen, Nicollette Maunganidze, Darlene Tansil, Joseph H. Rothstein, Barbara Pruetz, Pushpa Hariharan, Wang, L. -B., Karpova, A., Gritsenko, M. A., Kyle, J. E., Cao, S., Li, Y., Rykunov, D., Colaprico, A., Rothstein, J. H., Hong, R., Stathias, V., Cornwell, M., Petralia, F., Wu, Y., Reva, B., Krug, K., Pugliese, P., Kawaler, E., Olsen, L. K., Liang, W. -W., Song, X., Dou, Y., Wendl, M. C., Caravan, W., Liu, W., Cui Zhou, D., Ji, J., Tsai, C. -F., Petyuk, V. A., Moon, J., Ma, W., Chu, R. K., Weitz, K. K., Moore, R. J., Monroe, M. E., Zhao, R., Yang, X., Yoo, S., Krek, A., Demopoulos, A., Zhu, H., Wyczalkowski, M. A., Mcmichael, J. F., Henderson, B. L., Lindgren, C. M., Boekweg, H., Lu, S., Baral, J., Yao, L., Stratton, K. G., Bramer, L. M., Zink, E., Couvillion, S. P., Bloodsworth, K. J., Satpathy, S., Sieh, W., Boca, S. M., Schurer, S., Chen, F., Wiznerowicz, M., Ketchum, K. A., Boja, E. S., Kinsinger, C. R., Robles, A. I., Hiltke, T., Thiagarajan, M., Nesvizhskii, A. I., Zhang, B., Mani, D. R., Ceccarelli, M., Chen, X. S., Cottingham, S. L., Li, Q. K., Kim, A. H., Fenyo, D., Ruggles, K. V., Rodriguez, H., Mesri, M., Payne, S. H., Resnick, A. C., Wang, P., Smith, R. D., Iavarone, A., Chheda, M. G., Barnholtz-Sloan, J. S., Rodland, K. D., Liu, T., Ding, L., Agarwal, A., Amin, M., An, E., Anderson, M. L., Andrews, D. W., Bauer, T., Birger, C., Birrer, M. J., Blumenberg, L., Bocik, W. E., Borate, U., Borucki, M., Burke, M. C., Cai, S., Calinawan, A. P., Carr, S. A., Cerda, S., Chan, D. W., Charamut, A., Chen, L. S., Chesla, D., Chinnaiyan, A. M., Chowdhury, S., Cieslik, M. P., Clark, D. J., Culpepper, H., Czernicki, T., D'Angelo, F., Day, J., De Young, S., Demir, E., Dhanasekaran, S. M., Dhir, R., Domagalski, M. J., Druker, B., Duffy, E., Dyer, M., Edwards, N. J., Edwards, R., Elburn, K., Ellis, M. J., Eschbacher, J., Francis, A., Gabriel, S., Gabrovski, N., Garofano, L., Getz, G., Gillette, M. A., Godwin, A. K., Golbin, D., Hanhan, Z., Hannick, L. I., Hariharan, P., Hindenach, B., Hoadley, K. A., Hostetter, G., Huang, C., Jaehnig, E., Jewell, S. D., Ji, N., Jones, C. D., Karz, A., Kaspera, W., Kim, L., Kothadia, R. B., Kumar-Sinha, C., Lei, J., Leprevost, F. D., Li, K., Liao, Y., Lilly, J., Liu, H., Lubinski, J., Madan, R., Maggio, W., Malc, E., Malovannaya, A., Mareedu, S., Markey, S. P., Marrero-Oliveras, A., Martinez, N., Maunganidze, N., Mcdermott, J. E., Mcgarvey, P. B., Mcgee, J., Mieczkowski, P., Migliozzi, S., Modugno, F., Montgomery, R., Newton, C. J., Omenn, G. S., Ozbek, U., Paklina, O. V., Paulovich, A. G., Perou, A. M., Pico, A. R., Piehowski, P. D., Placantonakis, D. G., Polonskaya, L., Potapova, O., Pruetz, B., Qi, L., Ramkissoon, S., Resnick, A., Richey, S., Riggins, G., Robinson, K., Roche, N., Rohrer, D. C., Rood, B. R., Rossell, L., Savage, S. R., Schadt, E. E., Shi, Y., Shi, Z., Shutack, Y., Singh, S., Skelly, T., Sokoll, L. J., Stawicki, J., Stein, S. E., Suh, J., Szopa, W., Tabor, D., Tan, D., Tansil, D., Thangudu, R. R., Tognon, C., Traer, E., Tsang, S., Tyner, J., Um, K. S., Valley, D. R., Vasaikar, S., Vatanian, N., Velvulou, U., Vernon, M., Wan, W., Wang, J., Webster, A., Wen, B., Whiteaker, J. R., Wilson, G. D., Zakhartsev, Y., Zelt, R., Zhang, H., Zhang, L., Zhang, Z., Zhao, G., and Zhu, J.
- Subjects
Proteomics ,0301 basic medicine ,Cancer Research ,CPTAC ,Histone H2B acetylation ,Protein Tyrosine Phosphatase, Non-Receptor Type 11 ,Computational biology ,Biology ,Article ,03 medical and health sciences ,lipidome ,0302 clinical medicine ,Metabolomics ,proteogenomic ,Humans ,Phosphorylation ,EP300 ,proteomic ,Proteogenomics ,acetylome ,single nuclei RNA-seq ,Brain Neoplasms ,Phospholipase C gamma ,glioblastoma ,Computational Biology ,Lipidome ,030104 developmental biology ,Histone ,Oncology ,Acetylation ,030220 oncology & carcinogenesis ,Mutation ,biology.protein ,metabolome ,signaling - Abstract
Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment. Wang et al. perform integrated proteogenomic analysis of adult glioblastoma (GBM), including metabolomics, lipidomics, and single nuclei RNA-Seq, revealing insights into the immune landscape of GBM, cell-specific nature of EMT signatures, histone acetylation in classical GBM, and the existence of signaling hubs which could provide therapeutic vulnerabilities.
- Published
- 2021
4. PhosphoDisco: A Toolkit for Co-regulated Phosphorylation Module Discovery in Phosphoproteomic Data.
- Author
-
Schraink T, Blumenberg L, Hussey G, George S, Miller B, Mathew N, González-Robles TJ, Sviderskiy V, Papagiannakopoulos T, Possemato R, Fenyö D, and Ruggles KV
- Subjects
- Humans, Phosphorylation, Signal Transduction, Tandem Mass Spectrometry, Carcinoma, Non-Small-Cell Lung, Lung Neoplasms
- Abstract
Kinases are key players in cancer-relevant pathways and are the targets of many successful precision cancer therapies. Phosphoproteomics is a powerful approach to study kinase activity and has been used increasingly for the characterization of tumor samples leading to the identification of novel chemotherapeutic targets and biomarkers. Finding co-regulated phosphorylation sites which represent potential kinase-substrate sets or members of the same signaling pathway allows us to harness these data to identify clinically relevant and targetable alterations in signaling cascades. Unfortunately, studies have found that databases of co-regulated phosphorylation sites are only experimentally supported in a small number of substrate sets. To address the inherent challenge of defining co-regulated phosphorylation modules relevant to a given dataset, we developed PhosphoDisco, a toolkit for determining co-regulated phosphorylation modules. We applied this approach to tandem mass spectrometry based phosphoproteomic data for breast and non-small cell lung cancer and identified canonical as well as putative new phosphorylation site modules. Our analysis identified several interesting modules in each cohort. Among these was a new cell cycle checkpoint module enriched in basal breast cancer samples and a module of PRKC isozymes putatively co-regulated by CDK12 in lung cancer. We demonstrate that modules defined by PhosphoDisco can be used to further personalized cancer treatment strategies by establishing active signaling pathways in a given patient tumor or set of tumors, and in providing new ways to classify tumors based on signaling activity., Competing Interests: Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Rapid TCR:Epitope Ranker (RAPTER): a primary human T cell reactivity screening assay pairing epitope and TCR at single cell resolution.
- Author
-
Deering RP, Blumenberg L, Li L, Dhanik A, Jeong S, Pourpe S, Song H, Boucher L, Ragunathan S, Li Y, Zhong M, Kuhnert J, Adler C, Hawkins P, Gupta NT, Moore M, Ni M, Hansen J, Wei Y, and Thurston G
- Subjects
- Humans, Receptors, Antigen, T-Cell genetics, Cell Membrane, Epitopes, T-Lymphocyte, CD8-Positive T-Lymphocytes
- Abstract
Identifying epitopes that T cells respond to is critical for understanding T cell-mediated immunity. Traditional multimer and other single cell assays often require large blood volumes and/or expensive HLA-specific reagents and provide limited phenotypic and functional information. Here, we present the Rapid TCR:Epitope Ranker (RAPTER) assay, a single cell RNA sequencing (scRNA-SEQ) method that uses primary human T cells and antigen presenting cells (APCs) to assess functional T cell reactivity. Using hash-tag oligonucleotide (HTO) coding and T cell activation-induced markers (AIM), RAPTER defines paired epitope specificity and TCR sequence and can include RNA- and protein-level T cell phenotype information. We demonstrate that RAPTER identified specific reactivities to viral and tumor antigens at sensitivities as low as 0.15% of total CD8
+ T cells, and deconvoluted low-frequency circulating HPV16-specific T cell clones from a cervical cancer patient. The specificities of TCRs identified by RAPTER for MART1, EBV, and influenza epitopes were functionally confirmed in vitro. In summary, RAPTER identifies low-frequency T cell reactivities using primary cells from low blood volumes, and the resulting paired TCR:ligand information can directly enable immunogenic antigen selection from limited patient samples for vaccine epitope inclusion, antigen-specific TCR tracking, and TCR cloning for further therapeutic development., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
6. BlackSheep: A Bioconductor and Bioconda Package for Differential Extreme Value Analysis.
- Author
-
Blumenberg L, Kawaler EA, Cornwell M, Smith S, Ruggles KV, and Fenyö D
- Subjects
- Humans, Proteomics, Genome, Software
- Abstract
Unbiased assays such as shotgun proteomics and RNA-seq provide high-resolution molecular characterization of tumors. These assays measure molecules with highly varied distributions, making interpretation and hypothesis testing challenging. Samples with the most extreme measurements for a molecule can reveal the most interesting biological insights yet are often excluded from analysis. Furthermore, rare disease subtypes are, by definition, underrepresented in cancer cohorts. To provide a strategy for identifying molecules aberrantly enriched in small sample cohorts, we present BlackSheep, a package for nonparametric description and differential analysis of genome-wide data, available from Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/blacksheepr.html) and Bioconda (https://bioconda.github.io/recipes/blksheep/README.html). BlackSheep is a complementary tool to other differential expression analysis methods, which is particularly useful when analyzing small subgroups in a larger cohort.
- Published
- 2021
- Full Text
- View/download PDF
7. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy.
- Author
-
Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen Y, Tang LC, Heiman DI, Cao S, Maruvka YE, Lei JT, Huang C, Kothadia RB, Colaprico A, Birger C, Wang J, Dou Y, Wen B, Shi Z, Liao Y, Wiznerowicz M, Wyczalkowski MA, Chen XS, Kennedy JJ, Paulovich AG, Thiagarajan M, Kinsinger CR, Hiltke T, Boja ES, Mesri M, Robles AI, Rodriguez H, Westbrook TF, Ding L, Getz G, Clauser KR, Fenyö D, Ruggles KV, Zhang B, Mani DR, Carr SA, Ellis MJ, and Gillette MA
- Subjects
- APOBEC Deaminases metabolism, Adult, Aged, Aged, 80 and over, Breast Neoplasms immunology, Breast Neoplasms therapy, Cohort Studies, DNA Damage, DNA Repair, Female, Humans, Immunotherapy, Metabolomics, Middle Aged, Mutagenesis genetics, Phosphorylation, Protein Kinase Inhibitors pharmacology, Protein Kinases metabolism, Receptor, ErbB-2 metabolism, Retinoblastoma Protein metabolism, Tumor Microenvironment immunology, Breast Neoplasms genetics, Breast Neoplasms pathology, Carcinogenesis genetics, Carcinogenesis pathology, Molecular Targeted Therapy, Proteogenomics
- Abstract
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy., Competing Interests: Declaration of Interests M.J.E reports ownership and royalties associated with Bioclassifier LLC through sales by Nanostring LLC and Veracyte for the “Prosigna” breast cancer prognostic test. He also reports ad hoc consulting for AstraZeneca, Foundation Medicine, G1 Therapeutics, Novartis, Sermonix, Abbvie, Lilly and Pfizer. B.Z. has received research funding from Bristol-Myers Squibb. S.A.C. is a scientific advisory board member of Kymera, PTM BioLabs, and Seer and ad hoc consultant to Pfizer and Biogen., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
8. Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase ε.
- Author
-
Sviderskiy VO, Blumenberg L, Gorodetsky E, Karakousi TR, Hirsh N, Alvarez SW, Terzi EM, Kaparos E, Whiten GC, Ssebyala S, Tonzi P, Mir H, Neel BG, Huang TT, Adams S, Ruggles KV, and Possemato R
- Subjects
- Animals, Apoptosis, Breast Neoplasms genetics, Breast Neoplasms metabolism, Carcinoma, Basal Cell genetics, Carcinoma, Basal Cell metabolism, Cell Cycle, Cell Proliferation, Cyclin-Dependent Kinase 2 genetics, DNA Damage, DNA Polymerase II genetics, Female, Humans, Mice, Mice, Inbred NOD, Phosphorylation, Poly-ADP-Ribose Binding Proteins genetics, Signal Transduction, Tumor Cells, Cultured, Breast Neoplasms pathology, Carcinoma, Basal Cell pathology, Cyclin-Dependent Kinase 2 metabolism, DNA Polymerase II metabolism, Genomic Instability, Poly-ADP-Ribose Binding Proteins metabolism
- Abstract
Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE., Competing Interests: Declaration of Interests B.G.N. is cofounder of, holds equity in, and received consulting fees from Navire Pharmaceuticals and Northern Biologics, Inc. He receives consulting fees and has equity in Jengu Therapeutics. His spouse has equity in Mirati Therapeutics; Amgen, Inc.; Regeneron Pharmaceuticals; and Moderna Therapeutics. The other authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
9. Hypercluster: a flexible tool for parallelized unsupervised clustering optimization.
- Author
-
Blumenberg L and Ruggles KV
- Subjects
- Algorithms, Cluster Analysis, Computational Biology, User-Computer Interface
- Abstract
Background: Unsupervised clustering is a common and exceptionally useful tool for large biological datasets. However, clustering requires upfront algorithm and hyperparameter selection, which can introduce bias into the final clustering labels. It is therefore advisable to obtain a range of clustering results from multiple models and hyperparameters, which can be cumbersome and slow., Results: We present hypercluster, a python package and SnakeMake pipeline for flexible and parallelized clustering evaluation and selection. Users can efficiently evaluate a huge range of clustering results from multiple models and hyperparameters to identify an optimal model., Conclusions: Hypercluster improves ease of use, robustness and reproducibility for unsupervised clustering application for high throughput biology. Hypercluster is available on pip and bioconda; installation, documentation and example workflows can be found at: https://github.com/ruggleslab/hypercluster .
- Published
- 2020
- Full Text
- View/download PDF
10. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma.
- Author
-
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, and Carr SA
- Subjects
- Adenocarcinoma of Lung immunology, Adult, Aged, Aged, 80 and over, Biomarkers, Tumor metabolism, Carcinogenesis genetics, Carcinogenesis pathology, DNA Copy Number Variations genetics, DNA Methylation genetics, Female, Humans, Lung Neoplasms immunology, Male, Middle Aged, Mutation genetics, Oncogene Proteins, Fusion, Phenotype, Phosphoproteins metabolism, Proteome metabolism, Adenocarcinoma of Lung drug therapy, Adenocarcinoma of Lung genetics, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Proteogenomics
- Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas., Competing Interests: Declaration of Interests B.Z. has received research funding from Bristol-Myers Squibb. All other authors have no conflict of interests to declare., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
11. Proteogenomic Characterization of Endometrial Carcinoma.
- Author
-
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, and Fenyö D
- Subjects
- Acetylation, Animals, Antigens, Neoplasm genetics, Carcinoma immunology, Carcinoma pathology, Endometrial Neoplasms immunology, Endometrial Neoplasms pathology, Epithelial-Mesenchymal Transition genetics, Feedback, Physiological, Female, Genomic Instability, Humans, Mice, MicroRNAs genetics, MicroRNAs metabolism, Microsatellite Repeats, Phosphorylation, Protein Processing, Post-Translational, Proteome metabolism, Signal Transduction, Carcinoma genetics, Endometrial Neoplasms genetics, Gene Expression Regulation, Neoplastic, Proteome genetics, Transcriptome
- Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets., Competing Interests: Declaration Of Interests The authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
12. Impaired Expression of Rearranged Immunoglobulin Genes and Premature p53 Activation Block B Cell Development in BMI1 Null Mice.
- Author
-
Cantor DJ, King B, Blumenberg L, DiMauro T, Aifantis I, Koralov SB, Skok JA, and David G
- Subjects
- Animals, Cell Differentiation physiology, Female, Gene Expression, Male, Mice, Mice, Knockout, Polycomb Repressive Complex 1 deficiency, Polycomb Repressive Complex 1 genetics, Proto-Oncogene Proteins deficiency, Proto-Oncogene Proteins genetics, Tumor Suppressor Protein p53 genetics, B-Lymphocytes cytology, B-Lymphocytes immunology, Gene Rearrangement, B-Lymphocyte, Genes, Immunoglobulin, Polycomb Repressive Complex 1 immunology, Proto-Oncogene Proteins immunology, Tumor Suppressor Protein p53 immunology
- Abstract
B cell development is a highly regulated process that requires stepwise rearrangement of immunoglobulin genes to generate a functional B cell receptor (BCR). The polycomb group protein BMI1 is required for B cell development, but its function in developing B cells remains poorly defined. We demonstrate that BMI1 functions in a cell-autonomous manner at two stages during early B cell development. First, loss of BMI1 results in a differentiation block at the pro-B cell to pre-B cell transition due to the inability of BMI1-deficient cells to transcribe newly rearranged Igh genes. Accordingly, introduction of a pre-rearranged Igh allele partially restored B cell development in Bmi1
-/- mice. In addition, BMI1 is required to prevent premature p53 signaling, and as a consequence, Bmi1-/- large pre-B cells fail to properly proliferate. Altogether, our results clarify the role of BMI1 in early B cell development and uncover an unexpected function of BMI1 during VDJ recombination., (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
13. Capturing the Onset of PRC2-Mediated Repressive Domain Formation.
- Author
-
Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, Skok JA, and Reinberg D
- Subjects
- Animals, Chromatin metabolism, Gene Silencing, Histone Code, Histones metabolism, Lysine metabolism, Methylation, Mice, Mice, Inbred C57BL, Mouse Embryonic Stem Cells, Protein Binding, Protein Processing, Post-Translational, Polycomb Repressive Complex 2 metabolism, Polycomb-Group Proteins metabolism
- Abstract
Polycomb repressive complex 2 (PRC2) maintains gene silencing by catalyzing methylation of histone H3 at lysine 27 (H3K27me2/3) within chromatin. By designing a system whereby PRC2-mediated repressive domains were collapsed and then reconstructed in an inducible fashion in vivo, a two-step mechanism of H3K27me2/3 domain formation became evident. First, PRC2 is stably recruited by the actions of JARID2 and MTF2 to a limited number of spatially interacting "nucleation sites," creating H3K27me3-forming Polycomb foci within the nucleus. Second, PRC2 is allosterically activated via its binding to H3K27me3 and rapidly spreads H3K27me2/3 both in cis and in far-cis via long-range contacts. As PRC2 proceeds further from the nucleation sites, its stability on chromatin decreases such that domains of H3K27me3 remain proximal, and those of H3K27me2 distal, to the nucleation sites. This study demonstrates the principles of de novo establishment of PRC2-mediated repressive domains across the genome., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
14. miRNAs Are Essential for the Regulation of the PI3K/AKT/FOXO Pathway and Receptor Editing during B Cell Maturation.
- Author
-
Coffre M, Benhamou D, Rieß D, Blumenberg L, Snetkova V, Hines MJ, Chakraborty T, Bajwa S, Jensen K, Chong MMW, Getu L, Silverman GJ, Blelloch R, Littman DR, Calado D, Melamed D, Skok JA, Rajewsky K, and Koralov SB
- Subjects
- Animals, Down-Regulation, Forkhead Transcription Factors metabolism, Immunoglobulin Light Chains genetics, Mice, Phosphatidylinositol 3-Kinases metabolism, Proto-Oncogene Proteins c-akt metabolism, Proto-Oncogene Proteins c-bcl-2 metabolism, RNA Interference, RNA-Binding Proteins metabolism, Ribonuclease III metabolism, Spleen cytology, Transgenes, B-Lymphocytes cytology, B-Lymphocytes metabolism, Cell Differentiation genetics, Gene Expression Regulation, MicroRNAs metabolism, RNA Editing genetics, Receptors, Antigen, B-Cell metabolism, Signal Transduction genetics
- Abstract
B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development., (Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
15. RAG Off-Target Activity Is in the Loop.
- Author
-
Blumenberg L and Skok JA
- Subjects
- Animals, Genome, High-Throughput Nucleotide Sequencing, Mice, Models, Biological, Protein Sorting Signals, Recombinases metabolism, V(D)J Recombination genetics
- Abstract
The 'off-target' activity of RAG recombinases contributes to mutations and cancer. Recent studies show that the influence of DNA regulatory elements is largely constrained by the formation of chromatin loops and interaction frequencies. Now, the Alt lab has identified major RAG off-target activity bearing similar limitations, with joining events restricted to convergent paired RSS elements in loop domains., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
16. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.
- Author
-
Kim E, Lin Y, Kerney R, Blumenberg L, and Bishop C
- Subjects
- Animals, Base Sequence, DNA, Plant genetics, DNA, Ribosomal genetics, Genetic Variation genetics, Molecular Sequence Data, North America, Phylogeny, RNA, Ribosomal, 18S genetics, Sequence Alignment, Sequence Analysis, DNA, Volvocida genetics, Ambystoma physiology, Ovum physiology, Ranidae physiology, Symbiosis physiology, Volvocida physiology
- Abstract
Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.