28 results on '"Blecken GT"'
Search Results
2. Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams.
- Author
-
Kali SE, Österlund H, Viklander M, and Blecken GT
- Subjects
- Rain, Cities, Alkanesulfonic Acids analysis, Water Pollutants, Chemical analysis, Fluorocarbons analysis, Rivers chemistry, Geologic Sediments chemistry, Environmental Monitoring
- Abstract
Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems. River water was sampled during dry (DW) and wet weather (WW) upstream, immediately downstream, and further downstream of three urbanized areas with separate sewer systems and with and without point sources (i.e. waste water treatment plant, airports). Water samples were analyzed for 34 targeted PFAS compounds and sediment samples for 35 targeted PFAS and 30 PFAS compounds using a total oxidizable precursor assay. The sum of the quantified PFAS concentrations ranged from the reporting limit (RL) to 84.7 ng/L during DW and increased as the streams were affected by WW discharges (0.87 to 102.3 ng/L). The highest PFAS concentrations were found downstream of urban areas and/or point sources (i.e. airports) during WW, indicating a clear contribution from stormwater discharges. A consistent PFAS contribution from the WWTP was observed under both DW and WW conditions. During WW events, concentrations of perfluorooctanesulfonic acid (PFOS) and total PFAS (PFOA equivalents) exceeded the annual average environmental quality standards, which are an established limit of 0.65 ng/L for PFOS and a proposed limit of 4.4 ng/L for total PFAS. Notably, except for the legacy PFAS, PFOS and perfluorooctanoic acid (PFOA), the most frequently quantified PFAS during DW were short-chain. For WW, long-chain perfluorocarboxylic acids (PFCAs) and a precursor, 6:2 Fluorotelomer sulfonic acid (6:2 FTS), were more frequently quantified, suggesting stormwater is a source of these longer-chain and particle-associated PFAS. The detection of unregulated fluorotelomer sulfonates (FTSs) such as 6:2 and 8:2 FTS during WW suggests a need for regulatory action, as these compounds can degrade into more stable PFAS. In sediment, higher concentrations, and a greater variety of PFAS were found at sites with known point sources i.e. airports. Long-chain PFCAs (C7-C13), perfluoroalkyl sulfonates (PFSAs) (C6), and precursors (i.e. N-Ethyl perfluorooctane sulfonamidoacetic acid), were more prevalent in sediments than in the water. Notably, PFOS concentrations in sediment exceeded the lowest Predicted No-Effect Concentration (PNEC) across sites, posing a potential long-term environmental risk, though current PNECs for other PFAS may underestimate such risks. The findings of the study highlight urban stormwater as a source of PFAS to urban streams indicating the need to minimize PFAS sources in the urban environment and to effectively treat stormwater to protect receiving water bodies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
3. Intra-event variations of organic micropollutants in highway runoff and a presedimentation-biofilter treatment facility.
- Author
-
Beryani A, Flanagan K, Viklander M, and Blecken GT
- Abstract
The study assessed the quality of highway runoff and a stormwater treatment system, focusing on intra-event variations (IEVs: variations within a runoff/effluent event) of the concentration of organic micropollutants (OMPs) including bisphenol-A, alkylphenols, polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons (PHCs). IEVs of OMPs varied considerably with no particular recurring pattern in highway runoff and presedimentation effluent, displaying sporadic strong first flushes. IEVs are significantly associated with rainfall intensity variations, especially for particle-bound substances such as PAHs and PHCs. However, phenolic substances showed distinct IEV patterns compared to total suspended solids, PAHs, and PHCs, likely due to their higher solubility and mobility. Downstream sand filter (SF) and vegetated biofilter (BFC) mitigated IEVs, leading to more uniform discharge during outflow events. Although BFC's IEVs were indiscernible due to low effluent concentrations, SF's IEVs often peaked at the beginning of events (within the first 100 of ⁓600 m
3 ), exceeding the lowest predicted non-effect concentrations for five PAHs, bisphenol-A, and octylphenol. This study highlights the advantage of IEV analysis over conventional event mean concentration analysis for identifying critical effluent stages, crucial for developing control strategies to protect sensitive water recipients or for reuse applications., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Godecke-Tobias Blecken and Maria Viklander report financial support was provided by Swedish Research Council Formas. Godecke-Tobias Blecken and Maria Viklander report financial support was provided by Sweden’s Innovation Agency. Godecke-Tobias Blecken and Maria Viklander report financial support was provided by The Swedish Water & Wastewater Association. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Occurrence, Concentration, and Distribution of 35 PFASs and Their Precursors Retained in 20 Stormwater Biofilters.
- Author
-
Beryani A, Furén R, Österlund H, Tirpak A, Smith J, Dorsey J, Winston RJ, Viklander M, and Blecken GT
- Subjects
- Fluorocarbons analysis, Environmental Monitoring, Filtration, Water Pollutants, Chemical analysis
- Abstract
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ
35 PFAS concentrations of <0.03-19 and 0.064-16 μg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.- Published
- 2024
- Full Text
- View/download PDF
5. Embracing epistemic uncertainty: a risk evaluation method for pollutants in stormwater.
- Author
-
Pons V, Strømberg M, Blecken GT, Tscheikner-Gratl F, Viklander M, and Muthanna TM
- Subjects
- Uncertainty, Risk Assessment methods, Rain, Models, Theoretical, Environmental Monitoring methods, Water Pollutants, Chemical analysis
- Abstract
In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant concentration. Such information can be used in a risk management context and to design smart monitoring campaigns., Competing Interests: The authors declare no conflicts of interest., (© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
6. Performance of a gross pollutant trap-biofilter and sand filter treatment train for the removal of organic micropollutants from highway stormwater (field study).
- Author
-
Beryani A, Flanagan K, Viklander M, and Blecken GT
- Abstract
This field study assessed the occurrence, event mean concentrations (EMCs), and removal of selected organic micro-pollutants (OMPs), namely, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), nonylphenol (NP), 4-t-octylphenol (OP), and bisphenol A (BPA), in a gross pollutant trap (GPT)-biofilter/sand filter stormwater treatment train in Sundsvall, Sweden. The effects of design features of each treatment unit, including pre-sedimentation (GPT), sand filter medium, vegetation, and chalk amendment, were investigated by comparing the units' removal performances. Overall, the treatment train removed most OMPs from highway runoff effectively. The results showed that although the sand filter provided moderate (<50 % for phenolic substances) to high (50-80 % for PAHs and PHCs) removal of OMPs, adding a vegetated soil layer on top of the sand filter considerably improved the removal performance (by at least 30 %), especially for BPA, OP, and suspended solids. Moreover, GTP did not contribute to the treatment significantly. Uncertainties in the removal efficiencies of PAHs and PHCs by the filter cells increased substantially when the ratio of the influent concentration to the limit of quantification decreased. Thus, accounting for such uncertainties due to the low OMP concentrations should be considered when evaluating the removal performance of biofilters., Competing Interests: Declaration of competing interest Not applicable., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Plant water use related to leaf traits and CSR strategies of 10 common European green roof species.
- Author
-
Lönnqvist J, Farrell C, Schrieke D, Viklander M, and Blecken GT
- Subjects
- Biomass, Plants, Plant Leaves physiology, Conservation of Natural Resources, Water
- Abstract
The vegetation layer contributes to multiple functions of green roofs including their hydrological function as plants remove water from substrates between rainfall events through evapotranspiration, restoring the green roofs storage capacity for rainfall retention. While individual traits have been related to water use strategies of green roof plants, these traits are inconsistent, suggesting the importance of trait combinations which may be reflected in CSR (competitor, stress tolerator, ruderal) strategies. Therefore, relating plant water use to leaf traits and CSR strategies could help facilitate green roof plant selection into new geographical regions where green roof technology is developing. For example, in high latitude northern European regions with long daylight during the growing season. Growth (shoot biomass, relative growth rate and leaf area), leaf traits (leaf dry matter content, specific leaf area and succulence) and CSR strategies were determined of 10 common European green roof plants and related to their water use under well-watered (WW) and water-deficit (WD) conditions. All three succulent species included in the experiment showed mostly stress tolerant traits and their water loss was less than the bare unplanted substrate, likely due to mulching of the substrate surface. Plants with greater water use under WW conditions had more ruderal and competitive strategies, and greater leaf area and shoot biomass, than species with lower WW water use. However, the four species with the highest water use under WW conditions were able to downregulate their water use under WD, indicating that they could both retain rainfall and survive periods of water limitations. This study indicates that, for optimal stormwater retention, green roof plant selection in high latitude regions like northern Europe, should focus on selecting non-succulent plants with predominantly competitive or ruderal strategies to make the most of the long daylight during the short growing season., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. Occurrence and concentrations of organic micropollutants (OMPs) in highway stormwater: a comparative field study in Sweden.
- Author
-
Beryani A, Flanagan K, Viklander M, and Blecken GT
- Subjects
- Environmental Monitoring, Sweden, Rain, Water Pollutants, Chemical analysis, Polycyclic Aromatic Hydrocarbons analysis
- Abstract
This study details the occurrence and concentrations of organic micropollutants (OMPs) in stormwater collected from a highway bridge catchment in Sweden. The prioritized OMPs were bisphenol-A (BPA), eight alkylphenols, sixteen polycyclic aromatic hydrocarbons (PAHs), and four fractions of petroleum hydrocarbons (PHCs), along with other global parameters, namely, total organic carbon (TOC), total suspended solids (TSS), turbidity, and conductivity (EC). A Monte Carlo (MC) simulation was applied to estimate the event mean concentrations (EMC) of OMPs based on intra-event subsamples during eight rain events, and analyze the associated uncertainties. Assessing the occurrence of all OMPs in the catchment and comparing the EMC values with corresponding environmental quality standards (EQSs) revealed that BPA, octylphenol (OP), nonylphenol (NP), five carcinogenic and four non-carcinogenic PAHs, and C
16 -C40 fractions of PHCs can be problematic for freshwater. On the other hand, alkylphenol ethoxylates (OPnEO and NPnEO), six low molecule weight PAHs, and lighter fractions of PHCs (C10 -C16 ) do not occur at levels that are expected to pose an environmental risk. Our data analysis revealed that turbidity has a strong correlation with PAHs, PHCs, and TSS; and TOC and EC highly associated with BPA concentrations. Furthermore, the EMC error analysis showed that high uncertainty in OMP data can influence the final interpretation of EMC values. As such, some of the challenges that were experienced in the presented research yielded suggestions for future monitoring programs to obtain more reliable data acquisition and analysis., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
9. Abundance, distribution, and composition of microplastics in the filter media of nine aged stormwater bioretention systems.
- Author
-
Lange K, Furén R, Österlund H, Winston R, Tirpak RA, Nordqvist K, Smith J, Dorsey J, Viklander M, and Blecken GT
- Subjects
- Rain, Microplastics, Plastics
- Abstract
Bioretention systems are designed for quality treatment of stormwater. Particulate contaminants are commonly treated efficiently and accumulate mainly in the surface layer of the bioretention filter material. However, concerns exist that microplastic particles may not show equal accumulation behavior as other sediment particles. So far only two field and two laboratory studies are available on the fate of microplastics in few relatively newly built bioretention systems. Therefore, this study investigated the abundance and distribution of microplastics in nine 7-12 years old stormwater bioretention systems. It was found that microplastics generally accumulate on the surface of bioretention systems. Microplastic median particle concentrations decreased significantly from the surface layer (0-5 cm) of the filter material to the 10-15 cm depth layer from 448 to 136 particles/100 g, respectively. The distance to the inlet did not significantly affect the surface accumulation of microplastic particles, suggesting modest spatial variability in microplastics accumulation in older bioretention systems. Further, this study investigated the polymer composition in bioretention systems. It was shown that PP, EVA, PS and EPDM rubber are the most abundant polymer types in bioretention systems. Also, it was found that large percentages of microplastic particles are black particles (median percentage of black particles: 39%) which were found in 28 of the 33 investigated samples. This underlines the importance of including black particles in microplastic studies on stormwater, which has been overlooked in most previous studies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
10. Variability of green infrastructure performance due to climatic regimes across Sweden.
- Author
-
Mantilla I, Flanagan K, Muthanna TM, Blecken GT, and Viklander M
- Subjects
- Sweden, Snow chemistry, Hydrology, Seasons, Water Movements, Rain
- Abstract
In the context of increasing urbanization and global warming, there is a growing interest in the implementation of green infrastructure (GI) across different climates and regions. Identifying an appropriate GI design criteria is essential to ensure that the design is tailored to satisfy local environmental requirements. This article aims to compare the hydrological performance of GI facilities in eleven Swedish cities by isolating the effect of climatic conditions using an identical GI design configuration. Long-term simulations based on 23-years of meteorological time-series were used as inputs for the Storm Water Management Model (SWMM) with Low Impact Development (LID) controls representing two types of facilities: a biofilter cell (BC) and a green roof. (GR). Large differences in potential annual and seasonal runoff retention were found between locations, driven mainly by the extent of winter/spring season, and the distribution of precipitation patterns (for BCs) and the sequence of rainy days-dry periods and evapotranspiration rates (for GRs). Winter/spring and summer demonstrated the highest/lowest differences between the seasons, results that suggest that implications for design might be aligned to the spatio-temporal distribution of precipitation patterns, and runoff regimes generated by snowmelt and rain-on-snow events, in locations where snowmelt represent high portion of runoff generation., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Maria Viklander reports financial support was provided by Sweden’s Innovation Agency., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Occurrence, concentration, and distribution of 38 organic micropollutants in the filter material of 12 stormwater bioretention facilities.
- Author
-
Furén R, Flanagan K, Winston RJ, Tirpak RA, Dorsey JD, Viklander M, and Blecken GT
- Subjects
- Rain, Water Supply, Environmental Pollutants, Water Pollutants, Chemical analysis, Water Purification
- Abstract
The increased use of bioretention facilities as a low impact development measure for treating stormwater runoff underscores the need to further understand their long-term function. Eventually, bioretention filter media must be (partly) replaced and disposed of at the end of its functional lifespan. While there are several studies of metal accumulation and distributions in bioretention media, less is known about organic pollutant pathways and accumulation in these filters. The present study considers the occurrence and accumulation of 16 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls, 13 phthalates, and two alkylphenols throughout 12 older bioretention facilities (7-13 years old) used for stormwater treatment in Michigan and Ohio, USA. These pollutant groups appear to behave similarly, with greater instances of detection and higher concentrations in the upper media layers which decrease with increased depth from the surface. The patterns of detection and concentration in the filter material may be explained by characteristics of the pollutants, such as molecular structures and solubility that affect the removal of the organic pollutants by the filter material. There is also a large variation in concentration magnitudes between the bioretention sites, most likely due to differences in pollutant sources, contributing catchment size and/or land uses., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
12. Correction to: Facilitating maintenance of stormwater ponds: comparison of analytical methods for determination of metal pollution.
- Author
-
Gavrić S, Flanagan K, Österlund H, Blecken GT, and Viklander M
- Published
- 2022
- Full Text
- View/download PDF
13. Facilitating maintenance of stormwater ponds: comparison of analytical methods for determination of metal pollution.
- Author
-
Gavrić S, Flanagan K, Österlund H, Blecken GT, and Viklander M
- Subjects
- Environmental Monitoring methods, Geologic Sediments analysis, Metals analysis, Water analysis, Ponds, Water Pollutants, Chemical analysis
- Abstract
Stormwater ponds are widely used for controlling runoff quality through the sedimentation of particles and associated pollutants. Their maintenance requires regular removal and disposal of accumulated material. This necessitates an assessment of material hazardousness, including potential hazard due to its contamination by metals. Here we analyze 32 stormwater pond sediment samples from 17 facilities using several chemical analysis methods (total extraction, sequential extraction, diffusive gradients in thin-films DGT, and pore water extraction) in order to consider the complementarity and comparability of the different approaches. No clear relationship was found between analyses that have the potential to measure similar metal fractions (DGT and either fraction 1 of the sequential extraction (adsorbed and exchangeable metals and carbonates) or pore water concentrations). Loss on ignition (LOI) had a significant positive correlation with an indicator of the environmental risk developed in this paper (∑ranks) that incorporates different metals, speciations, and environmental endpoints. Large variations in metal levels were observed between ponds. As clustering was limited between the different analyses, a comprehensive analysis of different parameters is still needed to fully understand metal speciation and bioavailability., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Investigation of intra - event variations of total, dissolved and truly dissolved metal concentrations in highway runoff and a gross pollutant trap - bioretention stormwater treatment train.
- Author
-
Lange K, Viklander M, and Blecken GT
- Subjects
- Cadmium, Lead, Rain, Water Supply, Environmental Pollutants, Water Pollutants, Chemical analysis, Water Purification
- Abstract
Metals in stormwater can be toxic to organisms, particularly when occurring in truly dissolved form (fraction <3 kDa). Here, using 153 samples collected during six rains, we investigated intra-events variations of total, dissolved and truly dissolved metal concentrations in highway runoff, and how they were affected by a stormwater treatment train, comprising a gross pollutant trap (GPT) and a bioretention system. Although intra-event variations in metal concentrations were observed in the highway stormwater, the effluent of the GPT and the effluent from the bioretention system, generally no "first flush" was observed. While total Pb, Cu and Zn concentrations were, on average, significantly reduced by the bioretention system (>76%, 79% and 94%, respectively), removal of dissolved metals was lower and truly dissolved Cd and Cu were generally not effectively removed (average removal Cd -11%, Cu 7.7%). Only for truly dissolved Zn was removal 65%. However, as with Cu, effluent Zn concentrations exceeded environmental threshold values. While Cu, Pb and Zn occurred in the highway runoff in particulate form, with average percentages of 86%, >99% and 72%, respectively, the speciation of Cu and Zn in the bioretention effluent shifted towards greater fractions of colloidal and truly dissolved metals. The GPT had no significant effect on metal concentrations and speciation., (Copyright © 2022. Published by Elsevier Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
15. Occurrence and concentration of 20-100 μm sized microplastic in highway runoff and its removal in a gross pollutant trap - Bioretention and sand filter stormwater treatment train.
- Author
-
Lange K, Österlund H, Viklander M, and Blecken GT
- Subjects
- Microplastics, Plastics, Rain, Water Supply, Environmental Pollutants, Water Purification
- Abstract
Microplastic pollution of stormwater can be a serious threat to the environment. Gross pollutant trap (GPT) - bioretention treatment trains have been shown previously to treat (inter alia) particulate stormwater pollutants including microplastic particles larger than 100 μm. This study was carried out to investigate whether such stormwater treatment trains also remove smaller 20 to 100 μm sized microplastic particles from highway runoff. Further, it investigates occurrence and concentration of 20 to 100 μm sized microplastic particles in highway runoff and which polymer types they can be assigned to. Volume proportional samples from nine rain events were taken from the incoming highway stormwater, from the gross pollutant trap effluent and the outflow from a bioretention system as well as a non-vegetated sand filter. The microplastic analyses were carried out using μFTIR and FTIR-ATR, which made it possible to detect particles where carbon black was present. It was found that 20 to 100 μm sized microplastic particles are abundant in highway runoff and that their concentrations are highly variable, with a median of 230 particles/L, a minimum of 42 particles/L and a maximum of 8577 particles/L. The dominant polymer types in highway stormwater were Polypropylene (PP), Ethylene Propylene Diene (EPDM) rubber and Ethylene-vinyl acetate (EVA). The treatment train with the bioretention system treated 20 to 200 μm sized microplastic particles significantly better than the treatment train with a non-vegetated sand filter, with median effluent concentrations of 26.5 particles/L and 121 particles/L, respectively. The GPT had no significant impact on the treatment of 20 to 100 μm sized microplastic particles., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
16. Survey of the operational status of twenty-six urban stormwater biofilter facilities in Sweden.
- Author
-
Beryani A, Goldstein A, Al-Rubaei AM, Viklander M, Hunt WF 3rd, and Blecken GT
- Subjects
- Cities, Rain, Soil, Sweden, Filtration, Water Purification
- Abstract
This study evaluates the operational status of twenty-six biofilter facilities across nine cities in Sweden, with respect to their functional design criteria, engineered design features (filter media composition, hydraulic conductivity, and drawdown time), and includes a visual inspection of the biofilter components (pre-treatment, in/outlet structures, filter media, and vegetation). These indicators were used to examine the performance level of each biofilter in achieving their design objectives set by the operators. Furthermore, it was investigated whether the biofilter facilities had been properly maintained to meet the objectives. Results indicate that the soil media used was consistent with respect to percentage sand, fines, and organic matter and comparable to design recommendations used by municipalities in other countries. The field-tested hydraulic conductivity for the biofilters ranged from 30 to 962 mm/h. This range of values, along with noticeable sediment accumulation within the biofilter indicate that not all the sites were operating optimally. Pre-treatment stages in poor condition with high volumes of sediment and litter accumulation were the primary causes for, and indicators of, low hydraulic conductivity rates. The ponding volume calculations revealed that at least 40 % of facilities did not have enough capacity to retain every-day and/or design rainfall due to design and/or construction flaws. These analyses raise concerns that, for a considerable number of the biofilters surveyed, water retention and flood protection identified by operators as prioritised objectives are not being met. This raises significant concerns about the functionality of biofilter in practice. Finally, some suggestions are given for tackling the design and maintenance problems discovered., (Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
17. Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap - bioretention treatment train.
- Author
-
Lange K, Magnusson K, Viklander M, and Blecken GT
- Subjects
- Hydrocarbons, Microplastics, Plastics, Rain, Rubber, Water Supply, Environmental Pollutants, Water Purification
- Abstract
Microplastic particles in stormwater pose significant threats to the environment. This study investigated how effective a stormwater treatment train was at removing rubber, bitumen and other microplastics (incl. fibers, fragments, and paint particles) in the 100-300 µm and >300 µm size fractions from highway runoff. The two treatment trains comprise a gross pollutant trap (GPT) followed by either a vegetated bioretention cell or non-vegetated sand filter. Flow-proportional composite samples were taken from the highway runoff, GPT outflow and the outflow from the two parallel filters during nine rain events to determine overall treatment performance, as well as the performance of individual system components. The identified rubber, bitumen and other microplastic particles mainly represented the 100-300 µm fraction and included high ratios of rubber (30%) and bitumen (60%). Overall, the treatment train efficiently removed rubber, bitumen and other microplastic particles in the 100-300 µm size fraction from the stormwater. The filter cells accounted for a major share of this removal, as the GPT did not reduce microplastic particle concentrations. This observation is likely explained by the fact that the rubber, bitumen and other microplastic particles have a density close to the density of water and thus removal by sedimentation is decreased. This identified an inherent weakness of the system; more specifically, the high microplastic concentrations in the surface water of the GPT means there can be a risk of microplastic release through overflow pits when inflows surpass the system capacity. Despite some differences, both the vegetated bioretention cell and the non-vegetated sand filter removed rubber, bitumen and other microplastic particles to similar extent., (Copyright © 2021. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
18. Contamination of Urban Stormwater Pond Sediments: A Study of 259 Legacy and Contemporary Organic Substances.
- Author
-
Flanagan K, Blecken GT, Österlund H, Nordqvist K, and Viklander M
- Subjects
- Cities, Environmental Monitoring, Geologic Sediments, Ponds, Polycyclic Aromatic Hydrocarbons analysis, Water Pollutants, Chemical analysis
- Abstract
Stormwater ponds improve water quality by facilitating the sedimentation of particles and particulate contaminants from urban runoff. Over time, this function entails the accumulation of contaminated sediments, which must be removed periodically to maintain a pond's hydraulic and treatment capacity. In this study, sediments from 17 stormwater sedimentation facilities from four Swedish municipalities were analyzed for 259 organic substances likely to be found in the urban environment. A total of 92 substances were detected in at least one sample, while as many as 52 substances were detected in a single sample. A typical profile of urban contamination was identified, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, organotins, aliphatic hydrocarbons, phthalates, aldehydes, polybrominated diphenyl ethers, perfluorinated substances, and alkylphenols. However, levels of contamination varied greatly between ponds, influenced heavily by the dilution of urban pollutants and wear particles from other sources of particles such as eroded soil, sand, or natural organic matter. For 22 of 32 samples, the observed concentrations of at least one organic substance exceeded the regulatory threshold values derived from toxicity data for both sediment and soil.
- Published
- 2021
- Full Text
- View/download PDF
19. Next generation swale design for stormwater runoff treatment: A comprehensive approach.
- Author
-
Ekka SA, Rujner H, Leonhardt G, Blecken GT, Viklander M, and Hunt WF
- Subjects
- Cities, Family Characteristics, Water Movements, Water Supply, Rain, Water Purification
- Abstract
Swales are the oldest and most common stormwater control measure for conveying and treating roadway runoff worldwide. Swales are also gaining popularity as part of stormwater treatment trains and as crucial elements in green infrastructure to build more resilient cities. To achieve higher pollutant reductions, swale alternatives with engineered media (bioswales) and wetland conditions (wet swales) are being tested. However, the available swale design guidance is primarily focused on hydraulic conveyance, overlooking their function as an important water quality treatment tool. The objective of this article is to provide science-based swale design guidance for treating targeted pollutants in stormwater runoff. This guidance is underpinned by a literature review. The results of this review suggest that well-maintained grass swales with check dams or infiltration swales are the best options for runoff volume reduction and removal of sediment and heavy metals. For nitrogen removal, wet swales are the most effective swale alternative. Bioswales are best for phosphorus and bacteria removal; both wet swales and bioswales can also treat heavy metals. Selection of a swale type depends on the site constraints, local climate, and available funding for design, construction, and operation. Appropriate siting, pre-design site investigations, and consideration of future maintenance during design are critical to successful long-term swale performance. Swale design recommendations based on a synthesis of the available research are provided, but actual design standards should be developed using local empirical data. Future research is necessary to identify optimal design parameters for all swale types, especially for wet swales., (Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
20. Effects of plant species and traits on metal treatment and phytoextraction in stormwater bioretention.
- Author
-
Lange K, Viklander M, and Blecken GT
- Subjects
- Biodegradation, Environmental, Biomass, Metals analysis, Plants, Soil, Metals, Heavy, Soil Pollutants analysis
- Abstract
To study effects of plant species selection on total and dissolved metal treatment performance of bioretention systems (BRS), 12 sets of columns were prepared, each planted with one of 12 species that are either widely used in BRS or have potentially important traits for metal removal (ability to hyperaccumulate metals, C4 photosynthesis, or ability to form mycorrhiza). Artificial stormwater was applied to half of the columns during all of a 31-week test period, while treatment of the others included a 5-week long dry period to test interactive effects of drying and plant traits on BRS metal treatment in more realistic alternating wet and dry conditions. Concentrations of metals (dissolved and total) in the effluent significantly differed between most columns with different plants, and the differences in concentrations of dissolved metals after the dry period were particularly important. Mean dissolved Cd concentrations exceeded Swedish reference values in effluents from BRS with two of the plant species, while mean dissolved Zn concentrations exceeded them in effluents from BRS with three of the species (and non-vegetated controls). Dissolved Cu leaching was observed in effluents from BRS with five of the plant species after the dry period, and mean concentrations exceeded Swedish reference values in effluents from all the BRS (including the constantly watered systems). Some support in terms of metal concentrations in shoots and shoot/soil ratios was obtained for using hyperaccumulators in BRS to remove metals from filter material. For example, Armeria maritima (a hyperaccumulator with the lowest shoot biomass) and Miscanthus sinsenis (a C4 plant with the highest biomass production) took up similar amounts of metals despite large differences in biomass. However, no significant correlations between effluent metal concentrations and plants' metal uptake were found, possibly because of the short duration of the experiment. The results indicate that root biomass affected effluent metal concentrations more strongly. Root biomass was often positively correlated with total and (particularly) dissolved effluent metal concentrations. Further experiments with different soil metal concentrations, organic matter analyses and stronger focus on root characteristics are recommended, including additional tests of effects of hyperaccumulators and mycorrhiza on metal treatment and phytoextraction., (Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
21. Metal speciation in stormwater bioretention: Removal of particulate, colloidal and truly dissolved metals.
- Author
-
Lange K, Österlund H, Viklander M, and Blecken GT
- Subjects
- Dust, Filtration, Rain, Metals, Water Pollutants, Chemical analysis
- Abstract
For comprehensive estimation of the metal treatment efficiency of bioretention systems, information on metal speciation in the stormwater and the effluent is needed. However, so far, most bioretention studies only considered total metal concentrations. Despite their environmental importance, dissolved metals (defined as fractions < 0.45 μm) have only been evaluated in few studies. This study represents the first bioretention study to subdivide the <0.45 μm fraction further by filtration through a 3 kDa ultrafilter (corresponding to appr. 2-3 nm), thus enabling distinction between particulate, colloidal and truly dissolved metals. Higher bioavailability of the truly dissolved fraction has been indicated by previous research, underlining the importance of this study. Since vegetation and salt in stormwater both may be explanatory variables for metal fractionation, these have been added as factors in the utilized full factorial pilot-scale column experiment. While total metal removal was often >95%, detailed fractionation revealed that Cu and (when no salt was added) Zn removal in the <0.45 μm and <3 kDa fractions was significantly lower. Further, mean concentrations of Cu and (in one treatment) Cd in the <0.45 μm effluent fraction did not meet Swedish receiving water quality guidelines. By calculating the particulate, colloidal and truly dissolved fractions, it was shown that bioretention systems affect metal speciation of Cu and Zn. Colloidal and truly dissolved fractions were mostly prevalent in the effluent rather than the influent. Salt affected metal removal mostly negatively. Fractionation was affected by salt mainly in the influent where it increased the concentrations of Cd and Zn in the truly dissolved fraction (no effects on Cu and Pb fractions). In the effluent, Cu and Zn were only slightly affected by salt. Vegetation had mostly no significant effects on metal removal and fractionation. Further integration of detailed metal fractionation into sampling routines in bioretention research is recommended., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
22. Dissolved metal adsorption capacities and fractionation in filter materials for use in stormwater bioretention facilities.
- Author
-
Søberg LC, Winston R, Viklander M, and Blecken GT
- Abstract
The dissolved metal adsorption and association was determined for ten different filter materials recommended and/or implemented in bioretention facilities. Batch adsorption and batch kinetic experiments were performed at lab-scale using both single and multi-metal solutions. Metal strengths and association were determined by sequential extraction analysis. All materials adsorbed metals and 90% of adsorption occurred within 1 h. However, as metal solutions became more complex, adsorption behavior changed. Generally, filter materials classified as sand with a naturally high pH, relatively low organic matter (OM) content and large specific surface area seem to be good choices for removing dissolved metals. Additionally, a chalk additive might improve metal adsorption whereas biochar did not significantly improve metal retention and may be an unwanted (due to degradation over time) extra source of OM. Regardless of filter material, metals primarily adsorbed to the exchangeable form which indicates that metal adsorption might not be permanent, but rather substantially reversible in some cases. More research is needed to assess whether dissolved metals adsorbed in filter materials of bioretention systems pose a delayed threat instead of an immediate threat. Finally, the authors strongly recommend filter materials intended for stormwater bioretention facilities to be tested prior to implementation.
- Published
- 2019
- Full Text
- View/download PDF
23. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones.
- Author
-
Merriman LS, Moore TLC, Wang JW, Osmond DL, Al-Rubaei AM, Smolek AP, Blecken GT, Viklander M, and Hunt WF
- Abstract
The carbon sequestration services of stormwater wet retention ponds were investigated in four different climates: U.S., Northern Sweden, Southern Sweden, and Singapore, representing a range of annual mean temperatures, growing season lengths and rainfall depths: geographic factors that were not statistically compared, but have great effect on carbon (C) accumulation. A chronosequence was used to estimate C accumulations rates; C accumulation and decomposition rates were not directly measured. C accumulated significantly over time in vegetated shallow water areas (0-30cm) in the USA (78.4gCm
-2 yr-1 ), in vegetated temporary inundation zones in Sweden (75.8gCm-2 yr-1 ), and in all ponds in Singapore (135gCm-2 yr-1 ). Vegetative production appeared to exert a stronger influence on relative C accumulation rates than decomposition. Comparing among the four climatic zones, the effects of increasing rainfall and growing season lengths (vegetative production) outweighed the effects of higher temperature on decomposition rates. Littoral vegetation was a significant source to the soil C pool relative to C sources draining from watersheds. Establishment of vegetation in the shallow water zones of retention ponds is vital to providing a C source to the soil. Thus, the width of littoral shelves containing this vegetation along the perimeter may be increased if C sequestration is a design goal. This assessment establishes that stormwater wet retention ponds can sequester C across different climate zones with generally annual rainfall and lengths of growing season being important general factors for C accumulation., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
24. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?
- Author
-
Søberg LC, Viklander M, and Blecken GT
- Abstract
Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
25. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling.
- Author
-
Winston RJ, Al-Rubaei AM, Blecken GT, Viklander M, and Hunt WF
- Subjects
- Environmental Monitoring, Permeability, Porosity, Surface Properties, Sweden, Water chemistry, Water Quality, Construction Materials, Hydrocarbons chemistry
- Abstract
The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
26. The influence of temperature and salt on metal and sediment removal in stormwater biofilters.
- Author
-
Søberg LC, Viklander M, and Blecken GT
- Subjects
- Filtration methods, Filtration instrumentation, Geologic Sediments, Metals, Rain, Sodium Chloride, Temperature
- Abstract
Stormwater biofilters are used to treat stormwater runoff. In countries with cold winter climates, biofilters are subject to low temperatures which, in some cases, are combined with potentially high salt concentrations from road de-icing, potentially affecting the biofilter's performance. Since stormwater biofilters have been developed without consideration of their critical winter use, a laboratory study was carried out to evaluate the performance of stormwater biofilters subjected to low and high temperatures, with and without salt. Both factors and their interaction had a significant effect on outflow concentrations and removal percentages. Salt had a negative impact on outflow concentrations, causing lower removal percentages for (especially dissolved) metals, this impact being most pronounced for Cu and Pb. The unrealistic combination of salt with high temperature seemed to further amplify the negative impacts of salt despite the fact that temperature alone did not cause significant differences in outflow concentrations and removal percentages. Still, biofilters showed the ability to treat stormwater efficiently under the simulated winter conditions; outflow concentrations for total metals as a minimum met the class 4 threshold value defined in the Swedish freshwater quality guidelines, while inflow concentrations clearly exceeded the threshold value for class 5. The relatively coarse filter material (which is recommended to facilitate infiltration during winter) did not seem to exacerbate biofilter performance.
- Published
- 2014
- Full Text
- View/download PDF
27. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters.
- Author
-
Blecken GT, Zinger Y, Deletić A, Fletcher TD, and Viklander M
- Subjects
- Cadmium isolation & purification, Copper isolation & purification, Filtration instrumentation, Lead isolation & purification, Time Factors, Water Movements, Water Purification instrumentation, Zinc isolation & purification, Metals, Heavy isolation & purification, Water Pollutants, Chemical isolation & purification, Water Purification methods
- Abstract
Biofiltration is a technology to treat urban stormwater runoff, which conveys pollutants, including heavy metals. However, the variability of metals removal performance in biofiltration systems is as yet unknown. A laboratory study has been conducted with vegetated biofilter mesocosms, partly fitted with a submerged zone at the bottom of the filter combined with a carbon source. The biofilters were dosed with stormwater according to three different dry/wet schemes, to investigate the effect of intermittent wetting and drying conditions on metal removal. Provided that the biofilters received regular stormwater input, metal removal exceeded 95%. The highest metal accumulation occurs in the top layer of the filter media. However, after antecedent drying before a storm event exceeding 3-4 weeks the filters performed significantly worse, although metal removal still remained relatively high. Introducing a submerged zone into the filter improved the performance significantly after extended dry periods. In particular, copper removal in filters equipped with a submerged zone was increased by around 12% (alpha=0.05) both during wet and dry periods and for lead the negative effect of drying could completely be eliminated, with consistently low outflow concentrations even after long drying periods.
- Published
- 2009
- Full Text
- View/download PDF
28. The influence of temperature on nutrient treatment efficiency in stormwater biofilter systems.
- Author
-
Blecken GT, Zinger Y, Muthanna TM, Deletic A, Fletcher TD, and Viklander M
- Subjects
- Carex Plant metabolism, Filtration methods, Hydrogen-Ion Concentration, Nitrates metabolism, Nitrites metabolism, Nitrogen metabolism, Phosphorus metabolism, Quaternary Ammonium Compounds metabolism, Rain, Temperature, Waste Disposal, Fluid methods, Water Pollutants, Chemical metabolism
- Abstract
Nutrients can cause eutrophication of natural water bodies. Thus, urban stormwater which is an important nutrient source in urbanised areas has to be treated in order to reduce its nutrient loads. Biofilters which use soil filter media, biofilms and plants, are a good treatment option for nutrients. This paper presents the results of a biofilter column study in cold temperatures (+2 degrees C, +8 degrees C, control at +20 degrees C) which may cause special problems regarding biofilter performance. It was shown that particle-bound pollutants as TSS and a high fraction of phosphorus were reduced well without being negatively influenced by cold temperatures. Nitrogen, however, was not reduced; especially NO(x) was produced in the columns. This behaviour can be explained with both insufficient denitrification and high leaching from the columns.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.