14 results on '"Blatterer, J."'
Search Results
2. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy
- Author
-
Rhonda E. Schnur, Fabio Sirchia, Olga Levchenko, Caroline Nava, Jane Juusola, Sarah Verheyen, Marketa Vlckova, Lindsay Rhodes, Gregory M. Cooper, Darina Prchalova, Thomas Courtin, Øystein L. Holla, David Kronn, Akemi J. Tanaka, E. Martina Bebin, Tara Funari, Miroslava Hancarova, Ennio Del Giudice, Nicolas Guex, Astrid Eisenkölbl, Dawn L. Earl, Toshiki Takenouchi, Ursula Gruber-Sedlmayr, Sedlácek Z, Sofia Douzgou, Heidelis A. Seebacher, Gerarda Cappuccio, Jasmin Blatterer, Anna Mikhaleva, Dian Donnai, Wendy K. Chung, Else Merckoll, Natasha J Brown, Elizabeth A. Sellars, Stefan Mundlos, Susan M. Hiatt, Giuliana Giannuzzi, Sinje Geuer, Giuseppina Vitiello, Séverine Lorrain, Alexandre Reymond, David J. Amor, Nicolas Chatron, Julien Delafontaine, Martine Doco, Kristian Tveten, Cecilie F. Rustad, Sylvain Pradervand, Delphine Héron, Alfredo Brusco, Elena L. Dadali, Nicola Brunetti-Pierri, Boris Keren, Yuri A. Zarate, Crystle Lee, Joel Charrow, Binnaz Yalcin, Heidi Taska-Tench, Elin Tønne, Tomoko Uehara, Alexander Lavrov, Jennifer Norman, Norine Voisin, Anna C.E. Hurst, Victoria R. Sanders, Ganka Douglas, Diana Johnson, Kenjiro Kosaki, Université de Lausanne = University of Lausanne (UNIL), Cooper Medical School of Rowan University [Camden] (CMSRU), Manchester University NHS Foundation Trust (MFT), University of Manchester [Manchester], HudsonAlpha Institute for Biotechnology [Huntsville, AL], Oslo University Hospital [Oslo], Victorian Clinical Genetics Services [Melbourne, VIC, Australia] (VCGS), Murdoch Children's Research Institute (MCRI), University of Melbourne, Seattle Children’s Hospital, Groupe de Recherche Clinique : Déficience Intellectuelle et Autisme [ CHU Pitié-Salpêtrière AP-HP] (GRC : DIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Research Centre for Medical Genetics [Moscow, Russia] (RCMG), Max Planck Institute for Molecular Genetics (MPIMG), Max-Planck-Gesellschaft, Medical University of Graz, Sheffield Children's NHS Foundation Trust, University of Arkansas at Little Rock, Charles University [Prague] (CU), University Hospital Motol [Prague], University of Alabama at Birmingham [ Birmingham] (UAB), Università degli studi di Torino = University of Turin (UNITO), Azienda Ospedalerio - Universitaria Città della Salute e della Scienza di Torino = University Hospital Città della Salute e della Scienza di Torino, University of Naples Federico II = Università degli studi di Napoli Federico II, Ann & Robert H. Lurie Children's Hospital of Chicago, Swiss Institute of Bioinformatics [Lausanne] (SIB), Hémostase et Remodelage Vasculaire Post-Ischémie (HERVI - EA 3801), Université de Reims Champagne-Ardenne (URCA), GeneDx [Gaithersburg, MD, USA], Johannes Kepler University Linz [Linz] (JKU), Telemark Hospital Trust [Skien, Norway], New York Medical College (NYMC), Integris Pediatric Neurology [Oklahoma City, OK, USA] (IPN), Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo' [Trieste], Keio University School of Medicine [Tokyo, Japan], Columbia University [New York], Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Manchester Centre for Genomic Medicine [Manchester, UK] (MCGM), St Mary's Hospital Manchester-Manchester Academic Health Science Centre (MAHSC), University of Manchester [Manchester]-University of Manchester [Manchester]-Manchester University NHS Foundation Trust (MFT)-Faculty of Biology, Medicine and Health [Manchester, UK], Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Dupuis, Christine, Voisin, N., Schnur, R. E., Douzgou, S., Hiatt, S. M., Rustad, C. F., Brown, N. J., Earl, D. L., Keren, B., Levchenko, O., Geuer, S., Verheyen, S., Johnson, D., Zarate, Y. A., Hancarova, M., Amor, D. J., Bebin, E. M., Blatterer, J., Brusco, A., Cappuccio, G., Charrow, J., Chatron, N., Cooper, G. M., Courtin, T., Dadali, E., Delafontaine, J., Del Giudice, E., Doco, M., Douglas, G., Eisenkolbl, A., Funari, T., Giannuzzi, G., Gruber-Sedlmayr, U., Guex, N., Heron, D., Holla, O. L., Hurst, A. C. E., Juusola, J., Kronn, D., Lavrov, A., Lee, C., Lorrain, S., Merckoll, E., Mikhaleva, A., Norman, J., Pradervand, S., Prchalova, D., Rhodes, L., Sanders, V. R., Sedlacek, Z., Seebacher, H. A., Sellars, E. A., Sirchia, F., Takenouchi, T., Tanaka, A. J., Taska-Tench, H., Tonne, E., Tveten, K., Vitiello, G., Vlckova, M., Uehara, T., Nava, C., Yalcin, B., Kosaki, K., Donnai, D., Mundlos, S., Brunetti Pierri, N., Chung, W. K., and Reymond, A.
- Subjects
Male ,Models, Molecular ,Hypertrichosis ,[SDV]Life Sciences [q-bio] ,Mesomelic Dysplasia ,Transcriptome ,Mice ,Gene Frequency ,Missense mutation ,Child ,Zebrafish ,Genetics (clinical) ,Genetics ,Brain Diseases ,0303 health sciences ,biology ,Protein Stability ,030305 genetics & heredity ,AFF3 ,AFF4 ,horseshoe kidney ,intellectual disability ,mesomelic dysplasia ,Nuclear Proteins ,Syndrome ,Phenotype ,Ubiquitin ligase ,[SDV] Life Sciences [q-bio] ,Child, Preschool ,Female ,Transcriptional Elongation Factors ,Adolescent ,Mutation, Missense ,Osteochondrodysplasias ,Article ,Evolution, Molecular ,Young Adult ,03 medical and health sciences ,medicine ,Animals ,Humans ,Amino Acid Sequence ,Fused Kidney ,030304 developmental biology ,Epilepsy ,Infant ,Horseshoe kidney ,biology.organism_classification ,medicine.disease ,biology.protein - Abstract
International audience; The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3-and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
- Published
- 2021
- Full Text
- View/download PDF
3. Extrahepatic biliary atresia and normal-range serum gamma-glutamyltranspeptidase activity: A case report.
- Author
-
Kohlmaier B, Tichy H, Blatterer J, Till H, Schlagenhauf A, and Knisely AS
- Abstract
An infant with biliary atresia had normal-range ('low') serum gamma-glutamyltranspeptidase (GGT) activity, exceptional because GGT generally is elevated in biliary atresia. Mechanisms underlying low-GGT cholestasis in biliary atresia are not defined, but the phenomenon is associated with worse clinical outcome. Testing in our patient revealed no variants in genes mutated in several disorders also associated with poor prognosis and with low-GGT cholestasis; indeed, at age 14 months she has stable disease with unremarkable biomarker values. Nonetheless, we recommend extended investigations in such patients, including genetic testing, to detect coexistent disorders and to expand understanding of GGT in biliary atresia., Competing Interests: The authors declare no conflict of interest., (© 2024 The Author(s). JPGN Reports published by Wiley Periodicals LLC on behalf of The European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition.)
- Published
- 2024
- Full Text
- View/download PDF
4. An autosomal-dominant childhood-onset disorder associated with pathogenic variants in VCP.
- Author
-
Mah-Som AY, Daw J, Huynh D, Wu M, Creekmore BC, Burns W, Skinner SA, Holla ØL, Smeland MF, Planes M, Uguen K, Redon S, Bierhals T, Scholz T, Denecke J, Mensah MA, Sczakiel HL, Tichy H, Verheyen S, Blatterer J, Schreiner E, Thies J, Lam C, Spaeth CG, Pena L, Ramsey K, Narayanan V, Seaver LH, Rodriguez D, Afenjar A, Burglen L, Lee EB, Chou TF, Weihl CC, and Shinawi MS
- Subjects
- Adult, Humans, Valosin Containing Protein genetics, Muscle Hypotonia, Mutation, Missense genetics, Muscular Diseases, Neurodevelopmental Disorders
- Abstract
Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly. Trio exome sequencing or a multigene panel identified nine missense variants, two in-frame deletions, one frameshift, and one splicing variant. We performed in vitro functional studies and in silico modeling to investigate the impact of these variants on protein function. In contrast to MSP variants, most missense variants had decreased ATPase activity, and one caused hyperactivation. Other variants were predicted to cause haploinsufficiency, suggesting a loss-of-function mechanism. This cohort expands the spectrum of VCP-related disease to include neurodevelopmental disease presenting in childhood., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Analysis of a non-lethal biallelic frameshift mutation in ZMPSTE24 reveals utilization of alternative translation initiation codons.
- Author
-
Kaufmann L, Pilic J, Auinger L, Mayer AL, Blatterer J, Semmler-Bruckner J, Abbas S, Rehman K, Ayaz M, Graier WF, Malli R, Petek E, Wagner K, Al Kaissi A, Khan MA, and Windpassinger C
- Subjects
- Humans, Codon, Initiator genetics, Mutation, Codon, Membrane Proteins genetics, Frameshift Mutation genetics, Metalloendopeptidases genetics, Metalloendopeptidases metabolism
- Abstract
Restrictive dermopathy (RD) is a lethal condition caused by biallelic loss-of-function mutations in ZMPSTE24, whereas mutations preserving residual enzymatic activity of the ZMPSTE24 protein lead to the milder mandibuloacral dysplasia with type B lipodystrophy (MADB) phenotype. Remarkably, we identified a homozygous, presumably loss-of-function mutation in ZMPSTE24 [c.28_29insA, p.(Leu10Tyrfs*37)] in two consanguineous Pakistani families segregating MADB. To clarify how lethal consequences are prevented in affected individuals, functional analysis was performed. Expression experiments supported utilization of two alternative translation initiation sites, preventing complete loss of protein function consistent with the relatively mild phenotypic outcome in affected patients. One of these alternative start codons is newly formed at the insertion site. Our findings indicate that the creation of new potential start codons through N-terminal mutations in other disease-associated genes should generally be taken into consideration in the variant interpretation process., (© 2023 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
6. Novel subtype of mucopolysaccharidosis caused by arylsulfatase K (ARSK) deficiency.
- Author
-
Verheyen S, Blatterer J, Speicher MR, Bhavani GS, Boons GJ, Ilse MB, Andrae D, Sproß J, Vaz FM, Kircher SG, Posch-Pertl L, Baumgartner D, Lübke T, Shah H, Al Kaissi A, Girisha KM, and Plecko B
- Subjects
- Animals, Chromatography, Liquid methods, Dermatan Sulfate, Disaccharides analysis, Glycosaminoglycans genetics, Glycosaminoglycans metabolism, Humans, Mice, Mice, Knockout, Sulfates, Tandem Mass Spectrometry methods, Arylsulfatases, Mucopolysaccharidoses
- Abstract
Background: Mucopolysaccharidoses (MPS) are monogenic metabolic disorders that significantly affect the skeleton. Eleven enzyme defects in the lysosomal degradation of glycosaminoglycans (GAGs) have been assigned to the known MPS subtypes (I-IX). Arylsulfatase K (ARSK) is a recently characterised lysosomal hydrolase involved in GAG degradation that removes the 2-O-sulfate group from 2-sulfoglucuronate. Knockout of Arsk in mice was consistent with mild storage pathology, but no human phenotype has yet been described., Methods: In this study, we report four affected individuals of two unrelated consanguineous families with homozygous variants c.250C>T, p.(Arg84Cys) and c.560T>A, p.(Leu187Ter) in ARSK , respectively. Functional consequences of the two ARSK variants were assessed by mutation-specific ARSK constructs derived by site-directed mutagenesis, which were ectopically expressed in HT1080 cells. Urinary GAG excretion was analysed by dimethylene blue and electrophoresis, as well as liquid chromatography/mass spectrometry (LC-MS)/MS analysis., Results: The phenotypes of the affected individuals include MPS features, such as short stature, coarse facial features and dysostosis multiplex. Reverse phenotyping in two of the four individuals revealed additional cardiac and ophthalmological abnormalities. Mild elevation of dermatan sulfate was detected in the two subjects investigated by LC-MS/MS. Human HT1080 cells expressing the ARSK-Leu187Ter construct exhibited absent protein levels by western blot, and cells with the ARSK-Arg84Cys construct showed markedly reduced enzyme activity in an ARSK-specific enzymatic assay against 2-O-sulfoglucuronate-containing disaccharides as analysed by C18-reversed-phase chromatography followed by MS., Conclusion: Our work provides a detailed clinical and molecular characterisation of a novel subtype of mucopolysaccharidosis, which we suggest to designate subtype X., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
7. An exceptional biallelic N-terminal frame shift mutation in ZMPSTE24 leads to non-lethal progeria due to possible utilization of a downstream alternative start codon.
- Author
-
Schaflinger E, Blatterer J, Khan AS, Kaufmann L, Auinger L, Tatrai B, Abbasi SW, Zeeshan Ali M, Abbasi AA, Al Kaissi A, Petek E, Wagner K, Ahmad Khan M, and Windpassinger C
- Subjects
- Codon, Initiator genetics, Frameshift Mutation, Humans, Lamin Type A genetics, Lamin Type A metabolism, Mutation, Lipodystrophy genetics, Membrane Proteins genetics, Membrane Proteins metabolism, Metalloendopeptidases genetics, Metalloendopeptidases metabolism, Progeria genetics
- Abstract
Biallelic mutations in ZMPSTE24 are known to be associated with autosomal recessive mandibuloacral dysplasia with type B lipodystrophy (MADB) and lethal restrictive dermopathy (RD), respectively. Disease manifestation is depending on the remaining enzyme activity of the mutated ZMPSTE24 protein. To date, complete loss of function has exclusively been reported in RD cases. In this study, we identified a novel N-terminal homozygous frameshift mutation (c.28_29insA) in a consanguineous family segregating with MADB. An in-depth analysis of the mutated sequence revealed, that the one base pair insertion creates a novel downstream in-frame start codon, which supposedly serves as an alternative translation initiation site (TIS). This possible rescue mechanism would explain the relatively mild clinical outcome in the studied individuals. Our findings demonstrate the necessity for careful interpretation of N-terminal variants potentially effecting translation initiation., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
8. Biallelic truncating variants in ATP9A cause a novel neurodevelopmental disorder involving postnatal microcephaly and failure to thrive.
- Author
-
Vogt G, Verheyen S, Schwartzmann S, Ehmke N, Potratz C, Schwerin-Nagel A, Plecko B, Holtgrewe M, Seelow D, Blatterer J, Speicher MR, Kornak U, Horn D, Mundlos S, Fischer-Zirnsak B, and Boschann F
- Subjects
- Failure to Thrive, Homozygote, Humans, Pedigree, Adenosine Triphosphatases genetics, Intellectual Disability genetics, Membrane Transport Proteins genetics, Microcephaly pathology, Nervous System Malformations, Neurodevelopmental Disorders genetics
- Abstract
Background: Genes implicated in the Golgi and endosomal trafficking machinery are crucial for brain development, and mutations in them are particularly associated with postnatal microcephaly (POM)., Methods: Exome sequencing was performed in three affected individuals from two unrelated consanguineous families presenting with delayed neurodevelopment, intellectual disability of variable degree, POM and failure to thrive. Patient-derived fibroblasts were tested for functional effects of the variants., Results: We detected homozygous truncating variants in ATP9 A. While the variant in family A is predicted to result in an early premature termination codon, the variant in family B affects a canonical splice site. Both variants lead to a substantial reduction of ATP9A mRNA expression. It has been shown previously that ATP9A localises to early and recycling endosomes, whereas its depletion leads to altered gene expression of components from this compartment. Consistent with previous findings, we also observed overexpression of ARPC3 and SNX3 , genes strongly interacting with ATP9A ., Conclusion: In aggregate, our findings show that pathogenic variants in ATP9A cause a novel autosomal recessive neurodevelopmental disorder with POM. While the physiological function of endogenous ATP9A is still largely elusive, our results underline a crucial role of this gene in endosomal transport in brain tissue., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
9. A novel protein truncating mutation in L2HGDH causes L-2-hydroxyglutaric aciduria in a consanguineous Pakistani family.
- Author
-
Muzammal M, Ali MZ, Brugger B, Blatterer J, Ahmad S, Taj S, Shah SK, Khan S, Enzinger C, Petek E, Wagner K, Khan MA, and Windpassinger C
- Subjects
- Brain Diseases, Metabolic, Inborn, Consanguinity, Humans, Male, Mutation genetics, Pakistan, Alcohol Oxidoreductases genetics
- Abstract
Background: L-2-hydroxyglutaric aciduria (L2HGA) is a rare neurometabolic disorder that occurs due to accumulation of L-2-hydroxyglutaric acid in the cerebrospinal fluid (CSF), plasma and urine. The clinical manifestation of L2HGA includes intellectual disability, cerebellar ataxia, epilepsy, speech problems and macrocephaly., Methods: In the present study, we ascertained a multigenerational consanguineous Pakistani family with 5 affected individuals. Clinical studies were performed through biochemical tests and brain CT scan. Locus mapping was carried out through genome-wide SNP genotyping, whole exome sequencing and Sanger sequencing. For in silico studies protein structural modeling and docking was done using I-TASSER, Cluspro and AutoDock VINA tools., Results: Affected individuals presented with cognitive impairment, gait disturbance, speech difficulties and psychomotor delay. Radiologic analysis of a male patient revealed leukoaraiosis with hypoattenuation of cerebral white matter, suggestive of hypomyelination. Homozygosity mapping in this family revealed a linkage region on chromosome 14 between markers rs2039791 and rs781354. Subsequent whole exome analysis identified a novel frameshift mutation NM_024884.3:c.180delG, p.(Ala62Profs*24) in the second exon of L2HGDH. Sanger sequencing confirmed segregation of this mutation with the disease phenotype. The identification of the most N-terminal loss of function mutation published thus far further expands the mutational spectrum of L2HGDH., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
10. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy.
- Author
-
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, and Reymond A
- Subjects
- Adolescent, Amino Acid Sequence, Animals, Brain Diseases etiology, Child, Child, Preschool, Epilepsy complications, Evolution, Molecular, Female, Gene Frequency, Humans, Infant, Male, Mice, Models, Molecular, Nuclear Proteins chemistry, Nuclear Proteins deficiency, Phenotype, Protein Stability, Syndrome, Transcriptional Elongation Factors chemistry, Transcriptional Elongation Factors genetics, Young Adult, Zebrafish genetics, Brain Diseases genetics, Epilepsy genetics, Fused Kidney genetics, Intellectual Disability genetics, Mutation, Missense, Nuclear Proteins genetics, Osteochondrodysplasias genetics
- Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
11. Cardio-pathogenic variants in unexplained intrauterine fetal death: a retrospective pilot study.
- Author
-
Muin DA, Kollmann M, Blatterer J, Hoermann G, Husslein PW, Lafer I, Petek E, and Schwarzbraun T
- Subjects
- Austria epidemiology, Female, Genetic Predisposition to Disease, Humans, Pilot Projects, Pregnancy, Retrospective Studies, Cardiomyopathies complications, Cardiomyopathies genetics, Fetal Death etiology, Genetic Variation, Stillbirth epidemiology
- Abstract
To describe the prevalence and spectrum of cardio-pathogenic variants in singleton fetuses after unexplained intrauterine fetal death (IUFD). DNA from post-mortem fibroblastic tissue samples of 16 fetuses after unexplained IUFD was retrieved at two tertiary university hospitals for clinical exome sequencing with subsequent filtering of 122 cardio-specific genes to elucidate underlying cardio-pathogenic variants. In total, we included 12 (75%) male and four (25%) female fetuses who were stillborn at a median gestational age of 34
+6 (23+2 -40+5 ) weeks. In two (12.5%) fetuses no cardio-pathogenic variants were found. In 14 (87.5%) fetuses, overall 33 variants were detected in 22 cardio-specific genes, involving 14 (63.63%) genes associated with cardiomyopathy, six (27.27%) arrhythmogenic susceptibility genes and two (9.09%) arrhythmia and cardiomyopathy associated genes. Among the 33 variants, five (15.2%) were classified as likely benign according to the American College of Medical Genetics and Genomics; 28 (84.8%) variants were considered as variants of uncertain significance. Compared to a cohort of explained IUFDs, the cases with and without fetal variants in cardiac genes differed not significantly regarding maternal age, previous history of stillbirth, time of stillbirth or fetal sex. Unexplained stillbirth may be caused by cardio-genetic pathologies, yet a high number of variants of uncertain significance merit a more detailed post-mortem examination including family segregation analysis.- Published
- 2021
- Full Text
- View/download PDF
12. Exome sequencing of a Pakistani family with spastic paraplegia identified an 18 bp deletion in the cytochrome B5 domain of FA2H.
- Author
-
Abbas S, Brugger B, Zubair M, Gul S, Blatterer J, Wenninger J, Rehman K, Tatrai B, Khan MA, and Windpassinger C
- Subjects
- Adolescent, Adult, Consanguinity, Family, Female, Humans, Male, Molecular Docking Simulation, Mutation, Pakistan, Pedigree, Polymorphism, Single Nucleotide, Exome Sequencing, Cytochromes b5 genetics, Mixed Function Oxygenases genetics, Spastic Paraplegia, Hereditary genetics
- Abstract
Hereditary spastic paraplegias (HSPs) are a diverse class of neurodegenerative disorders that mainly affect the corticospinal tract of the body and result in various clinical conditions such as lower limb spasticity and muscle weakness in the lower extremities. Worldwide, more than 70 chromosomal loci/genes have been reported to be associated with HSPs, out of which, six genes viz., ATL1, FA2H, GJC2, AP4E1, ALDH18A1 and ATP13A2 have been mapped in Pakistani families. In the present genetic study, we report on a large consanguineous Pakistani family with a complex form of HSP segregating with a 18 bp deletion in the first exon of the Fatty Acid 2-Hydroxylase ( FA2H ) gene (NM_024306.5:c.159_176del). The identified in-frame deletion results in loss of six amino acids (p.Arg53_Ile58del) within the cytochrome B5 domain of the protein. FA2H is required for alpha-hydroxylation of free fatty acids to form alpha-hydroxylated sphingolipids. Its cytochrome b5-like heme-binding domain, which spans from residues 15 to 85, imparts the redox activity to FA2H. This mutation has previously been reported in a Pakistani family presenting with a similar form of complex HSP. Together with our findings the pathogenic role of the observed variant is further supported. Mutation studies on additional Pakistani families for FA2H will further elucidate its mutational spectrum, which may help in developing a prenatal diagnostic test for Khyber Pakhtunkhwa resident Pakistani families.
- Published
- 2021
- Full Text
- View/download PDF
13. Identification of a novel protein truncating mutation p.Asp98* in XPC associated with xeroderma pigmentosum in a consanguineous Pakistani family.
- Author
-
Ali MZ, Blatterer J, Khan MA, Schaflinger E, Petek E, Ahmad S, Khan E, and Windpassinger C
- Subjects
- Adolescent, Child, Female, Frameshift Mutation, Humans, Male, Pedigree, Xeroderma Pigmentosum pathology, DNA-Binding Proteins genetics, Loss of Function Mutation, Xeroderma Pigmentosum genetics
- Abstract
Background: Xeroderma pigmentosum (XP) is a rare genetic disorder, which is characterized by hyper-sensitivity to solar ultraviolet (UV) radiation. Clinical consequences of sun exposure are skin lesions and an increased risk of developing skin cancer. Genetic studies have identified eight genes associated with xeroderma pigmentosum. The proteins encoded by these genes are mainly involved in DNA repair mechanisms., Methods: Molecular genetic characterization of patients with xeroderma pigmentosum involved positional cloning methods such as homozygosity mapping and subsequent candidate gene analysis. Mutation screening was performed through Sanger DNA sequencing., Results and Discussion: In this case study, we report a novel protein truncating mutation in XPC associated with autosomal recessive xeroderma pigmentosum in a consanguineous Pakistani family. Genetic mapping revealed a novel single base insertion of a thymine nucleotide NM_004628.4: c.291dupT (c.291_292insT) in the second exon of XPC. The identified mutation leads to a premature stop codon (TGA) at amino acid position 98 (p.Asp98*) and thus presumably results in a truncated protein. The Xeroderma pigmentosum, complementation group C (XPC) is located on 3p25.1 and encodes a protein involved in nucleotide excision repair. The identified mutation presumably truncates all functional domains of the XPC protein, which likely results in the loss of protein function., Conclusion: The study expands the knowledge of the mutational spectrum of XPC and is valuable for genetic counseling of affected individuals and their families., (© 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.)
- Published
- 2020
- Full Text
- View/download PDF
14. Exome sequence analysis in consanguineous Pakistani families inheriting Bardet-Biedle syndrome determined founder effect of mutation c.299delC (p.Ser100Leufs*24) in BBS9 gene.
- Author
-
Muzammal M, Zubair M, Bierbaumer S, Blatterer J, Graf R, Gul A, Abbas S, Badar M, Abbasi AA, Khan MA, and Windpassinger C
- Subjects
- Adolescent, Bardet-Biedl Syndrome diagnosis, Base Sequence genetics, Child, Chromosome Mapping, DNA Mutational Analysis, Exons genetics, Female, Frameshift Mutation, Genetic Testing, Homozygote, Humans, Male, Pakistan, Pedigree, Polymorphism, Single Nucleotide, Sequence Deletion, Exome Sequencing, Young Adult, Bardet-Biedl Syndrome genetics, Consanguinity, Cytoskeletal Proteins genetics, Founder Effect
- Abstract
Background: Bardet-Biedl syndrome (BBS) is characterized by a heterogeneous phenotypic spectrum of retinopathy, intellectual disability (ID), obesity, polydactyly, and kidney dysfunctions as the major clinical features. Genetic investigations have reported 21 BBS genes, the products of which are mostly located at the centrosome, basal body or the ciliary transition zone., Methods: In the present genetic report, we analyzed two apparently unrelated consanguineous BBS families from Dera Ismail Khan (D.I.Khan) district, Pakistan. Genetic mapping was performed using Whole exome sequencing and Sanger sequencing., Results: Whole exome sequencing identified a recently reported single base deletion NM_001033604.1:c.299delC in the fourth exon of BBS9 in both families. The identified frameshift mutation is predicted to cause premature truncation of the expressed protein (p.Ser100Leufs*24). This mutation has previously been mapped in a consanguineous Pakistani family; therefore this is the second report of this particular mutation in two additional BBS families originating from different locations., Conclusion: We speculate the evolutionary significance of this mutation and assume its strong founder effect in the Khaisoori tribe of D.I.Khan. Based on these findings, we suggest developing a molecular diagnostic test that may be used for premarital and prenatal screening of families at risk of BBS., (© 2019 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.