1. Comparative Stem Transcriptome Analysis Reveals Pathways Associated with Drought Tolerance in Maritime Pine Grafts.
- Author
-
Manjarrez LF, de María N, Vélez MD, Cabezas JA, Mancha JA, Ramos P, Pizarro A, Blanco-Urdillo E, López-Hinojosa M, Cobo-Simón I, Guevara MÁ, Díaz-Sala MC, and Cervera MT
- Subjects
- Transcriptome, Plant Proteins genetics, Plant Proteins metabolism, Plant Stems genetics, Plant Stems metabolism, Stress, Physiological genetics, Transcription Factors genetics, Transcription Factors metabolism, Drought Resistance, Pinus genetics, Pinus physiology, Pinus metabolism, Gene Expression Regulation, Plant, Droughts, Gene Expression Profiling methods
- Abstract
The maritime pine ( Pinus pinaster Ait.) is a highly valuable Mediterranean conifer. However, recurrent drought events threaten its propagation and conservation. P. pinaster populations exhibit remarkable differences in drought tolerance. To explore these differences, we analyzed stem transcriptional profiles of grafts combining genotypes with contrasting drought responses under well-watered and water-stress regimes. Our analysis underscored that P. pinaster drought tolerance is mainly associated with constitutively expressed genes, which vary based on genotype provenance. However, we identified key genes encoding proteins involved in water stress response, abscisic acid signaling, and growth control including a PHD chromatin regulator, a histone deubiquitinase, the ABI5-binding protein 3, and transcription factors from Myb-related, DOF NAC and LHY families. Additionally, we identified that drought-tolerant rootstock could enhance the drought tolerance of sensitive scions by regulating the accumulation of transcripts involved in carbon mobilization, osmolyte biosynthesis, flavonoid and terpenoid metabolism, and reactive oxygen species scavenging. These included genes encoding galactinol synthase, CBL-interacting serine/threonine protein kinase 5, BEL1-like homeodomain protein, dihydroflavonol 4-reductase, and 1-deoxy-D-xylulose-5-phosphate. Our results revealed several hub genes that could help us to understand the molecular and physiological response to drought of conifers. Based on all the above, grafting with selected drought-tolerant rootstocks is a promising method for propagating elite recalcitrant conifer species, such as P. pinaster .
- Published
- 2024
- Full Text
- View/download PDF