1. Evolutionary history of Methyltransferase 1 genes in hexaploid wheat
- Author
-
Axel Poulet, Aline V. Probst, Jean-Philippe Pichon, Lise Pingault, Mélanie Thomas, Etienne Paux, Christophe Tatout, Jorge Duarte, Sébastien Faure, Mickaël Throude, Génétique, Reproduction et Développement (GReD), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), BIOGEMMA, Centre de Recherche de Chappes, Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP), European Community's Seventh Framework Programme [245058], Higher Education Commission (HEC) of Pakistan, European Project: 245058,EC:FP7:KBBE,FP7-KBBE-2009-3,SOLIBAM(2010), ProdInra, Migration, CNRS (817/2010), Biogemma Company (817/2010), pole de competitivitivite Cereales Vallee, CNRS, INSERM, Blaise Pascal and Auvergne Universities, ANR 'Dynam'Het', ANR-11 JSV2 009 01, ANR 'SINODYN', ANR-12-ISV6-0001, Region Auvergne, Dupuis, Christine, Strategies for Organic and Low-input Integrated Breeding And Management - SOLIBAM - - EC:FP7:KBBE2010-03-01 - 2014-08-31 - 245058 - VALID, Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de la Recherche Agronomique (INRA), Génétique, Reproduction et Développement - Clermont Auvergne (GReD), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE] Environmental Sciences ,Genome evolution ,MAINTENANCE DNA METHYLTRANSFERASE ,Evolution ,Pseudogene ,[SDV]Life Sciences [q-bio] ,CG-rich isochores ,[SDV.GEN] Life Sciences [q-bio]/Genetics ,Biology ,Genome ,Evolution, Molecular ,Polyploidy ,Gene Duplication ,Gene duplication ,EPIGENETIC CONTROL ,Genetics ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Genome dynamics ,PHYLOGENETIC ANALYSIS ,[SDV.BV] Life Sciences [q-bio]/Vegetal Biology ,DNA methylation ,ARABIDOPSIS-THALIANA ,GENOME EVOLUTION ,RNA-SEQ ,MAXIMUM-LIKELIHOOD ,DRAFT SEQUENCE ,WINTER-WHEAT ,CPG ISLANDS ,DNA (Cytosine-5-)-Methyltransferases ,Triticeae ,Gene ,Phylogeny ,Triticum ,Synteny ,Plant Proteins ,2. Zero hunger ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,food and beverages ,biology.organism_classification ,[SDV] Life Sciences [q-bio] ,[SDE]Environmental Sciences ,Biotechnology ,Research Article - Abstract
Background Plant and animal methyltransferases are key enzymes involved in DNA methylation at cytosine residues, required for gene expression control and genome stability. Taking advantage of the new sequence surveys of the wheat genome recently released by the International Wheat Genome Sequencing Consortium, we identified and characterized MET1 genes in the hexaploid wheat Triticum aestivum (TaMET1). Results Nine TaMET1 genes were identified and mapped on homoeologous chromosome groups 2A/2B/2D, 5A/5B/5D and 7A/7B/7D. Synteny analysis and evolution rates suggest that the genome organization of TaMET1 genes results from a whole genome duplication shared within the grass family, and a second gene duplication, which occurred specifically in the Triticeae tribe prior to the speciation of diploid wheat. Higher expression levels were observed for TaMET1 homoeologous group 2 genes compared to group 5 and 7, indicating that group 2 homoeologous genes are predominant at the transcriptional level, while group 5 evolved into pseudogenes. We show the connection between low expression levels, elevated evolution rates and unexpected enrichment in CG-dinucleotides (CG-rich isochores) at putative promoter regions of homoeologous group 5 and 7, but not of group 2 TaMET1 genes. Bisulfite sequencing reveals that these CG-rich isochores are highly methylated in a CG context, which is the expected target of TaMET1. Conclusions We retraced the evolutionary history of MET1 genes in wheat, explaining the predominance of group 2 homoeologous genes and suggest CG-DNA methylation as one of the mechanisms involved in wheat genome dynamics. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-922) contains supplementary material, which is available to authorized users.
- Published
- 2014
- Full Text
- View/download PDF