15 results on '"Bitarello BD"'
Search Results
2. Genetically influenced tobacco and alcohol use behaviors impact erythroid trait variation.
- Author
-
Shivakumar S, Wilken MB, Tsao V, Bitarello BD, and Thom CS
- Subjects
- Humans, Mendelian Randomization Analysis, Hemoglobins metabolism, Hemoglobins genetics, Smoking genetics, Erythrocytes metabolism, Quantitative Trait Loci, Erythrocyte Count, Hematocrit, Alcohol Drinking genetics, Genome-Wide Association Study, Polymorphism, Single Nucleotide
- Abstract
Genome wide association studies (GWAS) have associated thousands of loci with quantitative human blood trait variation. Loci and related genes that impact blood trait variation may regulate blood cell-intrinsic biological processes, or alternatively impact blood cell development and function via systemic factors. Clinical observations have linked tobacco or alcohol use with altered blood traits, but these trait relationships have not been systematically explored at the genetic level. Applying a Mendelian randomization (MR) framework to GWAS summary statistics, we explore relationships between smoking and drinking behaviors with 15 quantitative blood traits. We find that the effects of smoking and drinking are confined to red blood cell traits. An instrumental variable (IV) comprised of 113 single nucleotide polymorphisms (SNPs) associated with smoking initiation is associated with decreased hemoglobin (HGB: Effect = -0.07 standard deviation units [95% confidence interval = -0.03 to -0.10 SD units], P = 1x10-4), hematocrit (HCT: Effect = -0.06 [-0.03 - -0.09] SD units, P = 4x10-4), and red blood cell count (RBC: Effect = -0.05 [-0.02 - -0.09] SD units, P = 5x10-3) without impacting platelet count (P = 0.9) or white blood cell count (P = 0.6). Similarly, an IV associated with an increased number of alcoholic drinks consumed per week is associated with decreased HGB (Effect = -0.22 [-0.42 - -0.02] SD units, P = 3x10-2) and RBC (Effect = -0.27 [-0.51 - -0.03] SD units, P = 3x10-2). Using multivariable MR and causal mediation analyses, we find that an increased genetic predisposition to smoking initiation is associated with increased alcohol intake, and that alcohol use mediates the genetic effect of smoking initiation on red blood cell traits. These findings demonstrate a novel role for genetically influenced behaviors on human blood traits, revealing opportunities to dissect related pathways and mechanisms that influence hematopoiesis and blood cell biology., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Shivakumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
3. Assessing the Risk Stratification of Breast Cancer Polygenic Risk Scores in a Brazilian Cohort.
- Author
-
Barreiro RAS, de Almeida TF, Gomes C, Monfardini F, de Farias AA, Tunes GC, de Souza GM, Duim E, de Sá Correia J, Campos Coelho AV, Caraciolo MP, Oliveira Duarte YA, Zatz M, Amaro E, Oliveira JB, Bitarello BD, Brentani H, and Naslavsky MS
- Subjects
- Humans, Female, Brazil epidemiology, Risk Assessment methods, Cohort Studies, Gene Frequency, Linkage Disequilibrium, Genome-Wide Association Study methods, Polymorphism, Single Nucleotide, Risk Factors, Case-Control Studies, Genetic Risk Score, Breast Neoplasms genetics, Genetic Predisposition to Disease, Multifactorial Inheritance genetics
- Abstract
Polygenic risk scores (PRSs) for breast cancer have a clear clinical utility in risk prediction. PRS transferability across populations and ancestry groups is hampered by population-specific factors, ultimately leading to differences in variant effects, such as linkage disequilibrium and differences in variant frequency (allele frequency differences). Thus, locally sourced population-based phenotypic and genomic data sets are essential to assess the validity of PRSs derived from signals detected across populations. This study assesses the transferability of a breast cancer PRS composed of 313 risk variants (313-PRS) in a Brazilian trihybrid admixed ancestries (European, African, and Native American) whole-genome sequenced cohort, the Rare Genomes Project. 313-PRS was computed in the Rare Genomes Project (n = 853) using the UK Biobank (UKBB; n = 264,307) as reference. The Brazilian cohorts have a high European ancestry (EA) component, with allele frequency differences and to a lesser extent linkage disequilibrium patterns similar to those found in EA populations. The 313-PRS distribution was found to be inflated when compared with that of the UKBB, leading to potential overestimation of PRS-based risk if EA is taken as a standard. However, case controls lead to equivalent predictive power when compared with UKBB-EA samples with area under the receiver operating characteristic curve values of 0.66 to 0.62 compared with 0.63 for UKBB., Competing Interests: Disclosure Statement None declared., (Copyright © 2024 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Genetically influenced tobacco and alcohol use behaviors impact erythroid trait variation.
- Author
-
Shivakumar S, Wilken MB, Tsao V, Bitarello BD, and Thom CS
- Abstract
Genome wide association studies (GWAS) have associated thousands of loci with quantitative human blood trait variation. Blood trait associated loci and related genes may regulate blood cell-intrinsic biological processes, or alternatively impact blood cell development and function via systemic factors and disease processes. Clinical observations linking behaviors like tobacco or alcohol use with altered blood traits can be subject to bias, and these trait relationships have not been systematically explored at the genetic level. Using a Mendelian randomization (MR) framework, we confirmed causal effects of smoking and drinking that were largely confined to the erythroid lineage. Using multivariable MR and causal mediation analyses, we confirmed that an increased genetic predisposition to smoke tobacco was associated with increased alcohol intake, indirectly decreasing red blood cell count and related erythroid traits. These findings demonstrate a novel role for genetically influenced behaviors in determining human blood traits, revealing opportunities to dissect related pathways and mechanisms that influence hematopoiesis.
- Published
- 2023
- Full Text
- View/download PDF
5. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus.
- Author
-
Mathieson I, Day FR, Barban N, Tropf FC, Brazel DM, Vaez A, van Zuydam N, Bitarello BD, Gardner EJ, Akimova ET, Azad A, Bergmann S, Bielak LF, Boomsma DI, Bosak K, Brumat M, Buring JE, Cesarini D, Chasman DI, Chavarro JE, Cocca M, Concas MP, Davey Smith G, Davies G, Deary IJ, Esko T, Faul JD, Franco O, Ganna A, Gaskins AJ, Gelemanovic A, de Geus EJC, Gieger C, Girotto G, Gopinath B, Grabe HJ, Gunderson EP, Hayward C, He C, van Heemst D, Hill WD, Hoffmann ER, Homuth G, Hottenga JJ, Huang H, Hyppӧnen E, Ikram MA, Jansen R, Johannesson M, Kamali Z, Kardia SLR, Kavousi M, Kifley A, Kiiskinen T, Kraft P, Kühnel B, Langenberg C, Liew G, Lind PA, Luan J, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Mbarek H, McCarthy MI, McMahon G, Medland SE, Meitinger T, Metspalu A, Mihailov E, Milani L, Missmer SA, Mitchell P, Møllegaard S, Mook-Kanamori DO, Morgan A, van der Most PJ, de Mutsert R, Nauck M, Nolte IM, Noordam R, Penninx BWJH, Peters A, Peyser PA, Polašek O, Power C, Pribisalic A, Redmond P, Rich-Edwards JW, Ridker PM, Rietveld CA, Ring SM, Rose LM, Rueedi R, Shukla V, Smith JA, Stankovic S, Stefánsson K, Stöckl D, Strauch K, Swertz MA, Teumer A, Thorleifsson G, Thorsteinsdottir U, Thurik AR, Timpson NJ, Turman C, Uitterlinden AG, Waldenberger M, Wareham NJ, Weir DR, Willemsen G, Zhao JH, Zhao W, Zhao Y, Snieder H, den Hoed M, Ong KK, Mills MC, and Perry JRB
- Subjects
- Child, Female, Humans, Aging physiology, Menopause genetics, Selection, Genetic, Fertility genetics, Reproduction genetics
- Abstract
Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
6. Inferring Balancing Selection From Genome-Scale Data.
- Author
-
Bitarello BD, Brandt DYC, Meyer D, and Andrés AM
- Subjects
- Gene Frequency, Genome, Selection, Genetic, Genetics, Population, Genetic Variation, Polymorphism, Genetic
- Abstract
The identification of genomic regions and genes that have evolved under natural selection is a fundamental objective in the field of evolutionary genetics. While various approaches have been established for the detection of targets of positive selection, methods for identifying targets of balancing selection, a form of natural selection that preserves genetic and phenotypic diversity within populations, have yet to be fully developed. Despite this, balancing selection is increasingly acknowledged as a significant driver of diversity within populations, and the identification of its signatures in genomes is essential for understanding its role in evolution. In recent years, a plethora of sophisticated methods has been developed for the detection of patterns of linked variation produced by balancing selection, such as high levels of polymorphism, altered allele-frequency distributions, and polymorphism sharing across divergent populations. In this review, we provide a comprehensive overview of classical and contemporary methods, offer guidance on the choice of appropriate methods, and discuss the importance of avoiding artifacts and of considering alternative evolutionary processes. The increasing availability of genome-scale datasets holds the potential to assist in the identification of new targets and the quantification of the prevalence of balancing selection, thus enhancing our understanding of its role in natural populations., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
7. Polygenic Scores for Height in Admixed Populations.
- Author
-
Bitarello BD and Mathieson I
- Subjects
- Black People genetics, Humans, Multifactorial Inheritance, White People genetics, Genetic Predisposition to Disease, Genome-Wide Association Study
- Abstract
Polygenic risk scores (PRS) use the results of genome-wide association studies (GWAS) to predict quantitative phenotypes or disease risk at an individual level, and provide a potential route to the use of genetic data in personalized medical care. However, a major barrier to the use of PRS is that the majority of GWAS come from cohorts of European ancestry. The predictive power of PRS constructed from these studies is substantially lower in non-European ancestry cohorts, although the reasons for this are unclear. To address this question, we investigate the performance of PRS for height in cohorts with admixed African and European ancestry, allowing us to evaluate ancestry-related differences in PRS predictive accuracy while controlling for environment and cohort differences. We first show that the predictive accuracy of height PRS increases linearly with European ancestry and is partially explained by European ancestry segments of the admixed genomes. We show that recombination rate, differences in allele frequencies, and differences in marginal effect sizes across ancestries all contribute to the decrease in predictive power, but none of these effects explain the decrease on its own. Finally, we demonstrate that prediction for admixed individuals can be improved by using a linear combination of PRS that includes ancestry-specific effect sizes, although this approach is at present limited by the small size of non-European ancestry discovery cohorts., (Copyright © 2020 Bitarello and Mathieson.)
- Published
- 2020
- Full Text
- View/download PDF
8. Evolutionary and functional impact of common polymorphic inversions in the human genome.
- Author
-
Giner-Delgado C, Villatoro S, Lerga-Jaso J, Gayà-Vidal M, Oliva M, Castellano D, Pantano L, Bitarello BD, Izquierdo D, Noguera I, Olalde I, Delprat A, Blancher A, Lalueza-Fox C, Esko T, O'Reilly PF, Andrés AM, Ferretti L, Puig M, and Cáceres M
- Subjects
- Genotyping Techniques, Humans, Phenotype, Polymorphism, Single Nucleotide, Chromosome Inversion, Evolution, Molecular, Genome, Human
- Abstract
Inversions are one type of structural variants linked to phenotypic differences and adaptation in multiple organisms. However, there is still very little information about polymorphic inversions in the human genome due to the difficulty of their detection. Here, we develop a new high-throughput genotyping method based on probe hybridization and amplification, and we perform a complete study of 45 common human inversions of 0.1-415 kb. Most inversions promoted by homologous recombination occur recurrently in humans and great apes and they are not tagged by SNPs. Furthermore, there is an enrichment of inversions showing signatures of positive or balancing selection, diverse functional effects, such as gene disruption and gene-expression changes, or association with phenotypic traits. Therefore, our results indicate that the genome is more dynamic than previously thought and that human inversions have important functional and evolutionary consequences, making possible to determine for the first time their contribution to complex traits.
- Published
- 2019
- Full Text
- View/download PDF
9. Signatures of Long-Term Balancing Selection in Human Genomes.
- Author
-
Bitarello BD, de Filippo C, Teixeira JC, Schmidt JM, Kleinert P, Meyer D, and Andrés AM
- Subjects
- Alleles, Animals, Genetic Variation, Genetics, Population, Humans, Pan troglodytes genetics, Polymorphism, Single Nucleotide, Evolution, Molecular, Genome, Human genetics, Selection, Genetic
- Abstract
Balancing selection maintains advantageous diversity in populations through various mechanisms. Although extensively explored from a theoretical perspective, an empirical understanding of its prevalence and targets lags behind our knowledge of positive selection. Here, we describe the Non-central Deviation (NCD), a simple yet powerful statistic to detect long-term balancing selection (LTBS) that quantifies how close frequencies are to expectations under LTBS, and provides the basis for a neutrality test. NCD can be applied to a single locus or genomic data, and can be implemented considering only polymorphisms (NCD1) or also considering fixed differences with respect to an outgroup (NCD2) species. Incorporating fixed differences improves power, and NCD2 has higher power to detect LTBS in humans under different frequencies of the balanced allele(s) than other available methods. Applied to genome-wide data from African and European human populations, in both cases using chimpanzee as an outgroup, NCD2 shows that, albeit not prevalent, LTBS affects a sizable portion of the genome: ∼0.6% of analyzed genomic windows and 0.8% of analyzed positions. Significant windows (P < 0.0001) contain 1.6% of SNPs in the genome, which disproportionally fall within exons and change protein sequence, but are not enriched in putatively regulatory sites. These windows overlap ∼8% of the protein-coding genes, and these have larger number of transcripts than expected by chance even after controlling for gene length. Our catalog includes known targets of LTBS but a majority of them (90%) are novel. As expected, immune-related genes are among those with the strongest signatures, although most candidates are involved in other biological functions, suggesting that LTBS potentially influences diverse human phenotypes.
- Published
- 2018
- Full Text
- View/download PDF
10. A genomic perspective on HLA evolution.
- Author
-
Meyer D, C Aguiar VR, Bitarello BD, C Brandt DY, and Nunes K
- Subjects
- Alleles, Evolution, Molecular, Genetic Variation genetics, Genome-Wide Association Study, Genomics, High-Throughput Nucleotide Sequencing methods, Histocompatibility Antigens Class I genetics, Histocompatibility Antigens Class II genetics, Histocompatibility Testing methods, Humans, Polymorphism, Genetic genetics, Selection, Genetic genetics, HLA Antigens genetics, Major Histocompatibility Complex genetics
- Abstract
Several decades of research have convincingly shown that classical human leukocyte antigen (HLA) loci bear signatures of natural selection. Despite this conclusion, many questions remain regarding the type of selective regime acting on these loci, the time frame at which selection acts, and the functional connections between genetic variability and natural selection. In this review, we argue that genomic datasets, in particular those generated by next-generation sequencing (NGS) at the population scale, are transforming our understanding of HLA evolution. We show that genomewide data can be used to perform robust and powerful tests for selection, capable of identifying both positive and balancing selection at HLA genes. Importantly, these tests have shown that natural selection can be identified at both recent and ancient timescales. We discuss how findings from genomewide association studies impact the evolutionary study of HLA genes, and how genomic data can be used to survey adaptive change involving interaction at multiple loci. We discuss the methodological developments which are necessary to correctly interpret genomic analyses involving the HLA region. These developments include adapting the NGS analysis framework so as to deal with the highly polymorphic HLA data, as well as developing tools and theory to search for signatures of selection, quantify differentiation, and measure admixture within the HLA region. Finally, we show that high throughput analysis of molecular phenotypes for HLA genes-namely transcription levels-is now a feasible approach and can add another dimension to the study of genetic variation.
- Published
- 2018
- Full Text
- View/download PDF
11. Heterogeneity of dN/dS Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phylogeny.
- Author
-
Bitarello BD, Francisco Rdos S, and Meyer D
- Subjects
- Humans, Models, Genetic, Alleles, Evolution, Molecular, Genes, MHC Class I
- Abstract
The classical class I HLA loci of humans show an excess of nonsynonymous with respect to synonymous substitutions at codons of the antigen recognition site (ARS), a hallmark of adaptive evolution. Additionally, high polymporphism, linkage disequilibrium, and disease associations suggest that one or more balancing selection regimes have acted upon these genes. However, several questions about these selective regimes remain open. First, it is unclear if stronger evidence for selection on deep timescales is due to changes in the intensity of selection over time or to a lack of power of most methods to detect selection on recent timescales. Another question concerns the functional entities which define the selected phenotype. While most analyses focus on selection acting on individual alleles, it is also plausible that phylogenetically defined groups of alleles ("lineages") are targets of selection. To address these questions, we analyzed how dN/dS (ω) varies with respect to divergence times between alleles and phylogenetic placement (position of branches). We find that ω for ARS codons of class I HLA genes increases with divergence time and is higher for inter-lineage branches. Throughout our analyses, we used non-selected codons to control for possible effects of inflation of ω associated to intra-specific analysis, and showed that our results are not artifactual. Our findings indicate the importance of considering the timescale effect when analysing ω over a wide spectrum of divergences. Finally, our results support the divergent allele advantage model, whereby heterozygotes with more divergent alleles have higher fitness than those carrying similar alleles.
- Published
- 2016
- Full Text
- View/download PDF
12. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms.
- Author
-
Dos Santos Francisco R, Buhler S, Nunes JM, Bitarello BD, França GS, Meyer D, and Sanchez-Mazas A
- Subjects
- Computer Simulation, Databases, Factual, HLA-A Antigens classification, HLA-A Antigens immunology, HLA-B Antigens classification, HLA-B Antigens immunology, Histocompatibility Testing, Humans, Immunodominant Epitopes, International Agencies, Biological Evolution, Genetics, Population, HLA-A Antigens genetics, HLA-B Antigens genetics, Polymorphism, Genetic genetics, Selection, Genetic genetics
- Abstract
Supertypes are groups of human leukocyte antigen (HLA) alleles which bind overlapping sets of peptides due to sharing specific residues at the anchor positions-the B and F pockets-of the peptide-binding region (PBR). HLA alleles within the same supertype are expected to be functionally similar, while those from different supertypes are expected to be functionally distinct, presenting different sets of peptides. In this study, we applied the supertype classification to the HLA-A and HLA-B data of 55 worldwide populations in order to investigate the effect of natural selection on supertype rather than allelic variation at these loci. We compared the nucleotide diversity of the B and F pockets with that of the other PBR regions through a resampling procedure and compared the patterns of within-population heterozygosity (He) and between-population differentiation (G ST) observed when using the supertype definition to those estimated when using randomized groups of alleles. At HLA-A, low levels of variation are observed at B and F pockets and randomized He and G ST do not differ from the observed data. By contrast, HLA-B concentrates most of the differences between supertypes, the B pocket showing a particularly high level of variation. Moreover, at HLA-B, the reassignment of alleles into random groups does not reproduce the patterns of population differentiation observed with supertypes. We thus conclude that differently from HLA-A, for which supertype and allelic variation show similar patterns of nucleotide diversity within and between populations, HLA-B has likely evolved through specific adaptations of its B pocket to local pathogens.
- Published
- 2015
- Full Text
- View/download PDF
13. Kiwi genome provides insights into evolution of a nocturnal lifestyle.
- Author
-
Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, Ongyerth M, Bitarello BD, Schiöth HB, Hofreiter M, Stadler PF, Prüfer K, Lambert D, Kelso J, and Schöneberg T
- Subjects
- Animals, Genomics, Molecular Sequence Annotation, Molecular Sequence Data, Multigene Family, Palaeognathae anatomy & histology, Selection, Genetic, Smell genetics, Vision, Ocular genetics, Adaptation, Biological genetics, Darkness, Evolution, Molecular, Genome, Palaeognathae genetics
- Abstract
Background: Kiwi, comprising five species from the genus Apteryx, are endangered, ground-dwelling bird species endemic to New Zealand. They are the smallest and only nocturnal representatives of the ratites. The timing of kiwi adaptation to a nocturnal niche and the genomic innovations, which shaped sensory systems and morphology to allow this adaptation, are not yet fully understood., Results: We sequenced and assembled the brown kiwi genome to 150-fold coverage and annotated the genome using kiwi transcript data and non-redundant protein information from multiple bird species. We identified evolutionary sequence changes that underlie adaptation to nocturnality and estimated the onset time of these adaptations. Several opsin genes involved in color vision are inactivated in the kiwi. We date this inactivation to the Oligocene epoch, likely after the arrival of the ancestor of modern kiwi in New Zealand. Genome comparisons between kiwi and representatives of ratites, Galloanserae, and Neoaves, including nocturnal and song birds, show diversification of kiwi's odorant receptors repertoire, which may reflect an increased reliance on olfaction rather than sight during foraging. Further, there is an enrichment of genes influencing mitochondrial function and energy expenditure among genes that are rapidly evolving specifically on the kiwi branch, which may also be linked to its nocturnal lifestyle., Conclusions: The genomic changes in kiwi vision and olfaction are consistent with changes that are hypothesized to occur during adaptation to nocturnal lifestyle in mammals. The kiwi genome provides a valuable genomic resource for future genome-wide comparative analyses to other extinct and extant diurnal ratites.
- Published
- 2015
- Full Text
- View/download PDF
14. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data.
- Author
-
Brandt DY, Aguiar VR, Bitarello BD, Nunes K, Goudet J, and Meyer D
- Subjects
- Genetics, Population, Genome, Human, Genotype, High-Throughput Nucleotide Sequencing, Humans, Alleles, Chromosome Mapping, Gene Frequency, Genomics methods, HLA Antigens genetics
- Abstract
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity., (Copyright © 2015 Brandt et al.)
- Published
- 2015
- Full Text
- View/download PDF
15. Development of polymorphic microsatellite markers for the human botfly, Dermatobia hominis (Diptera: Oestridae).
- Author
-
Bitarello BD, Torres TT, Lyra ML, and DE Azeredo-Espin AM
- Abstract
In this report, we describe the development of 17 polymorphic microsatellite markers for the human botfly, Dermatobia hominis, an obligatory parasite of mammals of great veterinary importance in Latin America. The number of alleles ranged from 5 to 21 per locus, with a mean of 12.2 alleles per locus. The expected heterozygosity ranged from 0.2571 to 0.9206 and from 0.2984 to 0.9291 in two populations from Brazil. These markers should provide a high resolution tool for assessment of the fine-scale genetic structure of natural populations of the human botfly., (© 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.)
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.