1. Development and Characterization of Celecoxib Solid Self-nanoemulsifying Drug Delivery Systems (S-SNEDDS) Prepared Using Novel Cellulose-Based Microparticles as Adsorptive Carriers
- Author
-
Fabian-Pascal Schmied, Alexander Bernhardt, Victor Baudron, Birte Beine, and Sandra Klein
- Subjects
Drug Carriers ,Ecology ,Pharmaceutical Science ,Administration, Oral ,Biological Availability ,General Medicine ,Aquatic Science ,Excipients ,Drug Delivery Systems ,Solubility ,Celecoxib ,Drug Discovery ,Nanoparticles ,Emulsions ,Particle Size ,Cellulose ,Agronomy and Crop Science ,Ecology, Evolution, Behavior and Systematics - Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) represent an interesting platform for improving the oral bioavailability of poorly soluble lipophilic drugs. While Liquid-SNEDDS (L-SNEDDS) effectively solubilize the drug in vivo, they have several drawbacks, including poor storage stability. Solid-SNEDDS (S-SNEDDS) combine the advantages of L-SNEDDS with those of solid dosage forms, particularly stability. The aim of the present study was to convert celecoxib L-SNEDDS into S-SNEDDS without altering their release behavior. Various commercially available adsorptive carrier materials were investigated, as well as novel cellulose-based microparticles prepared by spray drying from an aqueous dispersion containing Diacel® 10 and methyl cellulose or gum arabic as a binder prior to their use. Particle size and morphology of the carrier materials were screened by scanning electron microscopy and their effects on the loading capacity for L-SNEDDS were investigated, and comparative in vitro dissolution studies of celecoxib L-SNEDDS and the different S-SNEDDS were performed immediately after preparation and after 3 months of storage. Among the adsorptive carrier materials, the novel cellulose-based microparticles were found to be the most suitable for the preparation of celecoxib S-SNEDDS from L-SNEDDS, enabling the preparation of a solid, stable formulation while preserving the in vitro release performance of the L-SNEDDS formulation.
- Published
- 2022