1. Multi-Source Temporal Attention Network for Precipitation Nowcasting
- Author
-
Sarabia, Rafael Pablos, Nyborg, Joachim, Birk, Morten, Sjørup, Jeppe Liborius, Vesterholt, Anders Lillevang, and Assent, Ira
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Precipitation nowcasting is crucial across various industries and plays a significant role in mitigating and adapting to climate change. We introduce an efficient deep learning model for precipitation nowcasting, capable of predicting rainfall up to 8 hours in advance with greater accuracy than existing operational physics-based and extrapolation-based models. Our model leverages multi-source meteorological data and physics-based forecasts to deliver high-resolution predictions in both time and space. It captures complex spatio-temporal dynamics through temporal attention networks and is optimized using data quality maps and dynamic thresholds. Experiments demonstrate that our model outperforms state-of-the-art, and highlight its potential for fast reliable responses to evolving weather conditions.
- Published
- 2024