The diffusion-limited binding kinetics of antigen (analyte), in solution with antibody (receptor) immobilized on a biosensor surface, is analyzed within a fractal framework. Most of the data presented is adequately described by a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot. A single example of a dual-fractal analysis is also presented. It is of interest to note that the binding-rate coefficient ( k) and the fractal dimension (Df) both exhibit changes in the same and in the reverse direction for the antigen-antibody systems analyzed. Binding-rate coefficient expressions, as a function of the Df developed for the antigen-antibody binding systems, indicate the high sensitivity of the k on the Df when both a single- and a dual-fractal analysis are used. For example, for a single-fractal analysis, and for the binding of antibody Mab 0.5β in solution to gpl20 peptide immobilized on a BIAcore biosensor, the order of dependence on the Df was 4.0926. For a dual-fractal analysis, and for the binding of 25-100 ng/mL TRITC-LPS (lipopolysaccharide) in solution with polymyxin B immobilized on a fiberoptic biosensor, the order of dependence of the binding-rate coefficients, k1 and k2 on the fractal dimensions, Df1 and Df2, were 7.6335 and-11.55, respectively. The fractional order of dependence of the k(s) on the Df(s) further reinforces the fractal nature of the system. The k(s) expressions developed as a function of the Df(s) are of particular value, since they provide a means to better control biosensor performance, by linking it to the heterogeneity on the surface, and further emphasize, in a quantitative sense, the importance of the nature of the surface in biosensor performance. [ABSTRACT FROM AUTHOR]